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Abstract

Interactive segmentation entails a human marking an
image to guide how a model either creates or edits a segmen-
tation. Our work addresses limitations of existing methods:
they either only support one gesture type for marking an
image (e.g., either clicks or scribbles) or require knowledge
of the gesture type being employed, and require specifying
whether marked regions should be included versus excluded
in the final segmentation. We instead propose a simplified
interactive segmentation task where a user only must mark
an image, where the input can be of any gesture type without
specifying the gesture type. We support this new task by
introducing the first interactive segmentation dataset with
multiple gesture types as well as a new evaluation metric
capable of holistically evaluating interactive segmentation
algorithms. We then analyze numerous interactive segmenta-
tion algorithms, including ones adapted for our novel task.
While we observe promising performance overall, we also
highlight areas for future improvement. To facilitate further
extensions of this work, we publicly share our new dataset
at https://github.com/joshmyersdean/dig.

1. Introduction

A common goal is to locate regions, such as objects or ob-
ject parts, in images. We refer to this task as region segmenta-
tion. A challenge is that fully-automated solutions often are
error-prone while exclusive reliance on human annotations is
costly and time-consuming. As a middle ground, interactive
segmentation methods empower humans to supply minimal
input towards collecting consistently high-quality region seg-
mentations. Two popular interactive segmentation settings
are to generate a segmentation (1) when the only input is a
human marking on an image (i.e., segmentation creation)
and (2) when the input is a human marking and a previous
segmentation (i.e., segmentation refinement).

While existing interactive region segmentation methods
are widely-used and beneficial to society, they have at least
one of the following two important limitations. The first
centers on how users interact with the methods. For most
methods, a single gesture type is supported as human input,
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Figure 1. Overview of proposed interactive segmentation task. A
user can mark an image with any gesture type which a method
then uses to either create a segmentation from scratch or to refine
a previous (imperfect) segmentation (if available). This is done
without any further guidance, including without specifying whether
that marked region is content to include versus exclude.

such as either only clicks [10, 18, 42, 54, 62], scribbles [3, 15,
30, 33, 63], lassos [5, 38, 47, 52, 61], extreme points [44, 50],
or rectangles [8, 51, 61, 64, 65]. Yet, we will show findings
from a user study in Section 3 that users prefer different
gestures in different scenarios. The second limitation is
that all methods, except a few that only can accept a single
gesture type (e.g., [61]), require users to provide context of
whether the content they annotate should be included in or
excluded from the final segmentation. This effort imposes an
extra burden on humans that we hypothesize is unnecessary.

We propose a new interactive segmentation task where
an algorithm only takes as input a gesture of any type. An
overview is shown in Figure 1. This novel task relieves users
from the burden of having to either learn how to use different
tools for different gesture types or micro-manage how an
algorithm interprets user input, such as signifying gesture
type [25, 37] or context of whether to include versus exclude
the marked region [10, 25, 37, 44, 54, 62]. We call this novel
task gesture-agnostic, context-free interactive segmentation.

We make several contributions in support of the novel
task. First, we present the first interactive segmentation
dataset for explicitly training and evaluating models to sup-
port multiple gesture types. We call it the Diverse Interactive
Gesture (DIG) dataset and release it publicly to encourage
community-wide progress. Second, we propose an evalua-
tion metric to holistically evaluate algorithms for our new
task. Finally, we benchmark the benefits of modern interac-
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tive segmentation algorithms for our proposed task, includ-
ing after adapting their algorithmic frameworks for our task.
While we observe promising performance overall, we also
highlight areas for future improvement.

