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Abstract

The task of lip synchronization (lip-sync) seeks to match
the lips of human faces with different audio. It has vari-
ous applications in the film industry as well as for creat-
ing virtual avatars and for video conferencing. This is a
challenging problem as one needs to simultaneously intro-
duce detailed, realistic lip movements while preserving the
identity, pose, emotions, and image quality. Many of the
previous methods trying to solve this problem suffer from
image quality degradation due to a lack of complete con-
textual information. In this paper, we present Diff2Lip, an
audio-conditioned diffusion-based model which is able to
do lip synchronization in-the-wild while preserving these
qualities. We train our model on Voxceleb2, a video dataset
containing in-the-wild talking face videos. Extensive stud-
ies show that our method outperforms popular methods like
Wav2Lip and PC-AVS in Fréchet inception distance (FID)
metric and Mean Opinion Scores (MOS) of the users. We
show results on both reconstruction (same audio-video in-
puts) as well as cross (different audio-video inputs) set-
tings on Voxceleb2 and LRW datasets. Video results are
available at https://soumik-kanad.github.io/
diff2lip.

1. Introduction

Oscar-winning director Bong Joon Ho famously pointed
out that subtitles act as a barrier between a foreign audi-
ence not adept in the language and their ability to fully en-
joy amazing movies [1], as the viewer needs to focus on
both watching and reading. A rarely explored alternative,
multiple-language version movie (MLV), where the same
film is shot in multiple languages in parallel, is naturally
much more expensive [49]. While dubbing is a popular
compromise solution, it can feel unnatural due to the lack
of synchronization between speech and actors’ video. As
a cheaper alternative, lip-synchronization (lip-sync) aims to
generate the mouth region of the human face such that the
lips correspond to a different speech audio. Its applications
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Figure 1. Top: Our Diff2Lip approach uses an audio-conditioned
diffusion model to generate lip-synchronized videos. (Here q de-
notes the forward diffusion process and pθ is the learned reverse
diffusion process.) Bottom: On zooming in to the mouth region it
can be seen that our method generates high-quality video frames
without suffering from identity loss.

beyond movies include education, virtual avatars, video
conferencing, assistive technology, and culture preserva-
tion. Ideally, lip-sync should support any identity and audio
from unseen sources (in-the-wild). This brings up the chal-
lenges of preserving the actors’ identity, pose, emotions,
and visual quality while maintaining a realistic lip-sync.

One of the earliest lip-sync methods, Video Rewrite [2],
had a purpose-built solution by mapping phonemes to
mouth shapes and then blending them onto the target video.
Modern techniques have more general solutions but suffer
certain limitations. For instance, PC-AVS [58] and GC-
AVT [28], disentangle pose and expression respectively but
fail to preserve identity (Fig. 1 bottom), have worse vi-
sual quality, and have border inconsistencies (while putting
the generated heads back to the scene). On the other
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hand, works that target a specific identity, such as Synthe-
sizingObama [47], require video/identity-specific training.
Other methods which rely on extracting intermediate rep-
resentations, e.g., landmarks in MakeItTalk [59], have to
deal with estimation errors in these representations. Finally,
approaches that can generalize on in-the-wild lip-sync set-
tings pose it as an inpainting task, where the mouth region is
masked and then generated according to the audio. Exam-
ples include Wav2Lip [35], which achieves good lip-sync
but at the cost of poor visual quality (see Fig. 1 bottom), and
AV-CAT [46], which has a multistage pipeline but does not
capture finer details. In this paper, we introduce Diff2Lip,
an inpainting style approach that solves the lip-sync task us-
ing diffusion models, which addresses most of these short-
comings and achieves visually superior lip-sync results.

