
Small Objects Matters in Weakly-supervised Semantic Segmentation

Cheolhyun Mun∗†

Samsung Research
Seoul, Korea

cheolhyunmun@yonsei.ac.kr

Sanghuk Lee∗†

SOCAR AI Research
Seoul, Korea

li-xh16@yonsei.ac.kr

Youngjung Uh
Yonsei University

Seoul, Korea
yj.uh@yonsei.ac.kr

Junsuk Choe
Sogang University

Seoul, Korea
jschoe@sogang.ac.kr

Hyeran Byun
Yonsei University

Seoul, Korea
hrbyun@yonsei.ac.kr

Abstract

Weakly-supervised semantic segmentation (WSSS) per-
forms pixel-wise classification given only image-level la-
bels for training. Despite the difficulty of this task, the re-
search community has achieved promising results over the
last five years. Still, current WSSS literature misses the de-
tailed sense of how well the methods perform on different
sizes of objects. Thus we propose a novel evaluation met-
ric to provide a comprehensive assessment across differ-
ent object sizes and collect a size-balanced evaluation set
to complement PASCAL VOC. With these two gadgets, we
reveal that the existing WSSS methods struggle in captur-
ing small objects. Furthermore, we propose a size-balanced
cross-entropy loss coupled with a proper training strategy.
It generally improves existing WSSS methods as validated
upon ten baselines on three different datasets.

1. Introduction

Recently, weakly-supervised learning (WSL) has been

attracting attention because of its low-cost annotation.

Among many tasks, weakly-supervised semantic segmen-

tation (WSSS) methods learn to predict semantic segmenta-

tion masks given only weak labels such as image-level class

labels for training.

To solve this problem, existing WSSS techniques gen-

erate pseudo segmentation masks from a classification net-

work and then train a fully-supervised semantic segmenta-

tion model such as DeepLabV2 [4]. To improve WSSS per-

formances, most existing methods have focused on produc-

ing more accurate pseudo labels. With this strategy, WSSS

* indicates equal contribution
†The work was done while the author was at Yonsei University

performances have been greatly improved in the last five

years [1, 26, 29, 30, 35, 38, 42, 43, 45, 50].

However, we lack a detailed sense of performance: do

methods with high mIoU always better capture all the de-

tails? Interestingly, we observe that some methods with

lower mIoU better capture small objects than others. Al-

though it is undoubtedly important that the segmentation

model also correctly captures small objects, this limitation

has not been well studied yet in WSSS literature. How does

each method behave in different types of environments? To

answer this question, we address the limitations of the con-

ventional metric, the dataset, and the training objective, and

propose a complement thereby we anticipate WSSS tech-

niques to become more complete and applicable to different

needs.

Conventional metric (mIoU) and its pitfall. mIoU is

mean of per-class IoUs where IoU is the intersection-over-

union of the segmented objects. While an IoU is depicted

with one predicted segment and one ground-truth segment,

it pre-accumulates all predicted pixels and all ground-truth

pixels in the entire dataset (Fig. 2 (a)). mIoU has widely

been used to measure the performance of different models

in semantic segmentation.

Despite of its usefulness in measuring the overall accu-

racy of segmentation predictions, mIoU does not account

for the comprehensiveness of the predictions. As illustrated

in Fig. 1 (a), Prediction 1 and Prediction 2 have the same

IoU score since they miss the same number of pixels. How-

ever, in Prediction 1, the red cross marks indicate a com-

plete failure in object segmentation, while Prediction 2 can

be considered as minor errors.

Conventional dataset. The PASCAL VOC 2012 [13] is the

representative benchmark for WSSS. The problem is, how-

ever, the evaluation set of VOC has an imbalanced distri-

bution in terms of object-size. Fig. 1 (b) shows the over-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Problems of conventional metric and dataset. (a) Predic-

tion 1 and 2 show the prediction for different cases which result

in the same IoU scores. (b) Some classes of PASCAL VOC val-

idation set suffer from a lack of small-sized objects. We sort the

number of instances in descending order for each class per each

size.

all distribution for 20 classes of the VOC validation set per

each size†. Many classes fall short in the number of small

objects. Even with an ideal metric, we will never know how

methods perform on small objects with few samples such as

small birds. Besides, we note that MS COCO [33], another

popular benchmark with 80 classes for WSSS, also suffers

from imbalanced distribution. More information of dataset

distribution is in the supplementary material.