Success on this new task can yield numerous benefits to
society. It would accelerate image editing, empowering users
to simply use the gesture most natural to them when creating
segmentations without becoming an expert on a vast array
of ‘features’ that support different gesture types and specifi-
cations for context. This could directly benefit lay users of
image editing applications (e.g., Photoshop [2]) as well as
specialized practitioners who depend on segmentations for
downstream analysis (e.g., doctors performing diagnoses in
the medical community [29, 56, 57]). Such methods would
also support more efficient curation of labeled training data
to develop region segmentation models [1, 4, 7, 25]. Finally,
our work sets a precedent that could be generalized to seg-
mentation tasks beyond region segmentation. For example,
future studies could explore gesture-agnostic, context-free
interactive segmentation for tasks such as semantic segmen-
tation [20, 58, 60] and panoptic segmentation [24, 40, 46].

2. Related Work

Interactions in Interactive Segmentation Methods. In-
teractive segmentation methods typically accept up to two
types of information from users. First, annotations of a
region in an image are given to a model through gestures
such as scribbles [3, 15, 30, 33, 55, 63], lassos [5, 52, 61],
extreme points [44, 50], rectangles [8, 25, 51, 61, 64, 65], and
(most commonly) clicks [9, 25, 26, 31, 36, 43]. For the sub-
set of algorithms that can support multiple gesture types,
they require additional input. For example, Segment Any-
thing (SAM) [25] requires contextual information during
click interactions and specification of the gesture type to
decide which prompt encoder (i.e., click, rectangle, or text)
to utilize. Similarly, Multi-Mode Interactive Segmentation
(MMIS) [37] requires context as well as a bounding gesture
(e.g., lasso, rectangle) for the initial segmentation before
supporting non-bounding gestures (e.g., clicks). The second
type of input common for interactive segmentation meth-
ods [7, 10, 14, 25, 42, 54] is context as to whether annotated
content should be included or excluded in the final segmen-
tation. Only a few methods do not require this input. Some
assume marked content should always be included (e.g.,
Deep GrabCut [61]). Alternatively, language can be used in
place of gestures. While useful for many computer vision
tasks [17, 39] and potentially valuable in some interactive
segmentation situations, relying only on language has impor-
tant limitations. Not only do many vision-language models
have poor multilingual support [6, 11, 23, 41]), but also often
it can be difficult to articulate what one wishes to edit (e.g.,
a small correction to an existing segmentation). Extending

prior work, we propose a simplified task of gesture-agnostic,
context-free interactive segmentation. It is less cumbersome
than the status quo as it reduces human effort to only a single
input: marking an image with any gesture.

Interactive Segmentation Datasets. Most interactive seg-
mentation methods are trained and/or evaluated on repur-
posed datasets originally designed for other tasks, such as
semantic/instance segmentation [4, 13, 16, 19, 27, 34], salient
object segmentation [45, 51], entity segmentation [25], or
video segmentation [10,48]. For example, COCO+LVIS [54]
combines two popular object segmentation datasets (i.e.,
COCO [34] and LVIS [16]) and is repurposed for interactive
segmentation by removing semantic/instance information.
DAVIS-585 [10] samples frames from the video segmenta-
tion dataset DAVIS [49], resulting in 300 images and 585
object segmentation annotations. The one exception is the
SA-1B dataset [25], which was built using a large-scale
human-machine collaboration to collect entity labels, re-
sulting in 1.1 million images with 1 billion masks. Unlike
existing datasets, we introduce the first dataset that comes
with predefined gestures of different types and so enables
developing one-size-fits-all algorithms to address the gesture-
agnostic, context-free interactive segmentation problem.

Interactive Segmentation Evaluation Metrics. The re-
search community has employed a variety of evaluation
metrics to assess the performance of interactive segmenta-
tion methods. For example, some works rely on traditional
measures for segmentation evaluation, including intersection-
over-union (IoU) [32,33,44,62] and mean average precision
(mAP) [61]. Alternatively, most click-based interactive seg-
mentation methods [10, 35, 36, 53, 54] use the number of
clicks (NoC), which captures how many clicks a model re-
quires on average to achieve a target IoU. A limitation of
existing metrics is that, for methods that refine a previous
segmentation, they fail to capture the extent to which result-
ing segmentations are better (or worse) than the previous
segmentation. We propose the first metric that can capture
the relative change of a segmentation from a previous state,
including an empty mask for segmentation creation.