We propose an audio-conditioned diffusion model to
solve the task of lip-sync (Fig. 1 top). Diffusion models [19]
are likelihood-based models that can generate astonishing
results in high variation datasets (e.g., ImageNet [12]), that
GANs [15] cannot match. To generalize in-the-wild, we
pose the problem as a conditional diffusion model based in-
painting task [39]. Diff2Lip takes three inputs: a masked
input frame, a reference frame, and an audio frame, and
outputs the lip-synced mouth region. Diff2Lip leverages
(1) the masked input frame to get the pose context; (2) the
reference frame to get the identity and mouth region tex-
tures; (3) the audio frame to drive the lip shape. Using an
audio+image conditioned diffusion model, Diff2Lip main-
tains a fine balance between all these contextual input in-
formation, avoiding lip-sync problems (e.g. identity loss,
reference copying, inaccurate lip shape). Diff2Lip opti-
mizes three losses: a reconstruction loss to guide synthe-
sis; a sync-expert loss [35] to enforce synchronization; and
a sequential adversarial loss to enforce inter-frame continu-
ity. Diff2Lip generates high image quality without identity
loss or generalizability issues as shown in Fig. 1 bottom.

We evaluate our work on commonly used benchmarks
of Voxceleb2 [8] and LRW [10] datasets for the tasks of
reconstruction and cross generation (see section 4). We
compare against popular methods used for lip-sync like
Wav2Lip [35] and PC-AVS [58]. Extensive evaluations
show that Diff2Lip outperform existing methods in terms
of image fidelity while having comparable synchronization.

The following are the contributions of this work:
• We propose a novel diffusion model based approach

for audio-conditioned image generation.
• Using frame-wise and sequential losses we are able to

successfully generate high quality lip-sync.
• We show that the use of a sequential adversarial loss

makes frame-wise video generation more stable for
diffusion models across frames.

• Extensive evaluations validate that our generations
outperform existing methods in FID metric and MOS

of the users showing the effectiveness of Diff2Lip.

2. Related Works
In this section, we first talk about existing methods in

lip-sync and then discuss conditional diffusion models.

2.1. Lip synchronization

Lip-sync methods can be roughly classified into the fol-
lowing four categories. Please note that there may be over-
laps between these categories.
Embedding-based head reconstruction. This class of
methods tends to synthesize the entire head by the fusion
of speech and identity features. This is usually done us-
ing an encoder-decoder style architecture. Song et al. [45]
and Vougioukas et al. [50] use RNNs while Speech2Vid [7]
uses CNNs. LipGAN [25] uses an audio-visual discrimina-
tor to improve synchronization. PC-AVS [58] performs dis-
entanglement of identity, speech, and pose from each other
to have complete pose control. GC-AVT [28] addition-
ally disentangles emotion. Recent contemporary works like
DiffTalk [41] use latent diffusion models for achieving high
visual quality at the cost of lip-sync, which is even worse in
cross generation. This method additionally requires land-
marks for proper face positioning, uses auto-regressive in-
ference strategies that cannot be parallelized, and employs
an external frame interpolation method as it suffers from
jitter. In general, as these methods generate full faces, they
suffer from border inconsistency issues while putting the
generated head back onto the frame.
Intermediate representation-based methods. These
methods learn to manipulate sparse intermediate representa-
tions like face landmarks or meshes. Chen et al. [6] and Das
et al. [11] generate faces conditioned on the landmarks esti-
mated using the audio. MakeItTalk [59] proposes to predict
speaker landmark displacement based on the audio. Meth-
ods like Song et al. [44], Yu et al. [55], and Xie et al. [54]
use 3DMM (facial mesh) to generate face videos. Neural
Voice Puppetry [48], uses audio to predict the expression
basis coefficients of a 3D model. Zhang et al. [57] propose
to first predict 3DMM-based animation parameters which
are then converted into a dense flow for facial animation.
Although these methods leverage intermediate structures,
getting such representations manually is expensive while
automatic predictions are error-prone. Further, these tend
to lose finer details given the sparse representation.
Personalized methods. In this type of methods, the
models are trained to be identity specific or even video-
specific [27]. For example, SynthesizingObama [47] only
focuses on Obama’s lip sync using an audio-to-landmark
network. MEAD [24] leverages edges while Lu et al.
[30] uses facial landmarks to create edge-like conditional-
feature maps to generate talking faces. Methods like Song et
al. [44], Zhang et al. [57], and Neural Voice Puppetry [48],
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discussed earlier, which do audio-driven expression manip-
ulation (3DMM) also fall in this category. Some meth-
ods also deal with explicit 3D mesh vertex deformfation
like LipSync3D [26]. NeRF [31] based models like AD-
NeRF [16] and SSPNeRF [29] are also person-specific.
This class of methods demonstrates high video quality at
times, but that comes at the cost of retraining the model on
the specific person and environment every time.
Inpainting-based methods. In these methods instead of
generating the whole face only the bottom part of the face,
which gets affected by speech is modified. These mod-
els don’t suffer from image boundary inconsistencies when
pasting back the mouth portion to the entire frame. Initial
works like [5] only focus on lip region features and used an
audio-speech fusion module to merge them. Wav2Lip [35]
is one of the most popular methods in this area and shows
the importance of lip-sync expert network for better lip-
sync. AV-CAT [46] uses a transformer backbone and a re-
finement model for inpainting the lower face. SyncTalk-
Face [34] further introduces an audio lip memory that is
used for inference time generation. Our method falls also in
this category of lip-sync. It doesn’t struggle with error prop-
agation issues being end-to-end trainable, and does not re-
quire any explicit 2D/3D information while being identity-
agnostic. It further improves the image quality compared to
previous methods. Recent contemporary works like Gupta
et al. [17] also focus on improving quality by using VQ-
GAN and a face restoration network but consequently make
the lips have a pinkish tint and slightly different from the in-
put. Their lip-sync expert network requires five times more
context compared to Wav2Lip.