Training objective. Pixel-wise cross-entropy considers all

individual pixels equally important by averaging. Thus the

networks will consider small objects less important and lean

toward large objects with many pixels. While the fully-

supervised semantic segmentation methods have some rem-

edy [12, 34], WSSS literature has paid less attention to this

†Following MS COCO, we regard an instance as small if total number

of pixels< 32× 32, medium if the total number of pixels< 96× 96, and

large for the rest.

(a) IoUc for mIoU (b) ˜IoUc for IA-mIoU

Figure 2. Visual comparison of the computing process of IoUc for

mIoU and ˜IoUc for IA-mIoU regarding a class c

problem. Existing works mostly focus on producing better

pseudo masks to train the main segmentation network with

the same pixel-wise cross-entropy.

Our solutions. In this paper, we suggest a way to ad-

dress the above three limitations. First, we introduce a

new evaluation metric for semantic segmentation, instance-

aware mean intersection-over-union (IA-mIoU). It is im-

portant to accurately capture objects of all sizes to im-

prove IA-mIoU. Next, we propose an evaluation dataset

balanced in terms of object-size, PASCAL-B, which con-

tains almost the same number of instances for each size,

namely, large, medium, and small. With our new bench-

mark and evaluation metric, we can correctly measure the

performances of existing WSSS models in terms of object

size. Specifically, we re-evaluate ten state-of-the-art meth-

ods [1,26,29,30,35,38,42,43,45,50] and observe interesting

results; all evaluated methods struggle in capturing small

objects. Lastly, we propose a new loss function paired with

a training strategy for segmentation models to balance the

objective. Thorough experiments on three datasets demon-

strate that our method achieves comprehensive performance

boost on ten existing WSSS methods. We believe that it will

serve as a strong baseline to start with toward more com-

prehensive performance. The code and the dataset will be

publicly available for research community.

2. Instance-aware mIoU
In this section, we explain how our metric addresses

the limitations of mIoU. Then, we compare mIoU and our

instance-aware mIoU (IA-mIoU) with the results of sev-

eral corner cases.

2.1. Definition of IA-mIoU.

In Fig. 2 (a), we visualize the way of calculating IoUc of

a class c, for mIoU. First, IoUc unions all pixels of ground-

truth (GTc) and prediction (Prc) respectively, and then cal-

culates the intersection of them. During the process, it does

not consider which instance each pixel belongs to. As a re-

sult, mIoU inherently does not provide a detailed sense of

performance but provides coarse judgment.

To reflect the different importance of pixels, we sug-

gest measuring the performance of each instance individ-
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(a) Case 1. One prediction segment covers one GT segment.

Step 1 Step 2 Step 3
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(b) Case 2. One prediction segment touching multiple GT segments should

be split.

Figure 3. Two cases for assigning predictions to the correspond-

ing ground-truth instances. Pixels in color are the prediction and

boxes with red lines are ground-truth instances. (a) When there is

a one-to-one correspondence between prediction and ground-truth

instance, each prediction is assigned to the corresponding ground-

truth instance. (b) When there is a one-to-many correspondence

between prediction and ground-truth instances, non-overlapping

regions in step 2 (orange pixels with check pattern) distribute to

each instance based on the ratio of blue and yellow pixels with dot

pattern.

ually. We first split predictions and ground-truths of class c
into different instances i.e., Prc,1, Prc,2, GTc,1 and GTc,2 as

shown in Fig. 2 (b). Then, we compute IoU scores IoUc,i

for each instance i and average them to obtain ˜IoUc that is

instance-aware IoU score of the class c:

IoUc,i =
Prc,i ∩ GTc,i

Prc,i ∪ GTc,i
, ˜IoUc =

∑T
i=0 IoUc,i

T
, (1)

where T is the total number of instances of the class

c. Finally, we average the per-instance IoUs to compute

instance-aware mIoU (IA-mIoU):

IA-mIoU =

∑N
c=0

˜IoUc

N
. (2)

The following subsection describes how to split the predic-

tions and ground-truths, and how to assign prediction in-

stances to ground-truth instances.

2.2. Splitting and assigning instances

Although we introduced the concept of instance, it does

not exist in the segmentation task. Hence, we assume that

the ground-truth segmentation masks can be either split

into connected components (blobs) or split by additional in-

stance annotation when available for evaluation. Please note

that we introduce the instance labels only for more precise

evaluation, not for training.