3. User Study on Gesture Type Preferences
We conducted a user study to establish what types of

gestures people naturally gravitate towards when using in-
teractive segmentation methods. To our knowledge, no prior
work has published such a study.

Study design. We designed 42 segmentation tasks reflect-
ing a range of scenarios including segmenting salient objects,
semantic categories, and multiple objects of different shapes
(e.g., thin, occluded). Each segmentation task consisted of
an image and short instruction at the top asking the partici-
pant to select something in the image. Participants were told,
“Use whatever gesture(s) that feel natural to you to make
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Figure 2. Breakdown of gesture frequency from our user study
(N=1795) and examples of gestures. The observed diversity moti-
vates designing algorithms to support multiple gesture types.

the selection asked: clicking, circling, drawing an outline,
drawing a rectangle, drawing a polygon, scribbling, drawing
a line, etc.” To continue on to the next task, participants
were instructed, “After you are done making the gesture(s),
you can move on to the next task. You will not receive any
feedback from the app.” Study participants were given the
option to use either their fingers or a stylus when drawing a
gesture. The study was conducted on an iPad with iPadOS
14 or above using an unbranded application in landscape
mode with a scrollable and zoomable canvas.

Study participants. We recruited participants from
UserTesting1 who identified as having either novice or in-
termediate photo editing skills. In total, we had 43 partici-
pants. Our participants reflected a range of demographics,
including participants between the ages of 18 and 55 and a
balanced gender ratio. Each participant was shown the 42
segmentation tasks in a randomized order.

Results. Overall, we collected 1795 gesture annotations
(i.e., 42 segmentation tasks × 43 participants with some
participants not completing all tasks). We tallied the type of
gesture used based on the following gesture type categories:
circling (i.e, lassos of varying granularity), scribbling, click-
ing, X’s, arrows, and any combination of gestures. Gesture
labels were assigned by visual inspection. Figure 2 shows
the results of the user study.

We found that a diversity of gestures were used. Las-
sos were most common and varied between tight and loose.
From further inspection, we found that different gestures
were preferred in different contexts. For example, when
selecting power lines in one image (i.e., a thin object based
on visual inspection), participants used scribbles 54% of the
time and lassos 40% of the time. In another task where par-
ticipants were meant to select a chain link fence (i.e., another
thin object), participants used scribbles 56% of the time and
lassos 26% of the time. For another task, participants were

1https://www.usertesting.com/

instructed to select repeated sprinkles on a donut; partici-
pants used clicks 51% of the time and lassos 28%. In a task
where participants needed to select a simple background (i.e.,
a wall with a woman in the foreground), participants used
lassos 42% of the time, clicking 26% of the time, scribbles
21% of the time, and X’s or arrows 7% of the time.

Overall, our findings underscore the value of one-size-
fits-all interactive segmentation models that support a variety
of gesture types to enable a more seamless and user-friendly
experience for diverse users. Of note, great variation in ges-
tures may also be observed on axes we did not test. For
example, we only tested with an iPad. Gesture preference
may vary if the user is using a mouse on a desktop, a track-
pad on a laptop, or their finger on a small smartphone screen
where their finger will occlude the target object. Variation
may also exist across age groups or among people with mo-
tor or visual impairments [22]. This observation further
motivates the need for our new approach to interactive seg-
mentation, and we now discuss our work to establish this
research direction.

4. DIG Dataset
We now present the Diverse Interactive Gesture (DIG)

dataset, which supports two popular settings: generating a
segmentation from only a marking on an image (i.e., seg-
mentation creation) and generating a segmentation from
an image, previous segmentation, and marking (i.e., seg-
mentation refinement). To our knowledge, DIG is the first
interactive segmentation dataset with multiple gesture types.