2.2. Conditional diffusion models

Initial work in this area involved class conditioning for
image generation. For example, Ho & Salimans [20]
used class labels to train a diffusion model by interpolat-
ing between conditional and unconditional outputs. While
Guided-diffusion [13] used a classification network for
class conditioning to get a better image generation. Meth-
ods like GLIDE [32], DALLE-2 [36], Stable-Diffusion [37],
and IMAGEN [40] leverage language models to generate
photorealistic as well as many other styles of images just us-
ing text prompt inputs. There has also been some research
into text-to-video generation like Video Diffusion Mod-
els [21] and more photorealistic models like Gen-1 [14].
Recently, seeing the popularity of diffusion models, peo-
ple have also proposed models like Noise2Music [22] that
can generate music using just text prompts. There has
also been some work on image-conditioned diffusion mod-
els. Palette [39] is a generalized image-to-image genera-
tion framework, which can solve tasks like coloration, in-
painting, outpainting, jpeg-restoration, etc. We also pose
the problem as an inpainting style diffusion task but with

additional audio and reference identity-conditioned inputs.

3. Methods
In this section, we discuss our proposed approach -

Diff2Lip. We propose a novel audio and image conditioned
diffusion model which is able to synthesize high quality lip-
synced mouths corresponding to the audio input. We dis-
cuss diffusion models in Section 3.1. Then we introduce
our approach in Section 3.2. Finally, in Section 3.2.1, we
talk about the losses required to train our model.

3.1. Diffusion Models

Diffusion models [19] are likelihood-based models
which try to sample points from a given distribution by
gradually denoizing random gaussian noise in T steps. In
the forward diffusion process, increasing amounts of noise
is added to a sample point x0 iteratively as x0 → x1 →
· · · → xt−1 → xt → · · · → xT−1 → xT , to get a com-
pletely noisy image xT . Formally, the forward diffusion
process is a Markovian noising process defined by a list of
noise scales {ᾱt}Tt=1 as:

q(xt|x0) := N (xt|
√
ᾱtx0, (1− ᾱt)I) (1)

which can be rewritten as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∈ N (0, I) (2)

where ϵ is the noise, N denotes normal distribution, x0 is
the original image, and xt is noised image after t steps of
the diffusion process. The reverse diffusion process aims to
learn the posterior distribution q(xt−1|x0, xt), using which
one can estimate xt−1 given xt. This is typically done using
a neural network, which can be parameterized in multiple
ways. Similar to [13,19,33], we choose to parameterize the
neural network to predict the noise, ie. ϵθ(xt, t), where θ
represents the parameters of the neural network. It takes a
noisy sample xt and timestep t to predict the added noise ϵ
in Eq. 2. The model is learned using the simplified objective
used in [19] which reweights the variational lower bound on
the maximum likelihood objective:

Lsimple = Ex0,t,ϵ[∥ϵθ(xt, t)− ϵ∥22] (3)