To fully utilize the instance masks for evaluation, we also

have to split the predicted segments into blobs and assign

them to overlapping ground-truth instances. There are three

types of predictions for the model: 1) one prediction cov-

ers one object, 2) one prediction covers multiple objects

simultaneously, and 3) prediction fails to cover any target

instances. We consider only the first two cases because the

last case has no overlapping region between prediction and

ground-truth†

The procedure is illustrated in Fig. 3. Both cases start

from drawing contour lines from prediction for class c (Prc)

to get connected components (Prc,i). The next step, how-

ever, is different for case 1 and case 2 since the former is

a one-to-one correspondence relationship between Prc,i and

GTc,i and the latter is one-to-many.

For the case 1, each connected component is assigned

to overlapping target instance in the second step (Prc,1 →
GTc,1 and Prc,2 → GTc,2). Then, we can calculate the IoU

per instance. On the other hand, for the case 2, we have

to split the connected component into multiple parts since

it overlaps with multiple target instances. In other words,

we have to distribute the non-overlapped area to each in-

stances. To do this, we apply weighted clustering algorithm

that if cluster (i.e., target instance) has more overlapped

pixels than others, it takes larger unassigned regions. It has

following advantages: 1) it does not favor or damage par-

ticular instances, 2) it is invariant to locations of the chosen

pixels, and 3) it is less bias on the object size.

This algorithm is implemented by adding two steps. We

first assign the intersecting regions to the corresponding tar-

get instances and compute the ratio of the overlapping area

(i.e., GTc,1 ∩ Prc,1 : GTc,2 ∩ Prc,1 = 16 : 8) in the sec-

ond step. In the final step, we distribute the remaining unas-

signed area to each target instance according to the ratio.

The way of distribution of pixels can be not unique, but we

focus on reasonable distributions of pixels based on instance

size. For the multiple predictions and ground-truths, we

would perform the same assignment process for each pre-

diction and its corresponding ground-truth instances. This

approach enables instance-aware metric in semantic seg-

mentation tasks, even when the model does not provide

instance-level predictions. In the next subsection, we de-

sign corner cases to compare the tendencies of mIoU and

IA-mIoU clearly.

2.3. Sensitivity analysis on corner cases.

We design four corner cases in Fig. 4. We first set up

small and large instances in an image, and then gradually

expand the predictions to cover the assigned ground-truth

instances. The outcomes show the limitation of mIoU more

clearly: the prediction on a large object dominates the over-

†False positives in a class c do not contribute to ˜IoUc but they decrease
˜IoUbackground.
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Figure 4. Sensitivity to the size of instances on corner cases. We plot the behavior of mIoU and IA-mIoU as the prediction gradually grow

to fill the ground-truth instance L (or S1,2,3). Empty squares are uncovered ground-truth instances and sky blue squares are predictions.

Gradual increase of the predictions is marked with orange dashed arrows.
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Figure 5. Corner case with real data. mIoU declines quickly as the

size of instances gets larger while IA-mIoU drops consistently.

all performance. The mIoU scores of case A and C increase

exponentially with the improvement of prediction on a large

object. On the contrary, the performances for case B and D
barely change even though the predictions on small objects

improve. Unlike the mIoU, our metric IA-mIoU steadily

increases as the predictions fill the target instances regard-

less of the instance size. Furthermore, since we split the in-

stances, we acquire more detailed sense of the performance

according to their sizes (i.e., measuring only specific size

of objects).

In addition, Fig. 5 plots the behavior of mIoU and

IA-mIoU in dog class of the PASCAL VOC 2012 dataset.

Starting from the perfect score, i.e., the prediction equals

the ground-truth, we remove one instance at a time from the

prediction starting with the smallest and progressing to the

largest. IA-mIoU drops consistently, while mIoU barely

decreases for small instances and rapidly decreases for large

instances. We draw the red dashes in Fig. 5 to distinguish

the size of instances more clearly.

We hope that it would be beneficial for the community by

providing a new comprehensive evaluation metric that can

measure the semantic segmentation performance on small

objects accurately.

3. Dataset analysis and construction
Imbalanced evaluation dataset may cripple the reliabil-

ity of an evaluation protocol because the performance will

vary due to the lack of samples. We believe that any ob-

jects with various sizes should not be undervalued because

of their small number.