4.1. Dataset Creation

Image Source. We leverage 103,902 images from
COCO+LVIS [54], a popular source for interactive segmen-
tation [10, 18, 54]. Those images are advantageous because
they each contain multiple objects, which in turn means that
algorithms cannot simply learn to locate salient objects. An
additional strength is that it includes a long tail of object
types, a key motivation for creating LVIS [16].

Ground Truth Region Segmentations. We use the same
source for the ground truth of region segmentations as our
dataset source (i.e., COCO+LVIS [54]). Specifically, the
ground truths are derived from instance-level segmentations.
Consequently, we disregard semantic information since we
are only concerned with locating a region within an image.
To generate ground truth for selecting part of a region, we
exploit that some regions in COCO+LVIS are broken into
more than one region by occlusions. In such cases, we select
one sub-region (i.e., connected component) as ground truth.

Dataset Filtering. Following prior work on interactive seg-
mentation datasets [10], we remove objects with an area of
fewer than 300 pixels. This acknowledges that such objects
occupy a tiny portion of an image (e.g., at most 0.001% of
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Figure 3. Examples of gesture types in DIG: (a) loose lassos, (b)
tight lassos, (c) scribbles, (d) clicks, and (e) rectangles. Images are
cropped to the target region for visualization.

the area assuming a 512x512 resolution) and also that small
areas are challenging for modern neural networks to identify
due to information loss from operations such as downsam-
pling and max pooling. Our final dataset consists of 103,902
images with 886,612 regions and 194,855 parts.

Previous Segmentation Generation. To enable fair, repro-
ducible algorithm benchmarking for the interactive setting of
refining a previous segmentation, we supply initial segmenta-
tions. We employ the superpixel-based approach introduced
in [10]. For this interactive segmentation setting, we also
consider segmenting multiple disconnected regions (e.g., a
banana and an orange sitting on a table). We introduce this
additional setting in order to facilitate teaching algorithms
through training data to consider the relationship between
the gesture and the underlying image content rather than
only the gesture and the previous segmentation. Details can
be found in the Supplemental Materials.

Gesture Annotations. We generate a static set of gesture
annotations to enable consistent, fair algorithm comparison.2

Motivated by our user study findings (Section 3), we fo-
cus on the following gestures most commonly observed in
practice: lassos, scribbles, and clicks. We also augment
rectangles because they are a popular gesture in industry
applications, such as the Rectangle Marquee tool in Pho-
toshop [2], and can lead to faster whole-object coverage
than lassos [21]. We generate annotations corresponding
to multiple gesture types for each region in our dataset, as
exemplified in Figure 3. A summary of how we construct
each gesture is described below, and technical details are in
the Supplementary Materials.

For lasso generation, we create both loose and tight
lasso gestures to accommodate variable user behaviors. For
example, in some cases, a user may lack a steady hand,
2While one may consider generating gestures on-the-fly, this is not only in-
efficient but also impractical, as discussed in the Supplementary Materials.

leading to imperfect or noisy lasso boundaries. We construct
tight lassos by interpolating points sampled from a region
boundary and “jitter” these points to simulate user noise.

For scribble generation, we capture scribbles ranging
from highly curved, squiggles to smooth curves. We ran-
domly sample points from the target region or previous seg-
mentation and then interpolate between them to create a
B-spline curve followed by mechanisms to simplify curves
and have scribbles pass outside the region’s boundaries.

For click generation, we account for multiple click loca-
tions, spanning from each region’s center to near its bound-
ary. Like prior work [62], we randomly select a foreground
pixel (when creating a segmentation) or a pixel from a previ-
ous segmentation (when refining a segmentation).

For rectangle generation, we use the approach presented
by [61]. Given a tight bounding box, we modify the corners
to perturb how closely the box encloses the region of interest.