The posterior distribution q(xt−1|x0, xt) is also tractable
using the Bayesian rule and turns out to be another normal
distribution. When using DDIM [43] for sampling, we can
deterministically sample the posterior by disregarding the
variance. Since we can write x0 in terms of xt and ϵ using
Eq. 2, therefore we can recover xt−1 deterministically given
xt and ϵ using:

xt−1 =

√
ᾱt−1

ᾱt
xt+

√
1− ᾱt−1 −

√
ᾱt−1(1− ᾱt)

ᾱt

 ·ϵ

(4)
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Figure 2. Overview: Diff2Lip solves lip-sync using an audio-conditioned diffusion model, which learns to inpaint the lower half of the
face. During training (left), given an input video sequence x0,s:s+5, we first add noise to the lower half using the forward process (Eq. 2)
to get the noisy video sequence xt,s:s+5, where diffusion step t is sampled uniformly. Then a noisy video frame xt,s+i for i ∈ [0, 5), a
different random reference frame xr , and the audio frame as+i is input to our model. The audio encoder EAudio encodes the audio frame
as+i. Our model (right), predicts the added noise ϵθ given these inputs, which is used to get the predicted clean frame xθ

0,s+i (using Eq. 2).
Then frame-wise reconstruction losses like L2 and Llpips are applied to the predicted clean sequence xθ

0,s:s+5 for enforcing good image
quality while sequential losses like sequential adversarial loss LGAN and SyncNet expert loss Lsync ensure lip-sync.

This equation represents the mean of the learned posterior
pθ(xt−1|xxt

) distribution in the DDIM [43] formulation.
For sampling during inference time, xT is sampled from

the standard normal distribution. The neural network can
then recover the noise ϵθ that needs to be removed. This in
turn can be fed into Eq. 4 to get back xT−1. Iterating over
this one can get the clean image as xT → xT−1 → · · · →
xt → xt−1 → · · · → x1 → x0 as seen in Fig. 3 top.

Notation. In this paper, we work with diffusion pro-
cesses and videos. We use t for the diffusion process step
number while s for the video frame number. For the diffu-
sion process, we keep the notation here the same as [33].

3.2. Proposed Approach

We pose the problem of lip-sync as a lower mouth in-
painting task, where given an input face with the lower half
masked, an audio frame input, and a reference frame input,
the model needs to generate the masked region of the face.
Formally, given a video V = {v1, . . . vS} with S frames,
were vs is the sth frame, and audio A = {a1, . . . , aS},
where as is the sth audio frame, our model processes one
video frame x0,s = vs at a time. Let xs,T = vs · (1−M)+
η · M be a noise-masked video frame, where η ∈ N (0, I)
and M is a binary mask for the lower half of the face. (Here
the subscript T denotes a completely noised frame that we
want to denoise). We want our trained model to be able
to recover vs using the reverse diffusion process, given in-
puts masked video frame xs,T , the audio frame as, and a
random reference frame xr = vrandom(1,S)̸=s. This setup is
quite similar to Wav2Lip [35]. The random reference frame
xr is chosen from the same video and provides cues about
the source’s identity and pose. We make sure that it is not
the same as the input frame; otherwise there could be infor-
mation leakage while training. The audio input as provides
information about the lip structure.

Figure 3. Intermediate xt (top) and xθ
0 (bottom) as t goes from T

to 0 (left to right), sampled at uniform intervals.
As shown Fig. 2 we formulate the problem as an inpaint-

ing task similar to [39], i.e., we learn a conditional model
ϵθ(xs,t, as, xr, t). At training time, we take a clean sam-
ple frame xs,0(= vs) and a uniformly sampled t, and add
noise to xs,0 using Eq. 2 to get xs,t. The model is trained to
predict the noise ϵ ∈ N (0, I) added to it using Eq. 3.

We feed the reference frame by concatenating it with the
input frame while the audio is fed using group normaliza-
tion (similar to time and class conditioning in [33]). Our
network has a UNet [38] backbone which consists of resid-
ual blocks and attention blocks similar to [13]. We want the
UNet to extract contextual information from the unmasked
portion of the input frame, and the reference frame. To en-
force this we provide these directly as input to the network.
For the audio which is used as a conditioning, we first en-
code it using a trainable encoder EAudio, which generates
embeddings that are injected as conditioning. EAudio is also
built using the same blocks as the UNet.

3.2.1 Additional Losses

When just training using Lsimple (applied to the masked re-
gion), we observe that the mouth region generation had
good image quality but no lip-sync. Hence we add addi-
tional losses to make our model work.