To tackle the imbalanced dataset issue, we suggest a

new balanced benchmark dataset for evaluation. We con-

struct PASCAL-B by collecting images and annotations

from LVIS [17] and MS COCO [33] datasets which in-

cludes at least one of 20 categories† of the PASCAL VOC

classes. Then, we converted the annotations which do not

belong to the 20 categories of the PASCAL VOC dataset

†From MS COCO, we only collected images of “potted-plant” since

LVIS does not have it.
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(b) PASCAL-B

Figure 6. The distribution of validation set for each dataset: (a)

PASCAL VOC and (b) PASCAL-B. We draw the mean (i.e., the

triangle in yellow) and the variance over classes for each size of

instances (i.e., small, medium, and large). The point in gray indi-

cates the number of instances for each class. On the top of each

figure, we report the ratio of each size of instances to the total

number of instances.

into the background class. Among the remaining images,

a few images have wrong annotations. Therefore, two com-

puter vision experts (authors of this paper) manually filtered

out such images for two weeks. Then, we randomly sam-

pled images to ensure the balance over classes and object

size distribution. In the end, PASCAL-B consists of 1,137

images with 20 classes. We give some representative images

of the PASCAL-B dataset in the supplementary material.

As illustrated in Fig. 6 (b), our dataset is much more bal-

anced in terms of classes and object-size distribution. Com-

pared to PASCAL VOC, our PASCAL-B has fewer out-

liers, i.e., points in gray, and they do not have extremely

large values. Also, PASCAL-B keeps a similar number of

instances for each size while PSACAL VOC has more large

or small instances. In summary, a primary motivation for

creating PASCAL-B was to address the issue of imbalanced

evaluation datasets commonly encountered in semantic seg-

mentation task. Existing benchmarks suffer from disparities

in class or object size distributions, leading to skewed per-

formance evaluations. PASCAL-B addresses this concern

by meticulously constructing a dataset that features bal-

anced classes and object sizes. Instead of replacing estab-

lished benchmarks such as ADE20K [49], COCO [33], or

Cityscapes [7], PASCAL-B complements them by offering

an alternative approach to assessment. For more details re-

garding the dataset, please refer to the supplementary mate-

rial.

4. Methods

4.1. Evaluated WSSS methods

We evaluate ten existing methods under various weak-

levels of supervision: bounding box supervision (i.e.,
BANA [29] and BBAM [35]), saliency supervision (i.e.,

Figure 7. Example connected components for the loss function.

Ic,k is the k-th connected components for c-th class in an image.

RCA [50], EDAM [42] and NS-ROM [45]), natural lan-

guage supervision (i.e., CLIM [43]), and image supervision

(i.e., AMN [30], RIB [26], CDA [38], and IRN [1]). These

methods follow the two-stage training pipeline of WSSS.

In the first stage, they generate the pseudo masks by their

methods. Then, they train a semantic segmentation network

with the pseudo masks from the first stage. All the above

methods except BANA [35] only focus on stage 1 to pro-

duce the high-quality masks by refining the initial seed to

improve the performance. A more detailed explanation for

the above methods is in the supplementary material.

4.2. Proposed loss function and training strategy

To address the limitation of pixel-wise cross-entropy

(CE) loss in Sec. 1, we propose a new loss function for a

model to have the capacity of capturing small objects. We

first give weights to each pixel according to the size of the

object when computing the loss. Since the instance ground-

truth masks are not available for training, we find all con-

nected components for each class from pseudo ground-truth

masks as in Fig. 7. Then, we get weight wx,y corresponding

to a pixel (x, y) as follows:

wx,y =

{
1, if (x, y) ∈ background,

min(τ,
∑K

k=1 Sc,k

Sc,n
), otherwise

(3)

where Sc,k is the number of pixels in its connected com-

ponent Ic,k, while n is the index number of instance which

pixel (x, y) is included. K is the number of instances with

c-th class in an image. Through Eq. 3, we assign a larger

weight to the pixels of the relatively small instance while

preventing the value of weight from getting excessively

large by setting up the upper limit τ . Finally, we multiply

weights to cross-entropy loss as in Eq. 4 and we call this

loss function Lsw as size-weighted cross-entropy loss.