4.2. Dataset Analysis

We now characterize DIG and how it compares to seven
existing interactive segmentation datasets: DAVIS-585 [10],
COCO+LVIS [54], GrabCut [28, 51], Berkeley [45], PAS-
CAL+SBD [13, 19], SA-1B [25], and OpenImages [4, 27].
Those seven represent datasets that are long-standing inter-
active segmentation benchmarks for the research commu-
nity (Berkeley, GrabCut), large-scale (COCO+LVIS, Open-
Images, SA-1B), and popular for training interactive seg-
mentation methods (COCO+LVIS, PASCAL+SBD, SA-1B).
For each dataset, we report the types of gestures included,
whether previous segmentations for refinement are provided,
number of images, number of unique regions, and total num-
ber of samples (i.e., number of unique gesture-region combi-
nations). Results are shown in Table 1.

Our dataset is the only one providing pre-computed an-
notations of multiple gesture types. The only other dataset
supplying pre-computed interactive gestures is GrabCut [28],
and only for ‘tight’ rectangles (bounding boxes). Conse-
quently, our dataset is the first to support efficient training
and evaluation of gesture-agnostic interactive segmentation
algorithms by providing a standardized set of annotations
that enables uniform comparison of algorithms.

Another distinction of our dataset is that it provides pre-
vious segmentations to support algorithm benchmarking for
the segmentation refinement setting. Only one other dataset
supports this setting, DAVIS-585, but only with a testing
split, thereby lacking splits for algorithm development.

A further distinction is that DIG has at least four times
as many samples as all datasets, except SA-1B [25]. This
arises primarily because our dataset includes multiple ges-
ture types per each region in every image. We expect this
to benefit deep learning methods (i.e., the de facto tool for
interactive segmentation), which need large amounts of train-
ing data. While SA-1B contains more samples than DIG,
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Dataset DIG DAVIS-585 [10] COCO+LVIS [54] GrabCut [28, 51] Berkeley [45] PASCAL+SBD [13, 19] OpenImages [4, 27] SA-1B [25]

Gesture Types L,C,S,R - - R - - - -
Prior Seg ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗
# Images 104K 300 104K 50 300 11.5K 1M 11M
# Regions 1M 585 1.5M 50 300 31K 2.8M 1.1B
# Samples 13.5M 585 1.5M 50 300 31K 2.8M 1.1B

Table 1. Comparison of DIG to six interactive segmentation datasets. DIG is the only dataset to support multiple gesture types. We report
the approximate number of samples rounded to the nearest order of magnitude. (L=Lasso, R=Rectangle, C=Click, S=Scribble)

it does not provide pre-computed previous segmentations
or interaction annotations to enable consistent, and so fair,
algorithm comparison.

5. Evaluation Metric: RICE
We now introduce a new evaluation metric for inter-

active segmentation to address that existing metrics (e.g.,
NoC, IoU) do not capture the amount that a method wors-
ens/improves the results when refining an initial segmen-
tation. For example, they could not capture that a result
worsens when a segmentation has a lower IoU with the
ground truth than a previous segmentation. Similarly, exist-
ing metrics cannot distinguish a relatively smaller change
from the previous segmentation compared to a large one
such as when a model produces a prediction that has an IoU
of 95% when refining a previous segmentation with a high
initial IoU (e.g., 90%) versus a low initial IoU (e.g., 20%).
We propose the first metric to holistically evaluate interac-
tive segmentation algorithms regardless of gesture type and
segmentation setting.

We call our metric the Relative IoU Corrective Evaluation
metric, or RICE. RICE takes into consideration how well a
predicted segmentation improves/damages a previous seg-
mentation with respect to a region’s ground truth and sim-
plifies to IoU when no previous segmentation is present.
Formally, we define RICE as:

RICE(α, β) =

{
α−β
1−β , if α ≥ β
α
β − 1, else

, (1)

where α is the IoU between a region’s ground truth and the
output of an interactive segmentation model after threshold-
ing. β is the IoU between a previous segmentation and a
region’s ground truth. Values can be positive or negative,
where a negative value indicates there was a previous seg-
mentation and, in the attempt to correct a mistake, the model
prediction decreased the overall IoU with the region ground
truth rather than increasing it as desired. Analysis highlight-
ing RICE’s derivation and intuition as well as its benefits
over IoU are provided in the Supplementary Materials.