Our model predicts in noise space and hence many
image-space losses cannot be directly applied to it. There
are three ways to approach this issue - first, our model could
be parameterized to directly predict the denoized image x0
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instead of predicting ϵ. Second, we can use the sampling
process described in Section 3.1 to recover back the clean
image x0. Third, substituting xt and ϵθ into Eq. 2 one could
directly recover xθ0(xt, t), an estimate of x0, without having
to do iterative sampling. We observed that directly predict-
ing denoized image leads to worse image quality while us-
ing iterative sampling is overly time-consuming and hence
we stick with predicting ϵ.

This approach leads to a noisy xθ0(xt, t) when the step t
is large as seen in Fig. 3 bottom but there have been previous
works [51] which have applied image losses to xθ0(xt, t).
We enforce an L2 loss on this xθ0(xt, t) to make it clean:

L2 = Ex0,s,t,ϵ[∥xθ0,s − x0,s∥22] (5)

Next, to impose audio synchronization, we use SyncNet
discriminator as used by Wav2Lip [35]. We first sepa-
rately train the SyncNet in a contrastive manner which is
kept fixed during training our generation model. Similar to
Wav2Lip [35] we work with a sequence of 5 frames as input
to the SyncNet. By using 5 predicted video frames xθ0,s:s+5

and the corresponding audio sequence as:s+5, SyncNet loss
can be written as:

Lsync = Ex0,s,t,ϵ[SyncNet(xθ0,s:s+5, as:s+5)] (6)

As shown in our ablation, directly adding SyncNet loss,
deteriorates the image quality. To mitigate this we add per-
ceptual similarity loss [56] on the generated frames:

Llpips = Ex0,s,t,ϵEl[∥ϕl(xθ0,s)− ϕl(x0,s)∥22] (7)

where ϕl(·) represents the features coming from the lth layer
of a pretrained-VGG network. Finally, to enforce temporal
consistency we also add a sequence adversarial loss. This
makes the movement of the lips realistic across frames.

LGAN = Ex0,s,t,ϵ[logDψ(x
θ
0,s:s+5)]+

Ex0,s [log(1−Dψ(x0,s:s+5))]
(8)

where we use a PatchGAN [23] discriminator Dψ . This
task requires more context than just two frames [4] but no
optical flow [52]. The overall optimization objective can be
written as:

L = Lsimple + λl2L2 + λsyncLsync+

λlpipsLlpips + λganLGAN
(9)

For sequence-based losses, it is essential that the dif-
fusion process step input t is the same for a sequence of
frames x0,s:s+5. This ensures uniformity within a predicted
sequence during loss computation.

Table 1. Ablation over our losses (Reconstruction)

Losses FID ↓ SSIM ↑ PSNR ↑ LMD ↓ Syncc ↑

Reconstruction 8.589 0.523 18.234 3.472 0.633
+ SyncNet 8.998 0.526 18.57 3.123 6.336
+ Perceptual 7.751 0.526 18.548 3.121 6.53
+ Seq. GAN 8.213 0.527 18.52 3.101 7.89

4. Experiments

Datasets. We evaluate our method on the Voxceleb2 [8]
and LRW [10] datasets, which contain in-the-wild videos
of talking human faces and are commonly used for lip-sync
research.
Voxceleb2 [8] - consists of over 1M face-cropped Youtube
videos coming from 6000+ identities. This dataset consists
of high variation in lighting, image quality, pose, and mo-
tion blur. The average video length is 8 seconds.
LRW [10] - is a lip-reading dataset that contains 1000
videos each of 500 different words for a length of 1 sec-
ond coming from BBC news. It has less variation compared
to Voxceleb2 and focuses on clean front-facing videos. Like
previous works, our model is trained only on the Voxceleb2
train split while we test on both datasets. We don’t use the
whole dataset for training but rather only use the first utter-
ance of every video, which totals 145K videos.