Lsw = − 1

H ×W

C∑
c=1

H∑
x=1

W∑
y=1

Yc,x,ywx,ylog(pc,x,y), (4)

where H and W is the height and width of images, respec-

tively, and pc,x,y is the probability to predict the class of the

pixel (x, y) as c.
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Even though Lsw can improve the ability of the model

to catch small objects, there is a side effect that the model

fails to learn extremely large instances with Lsw during the

whole training process. Therefore, we apply a new train-

ing strategy that adds a regularization term to Eq. 4 by in-

troducing elastic weight consolidation (EWC) [11]. EWC

helps model to learn new tasks continually while preserv-

ing the information of previous tasks. Following the strat-

egy of EWC, we also divide the training into two tasks.

We first train a model using pixel-wise cross-entropy loss

which is more beneficial to learn the large object as we ana-

lyze in Sec. 1, and call this task as task A. During the train-

ing for task A, model updates the importance of parameters

in Fisher information matrix. Then, for the new task, the

model is fine-tuned by Lsw and EWC helps to regularize

the important parameter for the previous task A based on

the matrix. Thus, our final loss function Lsb, size-balanced

cross-entropy loss, is defined as:

Lsb = Lsw +
∑
i

λ

2
Fi(θi − θ∗A,i)

2, (5)

where θi and θ∗A,i are i-th parameter for present task and

task A, respectively. λ controls the importance of regu-

larization and Fi is the importance of parameter i in the

Fisher information matrix. With Lsb, a model can learn the

new information for task B (i.e., learning small objects)

while maintaining the previous information from task A
(i.e., learning large objects).

5. Experiments

5.1. Experimental setting

Dataset. We evaluate each method on three datasets: PAS-

CAL VOC [13], PASCAL-B, and MS COCO [33]. PAS-

CAL VOC and PASCAL-B share the same training set

though PASCAL-B is only designed for validation rather

than training. PASCAL VOC and PASCAL-B consist of a

similar number of images, 1,449 and 1,137, respectively.

Evaluation metric. We use mIoU and IA-mIoU to com-

pare the performance of methods. Since our IA-mIoU can

measure the small-sized instance only, we provide the IAS

for the detailed performance of small objects.

Implementation detail. We generate pseudo masks for the

segmentation networks using the official codes and strictly

follow the setting provided in each paper [1, 26, 29, 30, 35,

38, 42, 43, 45, 50]. Then, we use DeeplabV2 with ResNet-

101 [4] as segmentation networks. For more detail, please

see the supplementary material. All the experiments were

done by one GeForce RTX 3090 GPU for PASCAL VOC

and two RTX 3090 GPUs for MS COCO.

Method Sup. mIoU IA-mIoU IAS
IRN∗ I 64.8 56.0 17.5

CDA∗ I 66.6 57.2 15.8

AMN∗ I 69.4 58.4 15.9

CLIM∗ I,L 68.9 57.4 14.0

RCA† I,S 70.4 60.7 23.2

EDAM† I,S 70.7 60.7 21.3

NS-ROM† I,S 70.4 60.2 19.3

BANA† I,B 72.6 59.6 14.7

BBAM∗ I,B 72.7 60.5 14.7

Table 1. Experimental results for PASCAL VOC. ∗ and † indicate

that the segmentation model utilizes the ImageNet and COCO pre-

trained model respectively. I, S, L and B denotes the degree of

supervision. I: image-level supervision, L: natural language su-

pervision, S: saliency supervision, and B: bounding box supervi-

sion.

Method Sup. mIoU IA-mIoU IAS
DeepLabV2∗ F 55.4 33.5 12.9

RIB∗ I 44.6 29.2 11.4

IRN∗ I 39.7 25.8 9.4

Table 2. Experimental results for MS COCO.

5.2. Quantitative results

We evaluate nine baseline methods on PASCAL VOC

and PASCAL-B, and three baseline methods on MS COCO.

Furthermore, we demonstrate that our size-balanced cross-

entropy loss function on the baseline methods results in bet-

ter segmentation performance when compared to using the

conventional cross-entropy (CE) loss.

mIoU vs. IA-mIoU. Table 1 compares the performances

in mIoU and IA-mIoU on the PASCAL VOC dataset. Al-

though the recent WSSS methods make impressive perfor-

mance in the mIoU metric, we observe that the detailed

scores measured by IA-mIoU are quite different. It is note-

worthy that all WSSS methods get badly lower scores for

small objects (IAS) compared to overall scores. It indicates

that WSSS methods struggle to capture the small instances

accurately as we mentioned in Sec. 1.