6. Algorithm Benchmarking
We next benchmark modern interactive segmentation

methods as is as well as adapted for our novel task. We

perform all experiments on an NVIDIA A100 GPU.

Dataset Splits. We leverage the splits used in the
COCO+LVIS dataset [54] to divide DIG into training, valida-
tion, and test splits, since DIG is built upon that dataset. We
assign all training images from COCO+LVIS to our training
dataset and then split the images in the validation set for
COCO+LVIS into validation and testing splits using a ran-
dom 70%/30% split. Our final dataset consists of a: training
set with 99,161 images, 857,669 regions, 186,740 region
parts, and 12,839,936 samples; validation set with 3,318
images, 32,938 regions, 5698 region parts, and 413,784 sam-
ples; and test set with 1,423 images, 11,703 regions, 2417
region parts, and 246,080 samples. Of the 246,080 samples
in the test set, 69,852 samples belong to the scenario of
multi-region segmentation, as described in Section 4.1.

Baseline Models. Despite that algorithms do not exist to
support our novel task, as all interactive segmentation meth-
ods require more input than our task permits, we still aim
to gauge how well existing state-of-the-art interactive seg-
mentation methods could work if modified for our task. We
evaluate these top-performing algorithms that only support
one gesture type since their code is publicly-available:

• Deep GrabCut [61]: top-performing model that takes as
human input rectangles. It supports segmentation creation.

• IOG: [65]: top-performing model that takes as human
input a tight bounding box with a central click. It supports
segmentation creation.3

• RITM [54]: second best performing non-foundation model
on four datasets for taking in human input click gestures.
This method supports segmentation creation and refine-
ment. We use the HRNet [59]-18s variant.

• FocalClick [10]: top performing non-foundation model on
four datasets for taking as human input click gestures. This
method supports segmentation creation and refinement.
We use the HRNet [59]-18s variant.4

To adapt these models for gesture-agnostic, context-free in-
teractive segmentation, as they do not explicitly support

3IOG [65] refines its own predictions, not arbitrary previous ones, so it’s
unsuitable for comparison in our setting.

4We omit the refinement module as we observed worse performance with
it; details are provided in the Supplementary Materials.
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other gesture types, we convert all gesture types into the type
supported by each model. For evaluation, since providing
context to the models is incompatible with our proposed
task, we instead assess each model using three approaches
for supplying context:

• positive: for each click, the method only receives content
as ‘positive’ (i.e., content should be included).

• negative: for each click, the method only receives content
as ‘negative’ (i.e., content should not be included).

• random: for each click, the method receives context de-
cided by a draw from a discrete uniform distribution be-
tween positive and negative context.

We also evaluate the state-of-the-art model that supports mul-
tiple gesture types, SAM [25].5 Its official implementation6

supports clicks (context required) and rectangles (context
not required). For other gesture types (i.e., scribbles and
lassos), we either encode the points that compose the gesture
as clicks (i.e., SAM-C) or as rectangles (i.e., SAM-R). We
utilize the ViT-H [12] variant of SAM and select the output
mask (out of three) with the highest IoU with ground truth.

Proposed Models. We also introduce models that, by de-
sign, support multiple gesture types while only accepting
as input gesture annotations.7 We adapt the HRNet [59]-
18s variant of FocalClick [10] since it is both appropriate
for use on a variety of devices [10, 54] because HRNet-18s
is lightweight and also because it is the state-of-the-art for
click-based segmentation outside of the parameter-heavy
foundation models (e.g., SAM). We introduce two variants,
which we call HRNet-base, HRNet-dataAug. Of note, these
models will exemplify the advantage possible when training
on our proposed DIG dataset.