Implementation Details. We preprocess the videos to
have a framerate of 25 fps and an audio sample rate of
16kHz. For all our models the video resolution is 224×224
out of which we crop the face and resize it to 128×128. This
is then masked in the lower half using gaussian noise and
fed to our model which only morphs the lower half of this
image according to the audio input. Then we resize it back
to the original crop size and place it back on the video. For
audio inputs, we first sample the audio at 16kHz and then
create mel-spectrograms with window-size 800 and hop-
size 200. These audio frames turn out to have size 16×80.
We build our code on top of the guided-diffusion reposi-
tory [13]. We train our model on 8 NVIDIA RTXA6000
GPUs which takes around 4 days. Our model is trained
using T = 1000 diffusion steps, but for faster inference,
we use only 25 steps of DDIM [43] sampling which takes
4.67 seconds on an average for all the frames of one Vox-
Celeb2 [8] video (avg. 8 seconds at 25 fps) on 8 NVIDIA
RTXA6000 GPUs.

Comparison Methods. We compare our method against
the most popular methods for lip-sync. Our choice of mod-
els is based also on models/codebases which are publicly
available. Wav2Lip [35] is an inpainting style method that
uses SyncNet expert loss to get good lip-sync. PC-AVS [58]
is a head reconstruction method that focuses on controlling
pose apart from identity and lip shape. For both these meth-
ods we use their publicly available pre-trained models for
the evaluation of all the datasets.
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Table 2. Quantitative comparison with baselines on Voxceleb2 [8] and LRW [10] on the task of reconstruction and Cross generation.

Dataset Method
Reconstruction Cross

FID ↓ SSIM ↑ PSNR ↑ LMD ↓ Syncc ↑ Syncd ↓ FID ↓ LMD ↓ Syncc ↑ Syncd ↓

VoxCeleb2
Wav2Lip [35] 3.26 0.53 18.18 3.16 9.08 5.93 5.11 4.84 8.12 6.74
PC-AVS [58] 4.25 0.53 18.26 3.16 6.71 7.80 10.62 5.00 6.96 7.53
Diff2Lip (Ours) 2.46 0.53 18.09 3.04 8.78 5.93 4.53 4.82 7.62 6.73

LRW
Wav2Lip [35] 4.23 0.68 20.76 2.15 8.13 6.09 5.19 3.88 7.52 6.56
PC-AVS [58] 6.80 0.61 20.10 2.29 6.68 7.29 8.48 4.09 6.66 7.27
Diff2Lip (Ours) 2.62 0.67 20.62 2.17 7.41 6.21 2.54 3.93 6.44 6.97

Input/Reference 
Frame

Audio Source and Waveform

Wav2Lip

PC-AVS

Diff2Lip
(Ours)

Input/Reference 
Frame

Audio Source and Waveform

Wav2Lip

PC-AVS

Diff2Lip
(Ours)

Figure 4. Qualitative results of Reconstruction on VoxCeleb2 [8]. Here we provide only the first frame as the input source (for pose)
as well as the reference frame (for identity), and this frame is driven using the audio (second row) coming from the same video (top row).
Wav2Lip [35] blurs the lip region in both cases to achieve the correct lip shape while PC-AVS has identity loss (see right) and border
discontinuity. Our generations look highly realistic and have the lip shapes as in the audio source. (Please zoom in for better visibility.)

Table 3. Ablation over our losses (Cross generation)

Losses FID ↓ LMD ↓ Syncc ↑

Reconstruction 6.694 5.313 0.992
+ SyncNet 8.784 4.816 5.946
+ Perceptual 5.016 5.009 5.955
+ Seq. GAN 4.592 4.985 6.83

4.1. Quantitative Evaluation

For quantitative evaluation, we evaluate our model in
terms of both the visual quality as well as audio synchro-
nization. For visual quality, we use FID [18], SSIM [53],
and PSNR, which are popular metrics used in papers like
Wav2Lip [35], PC-AVS [58], AV-CAT [46]. FID is a pop-
ular metric used for comparing the “realness” of generated
images by comparing against the real image distribution.
SSIM and PSNR are pixel-wise image similarity metrics
that compare a pair of images and are not suited for cap-
turing variability in video generation [42] but are included
in this work for completeness. While to measure synchro-
nization we use LMD [5], Syncc, and Syncd [9]. LMD mea-
sures the distance between mouth landmarks among frames.
Syncc is the confidence score of SyncNet while Syncd is