In particular, state-of-the-art techniques in terms of

mIoU encounter more difficulty in capturing small objects

compared to other methods. Consequently, they get lower

IA-mIoU while getting the highest mIoU, since IA-mIoU
reflects the scores of each instance equally but mIoU rela-

tively neglects the small objects. This indicates mIoU fails

to catch the detailed sense of performance on different sizes

of objects.

We do the same experiments on the MS COCO dataset

in Table 2. According to the result of these experiments, we

further demonstrate that existing WSSS methods struggle

with small objects and it has been overlooked with mIoU.
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Method Sup. mIoU IA-mIoU IAS
IRN∗ I 56.1 41.0 15.8

CDA∗ I 57.5 41.4 13.4

AMN∗ I 58.5 41.1 13.9

CLIM∗ I,L 58.7 40.2 12.2

RCA∗ I,S 60.8 45.5 18.4

EDAM† I,S 60.4 45.2 19.4

NS-ROM† I,S 58.9 43.6 16.2

BANA† I,B 61.9 41.1 14.0

BBAM∗ I,B 60.1 40.9 14.3

Table 3. Experimental results for PASCAL-B.

PASCAL VOC vs. PASCAL-B. Table 3 compares the

performances of models on our newly proposed benchmark,

PASCAL-B. The models in Table 3 use the same checkpoint

from Table 1 which are trained using the PASCAL VOC

training set.

We argue that evaluating methods using imbalanced

datasets can lead to biased scores, even with our proposed

metric. To better evaluate the ability of models, it is essen-

tial to have a sufficient number of samples for evaluation

per object-size and per class. However, the imbalance in the

PASCAL VOC dataset makes it difficult to validate mod-

els since some classes have no small-sized objects, or there

are only a few samples available. This lack of data for cer-

tain classes limits the opportunities for models to be evalu-

ated on their performance, leading to potential biases in the

evaluation process. On the other hand, we address this is-

sue by constructing PASCAL-B which includes a sufficient

number of samples for each object-size while keeping a bal-

anced distribution across classes.

In this manner, the results in Table 3 with PASCAL-B

provide better comprehensive assessment of WSSS meth-

ods compared to the scores in Table 1. When comparing

the results of both tables, we observe that ranking order of

WSSS methods is barely changed for mIoU and IA-mIoU
in Table 1 (Spearman’s rho: 0.79). On the other hand, it has

totally changed in Table 3 with PASCAL-B dataset (Spear-

man’s rho: 0.38), which indicates that IA-mIoU scores

with PASCAL-B evaluates the performance of models dif-

ferently. We believe that the fundamental reason for this

phenomenon lies in the discrepancy of distributions in terms

of instance sizes between the two datasets. This suggests

that IA-mIoU and PASCAL-B are both necessary to prop-

erly evaluate per-size performances.

CE loss vs. Size-balanced CE loss. Lastly, we verify the

effectiveness of our proposed method, size-balanced cross-

entropy loss function. As shown in Fig. 8, our method suc-

cessfully boosts the performances for all models across

three datasets. In particular, it enhances the ability of mod-

els to capture small instances. Across all datasets, we ob-
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Figure 8. Comparison of experimental results when applying CE

loss (red bar) and Size-balanced CE loss (blue bar). We mark the

increment above the bar (number with green color.)

serve an increase of IAS scores ranging from 1.0 to 8.9. The

changes of mIoU values, however, are relatively negligi-

ble, since the increase in performance of catching small in-

stances has a little impact on mIoU as we explained in Sec. 2

(Out of 21 experiments, 18 have shown slight improvements

in mIoU). In the supplementary material, we analyze qual-

itatively the experimental results according to the usage of

our proposed loss function and provide more detailed values

of performance gain.

5.3. Ablation study

In this subsection, we demonstrate the effectiveness of

each component of our loss function on the PASCAL VOC

dataset with mIoU and IA-mIoU. In Table 4, we use a

fully-supervised method, DeepLabV2 [4] as our baseline

model to observe performance gains by adding our com-

ponents to the baseline.

Method mIoU IA-mIoU IAS
DeepLabV2 77.8 65.8 18.8

with Lsw 77.5 68.7 23.0

with Lsb 78.4 69.5 24.4

Table 4. Ablation study on each component of our loss function.

Lsb: Add regularization to Lsw using EWC.