HRNet-base is the original algorithm with two modifi-
cations. First, while FocalClick [10] takes as input a con-
catenation of a channel for positive interactions (context), a
channel for negative interactions (context), and a previous
segmentation (that may be blank), we instead have it take as
input a concatenation of the gesture, a Euclidean distance
map, and a previous segmentation. We exclude the positive
and negative interactions because our problem does not per-
mit the context of an interaction. We introduce the Euclidean
distance map because it has be shown to improve results
when context is not present [61].

HRNet-dataAug is HRNet-base with data augmentation
to encourage algorithms to learn the relationship between a
gesture and a region rather than a region alone. To augment

5MMIS [37] is not evaluated since the code was not publicly available at
the time of submitting this paper.

6https://github.com/facebookresearch/segment-anything
7For completeness, we also discuss two variants in the Supplementary
Materials that highlight the performance of our adapted framework when
permitting context. Overall, neither variant leads to a performance boost.

data, given an object with no previous segmentation, we set
another image region as a previous segmentation and include
it in the final ground truth with probability p, with p = 0.2.

Evaluation Metric. We use our proposed RICE metric
to evaluate both globally and locally.8 The global metric
is defined to measure how well an algorithm’s prediction
matches the region’s ground truth. For our local metric, we
only consider how well the algorithm fixes a single con-
nected mistake targeted by the gesture.9 This is based in part
on the observation that segmentation mistakes can occur on
different parts of a region, causing multiple spatially discon-
nected groups of pixels that need to be corrected, and those
disconnected mistakes will generally be corrected by users
one at a time. Similarly, for segmentation creation, the local
metric establishes how well an algorithm selects a region
part, such as the head of a dog compared to it’s whole body.

Experimental Design. Given an interaction (i.e., click,
scribble, lasso, rectangle), we examine the RICE score for
that gesture in both segmentation settings (i.e., with a previ-
ous segmentation and without). Due to time and computation
constraints, we do not consider combinations of multiple ges-
tures for evaluation as there are

(
5
n

)
possible combinations

for every region in the test set, where n is the number of
gestures chosen. An additional practical reason is that in an
interactive session, the user will typically receive feedback
from one marking before making the next marking.

Overall Results. Results are shown in Table 2. We report
a breakdown of these results, all results for poor perform-
ing models (i.e., Deep GrabCut [61] and IOG [65]), and
multi-region segmentation results (which follow trends for
our top-performing segmentation refinement method) in the
Supplemental Materials.

As shown, models that support multiple gesture types out-
perform methods that support a single gesture type. Within
the top-performing models that support multiple gesture
types simultaneously, we observe mixed outcomes. For the
segmentation creation setting, SAM-R - positive (i.e., inter-
actions mapped to rectangles with all context assumed to
be positive) performs the best. However, this improvement
comes at the cost that SAM-R requires the gesture type as in-
put and is parameter-heavy. In contrast, our simplified model
with data augmentation (HRNet-dataAug) achieves nearly
comparable performance (i.e., 1.45 percentage points behind

8To be backwards compatible in evaluation, we conduct an additional
assessment that is discussed in the Supplementary Materials due to
space constraints. We evaluate algorithms for three IoU thresholds on
DAVIS585 [10] using the prior standard evaluation metric, number of
clicks, adapted to number of gestures to accommodate multiple gesture
types. Our findings show that context-augmented algorithms underperform
and need more interactions compared to our proposed models.

9As outlined in the Supplementary Materials, our evaluation method is more
realistic than previous approaches (e.g., [33, 62, 65]). Unlike click-based
methods that center clicks around the largest error, our interactions are
varied in position, as shown in Figure 3.
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Average Click Scribble Loose Lasso Tight Lasso Rectangle

Method RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal RICElocal RICEglobal

C
re

at
io

n

RITM [54] - positive 29.83 28.90 54.03 52.78 45.01 43.15 1.28 1.23 32.96 31.78 15.88 15.55
RITM [54] - negative 10.68 10.45 0.00 0.00 1.17 1.18 11.23 11.23 14.34 13.92 26.64 25.94
RITM [54] - random 20.33 19.74 27.15 26.47 23.10 22.13 6.32 6.30 23.56 22.78 21.49 21.00