the average distance between SyncNet video and audio rep-
resentations, which tell the synchronization quality. Note
that for evaluation, we use the pre-trained SyncNet from the
SyncNet’s [9] repository but for training, we train our own
SyncNet, similar to Wav2Lip [35] and AV-CAT [46]. We
use pre-trained models of Wav2Lip and PC-AVS methods
to conduct our evaluations. Wav2Lip has provided its code
for calculating FID and Syncc and we use the same for these
metrics. We use face-alignment [3] for landmark detection
and the LMD metric proposed in [5]. For SSIM and PSNR
we use the same inputs as used for FID, consequently, our
values are a bit different compared to [58]. This is possi-
bly because they evaluate these metrics at different scales
and lack these evaluation details. On the other hand, we
tend to get better LMD and Syncc values for PC-AVS than
noted in their paper. Some papers like [28] show PC-AVS’s
metrics only for reference as its generations occasionally
fail in landmark detection. For uniformity of scale, we un-
cropped PC-AVS’s generations and paste them back on the
background before evaluation.
4.1.1 Reconstruction
Similar to the setting mentioned in [58] and later used
in [28] and [46], we evaluate the methods on the task of re-
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Video Source
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Wav2Lip

PC-AVS

Diff2Lip
(Ours)
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Audio Source

Audio Waveform
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PC-AVS
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Figure 5. Qualitative results of Cross generation on VoxCeleb2 [8]. Here we provide a video source (first row) and drive that identity-
pose combination using audio coming from a different video (second and third rows). Wav2Lip [35] blurs its generations, for example,
beard region details are missing on the right. PC-AVS’s [58] generations have flaws like identity loss, in both cases. They introduce artifacts
near the eyes on the left while there is identity loss on the right. Our method generates realistic mouths with expressive lips while being in
sync with the audio source. In the bottom 2 rows, we can see that the lip region of our generations match those of the audio source. (Please
zoom in for better visibility.)

Video Source Wav2Lip PC-AVS Diff2Lip (Ours) Video Source Wav2Lip PC-AVS Diff2Lip (Ours)

Figure 6. Qualitative Visual-quality Comparison. We zoom in on the mouth region of two examples and compare them against the video
source. Wav2Lip [35] blurs the lip region while PC-AVS [58] tends to change the identity. Diff2Lip preserves identity and generates
high-fidelity lips.

construction of the video given only the first frame and the
audio corresponding to the same video. The audio is used as
the driver for this reconstruction. Note that PCAVS requires
an additional pose input apart from the identity input. We
feed the first frame to it for both inputs, similar to the “fixed
pose” setting in their paper. For Wav2lip and ours, the first
frame acts as both the input frame and the reference frame.
For Voxceleb2, we show the results on 4911 test utterances
instead of 35K videos due to resource constraints. These
4911 utterances are the first utterance of each video in the
test set, and hence cover all the videos in the test set. For
LRW, our results are noted on all 25K videos in the test set.

The results are noted in Table 2. We observe that
Diff2Lip outperforms both the methods with respect to FID
metric on both datasets which points towards better gen-

eration quality. The SSIM, PSNR and LMD values of our
method are comparable with the other methods. We see that
Wav2Lip’s Syncc is better than both ours and PC-AVS’s.
This is possibly because our SyncNet expert may be weaker
in performance compared to the one used in Wav2Lip.

4.1.2 Cross generation
We also evaluate the method on the task of lip-sync when
the identity and the pose are controlled using a video while
the lip-sync is driven using input audio corresponding to a
different video. This was introduced in [35] and is a more
realistic setting as here the generations are closer to lip-sync
in-the-wild. We use the input frame as the reference frame
in this setting similar to Wav2Lip, as that provides the best
texture information of the frame. For PC-AVS, the input
frames are fed as both pose and identity sources. Note that
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Table 4. User Study measured by Mean Opinion Scores (MOS)
(max. 5) and Preference in percentage.

Measure Wav2Lip PC-AVS Diff2Lip

MOS (Visual quality) ↑ 3.75 2.71 4.16
MOS (Lip-sync quality) ↑ 3.84 3.34 3.86
MOS (Overall quality) ↑ 3.70 2.91 3.91
Preference ↑ 37% 8.33% 54.67%

we cannot evaluate SSIM and PSNR for this setting because
there are no ground truth frames available. So, we provide
the rest of the metrics in Table 2. For Voxceleb2, we se-
lect 4970 pairs of audio-video combinations where the two
sources are different. We sample these using all the pair
combinations of the first utterance of the first video com-
ing from 71 randomly chosen test identities. For LRW, we
use the 28K audio-video pair provided in Wav2Lip’s [35]
evaluation. The results are noted in Table 2. Similar to re-
construction evaluation, we here as well observe that our
method excels in image quality while being comparable in
other metrics except for Syncc.