Applying only the size-weighted cross-entropy loss

function Lsw is powerful enough to gain notable improve-

ments on small instances (IAS) and IA-mIoU increases

by 2.9 points. However, mIoU becomes slightly worse than
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the baseline. In other words, Lsw alone does not ensure

the same performance on the largest instances. Lsb fur-

ther boosts performance in all aspects by facilitating ad-

ditional objective, covering small instances, while main-

taining the previous objective, covering relatively large in-

stances. Again, IA-mIoU enables detailed analyses by

splitting the instances. In short, introducing the size-

balanced cross-entropy loss improves the performance on

small instances and pairing EWC training strategy preserves

the performance on large instances, resulting in overall im-

provement in both mIoU and IA-mIoU.

6. Related Work
6.1. Weakly-supervised semantic segmentation

Weakly-supervised semantic segmentation mainly

adopts a two-stage pipeline: pseudo mask generation

and training segmentation network. Most recent methods

utilize Class Activation Maps (CAMs) [48] to generate

a pseudo mask. However, CAMs have limitations in

focusing on the most discriminative regions of the object

or capturing frequently co-occurring background compo-

nents. To solve this problem, lots of techniques have been

proposed: adversarial erasing [6, 18, 25, 32, 40, 41], seed

growing [19, 23, 46], natural language supervision [43],

context decoupling [38] and so on [2, 3, 26, 28, 47]. Also,

many methods [14–16, 20, 27, 39, 42, 44, 45] adopt a

saliency supervision to refine the prediction map. It is

usually utilized to enhance the result in a post-processing

step by distinguishing the foreground and background of

the object. Recently, Lee et al. [31] try to make use of a

saliency map during the training phase to maximize its

potential. Besides, there are also some studies using a

bounding box as a supervisory signal [10,21,24,29,35–37]

which is still cheaper than mask annotation. They achieve

notable performance in WSSS since a bounding box label

provides the exact location of all objects additionally.

Our research, however, is interested in getting the better

performance of models by improving the segmentation

network in the second stage. Though few studies propose

methods for segmentation networks, we suggest balanced

training considering the size of instances in WSSS.

6.2. Segmentation metrics

Here we briefly review the metrics for semantic segmen-

tation. Pixel accuracy is the most basic metric for the task.

It measures the accuracy for each class by computing the

ratio of correctly predicted pixels of the class to all pix-

els of that class. The weakness of this metric is it does not

consider false positives. Therefore, mean intersection-over-

union (mIoU) replaces the pixel accuracy for semantic seg-

mentation measures. It assesses the performance of models

by calculating prediction masks intersection ground-truth

masks over prediction masks union ground-truth masks.

The mIoU compensates for the shortcoming of pixel accu-

racy by taking account of false positive. Nonetheless, as we

analyze it in the next section, it still suffers from a size im-

balance problem. Besides, various metrics [5, 8, 9, 22] are

also investigated. Cordts et al. [8] point out the inherent

bias of the traditional IoU measure towards larger instances.

They proposed instance-level IoU which focuses on adjust-

ing pixel contributions based on instance sizes and class-

averaged instance sizes, aiming to refine mIoU. However,

our metric IA-mIoU evaluates each instance individually by

segmenting predictions into instances, providing a compre-

hensive assessment that is not influenced by instance size.

7. Conclusion
7.1. Contributions

In this paper, we focus on the comprehensive assessment

and improvement of weakly-supervised semantic segmenta-

tion (WSSS) by proposing a novel metric, dataset, and loss

function with an appropriate training strategy. First, we un-

cover the overlooked issue related to small-sized instances

due to the conventional metric (mIoU). To address this,

we design the instance-aware mIoU (IA-mIoU) to mea-

sure the performance of models more precisely regardless

of object-size. Moreover, we point out the imbalance prob-

lem in benchmarks of WSSS and introduce a well-balanced

dataset for evaluation, PASCAL-B. Lastly, we propose the

size-balanced cross-entropy loss to compensate for the im-

balance problem of pixel-wise cross-entropy loss. We show

the effectiveness of our loss function on ten WSSS methods

over three datasets measured by mIoU and IA-mIoU.

7.2. Limitations

Our findings can be applied to fully-supervised semantic

segmentation methods. However, due to limited computing

power, we were unable to utilize more recent FSSS mod-

els and evaluate them with datasets such as ADE20K [49]

and Cityscapes [7]. Nevertheless, we hope that our study

can serve as inspiration for other researchers who have the

necessary resources to explore these avenues further.
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