4.2. Qualitative Evaluation
For qualitative evaluation, we show visually compare

against on both reconstructions (in Fig. 4) as well as cross
generation (in Fig. 5). These settings are the same as intro-
duced in Section 4.1.1 and 4.1.2. It can be observed in these
qualitative results that PC-AVS tends to lose the identity of
the source video and also suffers from boundary discon-
tinuity problems which make it unsuitable for in-the-wild
generation. On the other hand, Wav2Lip tends to generate
blurred-out mouth regions so as to achieve good lip sync.
Diff2Lip does not suffer from these issues and is able to
generate high-quality mouth region while having expressive
lip shapes which correctly correspond to the ground truth
(audio sources’ mouth shape) as seen in Fig. 6.

User Study. We conduct a user study where we ask
15 participants to judge lip-sync videos generated in cross
generation setting by Diff2Lip and two other methods. 20
videos were sampled from the VoxCeleb2’s test set and are
driven by randomly selected driving audios. The partici-
pants rated the videos 1-5 (where higher is better) in the
aspects of (1) Visual quality (2) Lip-sync quality, and (3)
Overall quality. We used the Mean Opinion Score (MOS)
measure to aggregate these ratings. Further, we record the
percentage of times users preferred a method. We present
the results in Table 4, where we see that our method sur-
passes others in all the categories. In terms of Lip-sync
quality, this is opposed to our quantitative results, especially
Syncc. We speculate that Syncc, might favor blurry gener-
ations with high temporal consistency while humans prefer
high fidelity over slight temporal inconsistency.

4.3. Ablations

We conduct an ablation study to showcase the contribu-
tion of various losses used during training. Specifically, we
train our model in three different settings in which we in-
troduce an additional loss in each setting. First, we train
our model using only Lsimple (Reconstruction). Second, we
train another version of the model using Lsimple+L2+Lsync
(+ SyncNet). Here intuitively the Lsync should introduce
better synchronization. Third, we further add a perceptual
loss Lsync (+ Pecept). We add this loss because adding the
SyncNet loss led to worse image quality. Finally, we add
the sequential adversarial loss LGAN to achieve even tem-
poral consistency(+ Seq. GAN). We test these on a smaller
subset of 500 VoxCeleb2 test audio-video pairs in the cross
generation setting as well as the reconstruction setting.

It can be seen in Table 3 that moving from “Recon-
struction” to “+ SyncNet” gives a sudden improvement in
the Syncc metric. This supports our intuition that only
reconstruction-based losses are not enough. We also see
that this transition deteriorates the image quality. This gets
solved as we move to the “+ Perceptual” setting. Finally,
the addition of sequential adversarial loss not just further
improves the image quality but also improves the Syncc,
clearly showing the advantage of this loss. In the recon-
struction setting in Table 1, most of these observations still
hold except FID being lower for “+ Perceptual” than “+ Seq.
GAN”. This could be attributed to the static nature of the
input source in this setting while the ground truth is moving.

5. Discussion and Conclusion
Discussion. Even though Diff2Lip, cannot be used for fa-
cial reenactment and hence cannot be used for harmful acts
like face-swapping, it can be used for other malicious pur-
posed like disinformation. We discourage and disapprove
of any such applications which may have negative implica-
tions and strictly condone their use for positive purposes.
Conclusion. In this work, we present Diff2Lip, which is
able to generate high-quality lip synchronization. We pose
the task to be a mouth region inpainting task and solve it by
learning an audio-conditioned diffusion model. Our abla-
tion studies show that SyncNet loss is required in our frame-
work to introduce lip-sync while sequential adversarial loss
improves both image quality and temporal consistency. Fi-
nally, extensive quantitative and qualitative results validate
that our method performs better than state-of-the-art meth-
ods in terms of image quality while maintaining other met-
rics and also being preferred by the users.
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