FocalClick [10] - positive 28.92 28.03 54.95 53.47 44.78 43.12 1.29 1.26 29.49 28.44 14.11 13.86
FocalClick [10] - negative 9.01 8.91 0.13 0.16 0.70 0.74 12.01 12.03 9.92 9.87 22.29 21.78
FocalClick [10] - random 18.95 18.50 27.83 27.07 22.86 22.02 6.51 6.60 19.38 19.07 18.15 17.75

SAM [25]-R - positive 67.25 65.44 77.94 77.26 63.20 60.51 41.63 40.97 74.25 71.83 79.22 76.63
SAM [25]-R - negative 56.21 54.39 22.73 22.00 63.20 60.51 41.63 40.97 74.25 71.83 79.22 76.63
SAM [25]-R - random 61.75 59.93 50.42 49.70 63.20 60.51 41.63 40.97 74.25 71.83 79.22 76.63

SAM [25]-C - positive 55.54 54.39 77.94 77.26 66.83 64.85 8.49 8.64 45.20 44.55 79.22 76.63
SAM [25]-C - negative 33.90 32.99 22.73 22.00 20.78 20.13 9.59 9.69 37.19 36.52 79.22 76.63
SAM [25]-C - random 44.67 43.63 50.03 49.36 43.98 42.62 9.05 9.18 41.06 40.37 79.22 76.63

HRNet-base 64.37 61.84 54.85 52.02 59.55 56.99 67.24 65.66 80.88 77.25 59.33 57.29
HRNet-dataAug 66.62 63.99 57.81 54.83 61.25 58.59 69.15 67.51 82.12 78.40 62.79 60.65

R
efi

ne
m

en
t

RITM [54] - positive -18.59 -11.13 -1.49 10.15 -3.74 5.84 -43.84 -40.61 -24.50 -17.89 -19.36 -13.13
RITM [54] - negative -16.28 -7.52 -2.19 9.49 -5.25 5.64 -24.72 -19.04 -23.32 -15.13 -25.91 -18.56
RITM [54] - random -17.47 -9.35 -1.84 9.80 -4.56 5.74 -34.13 -29.68 -24.06 -16.64 -22.75 -15.95

FocalClick [10] - positive -28.50 -15.69 -14.17 1.71 -13.11 2.79 -56.34 -49.25 -31.66 -18.68 -27.21 -15.03
FocalClick [10] - negative -24.56 -11.68 -7.28 11.85 -14.62 1.16 -36.89 -29.41 -30.23 -18.70 -33.79 -23.29
FocalClick [10] - random -26.55 -13.76 -10.70 6.78 -13.89 1.83 -46.80 -39.60 -30.83 -18.58 -30.51 -19.23

SAM [25]-R - positive 20.95 21.31 42.40 44.22 6.94 6.89 25.79 25.92 18.81 18.82 10.81 10.71
SAM [25]-R - negative -83.78 -82.09 -94.86 -93.82 -91.93 -91.51 -68.59 -64.49 -76.46 -74.28 -87.07 -86.33
SAM [25]-R - random 18.31 18.54 29.22 30.38 6.94 6.89 25.79 25.92 18.81 18.82 10.81 10.71

SAM [25]-C - positive -72.56 -65.49 -50.02 -32.95 -62.95 -54.19 -84.24 -80.72 -78.40 -73.16 -87.18 -86.45
SAM [25]-C - negative -90.42 -89.20 -94.86 -93.82 -92.42 -90.86 -88.40 -87.11 -89.21 -87.78 -87.18 -86.45
SAM [25]-C - random -81.51 -77.35 -72.49 -63.34 -77.85 -72.69 -86.19 -83.74 -83.84 -80.51 -87.18 -86.45

HRNet-base 36.94 44.84 34.45 44.18 36.29 43.54 35.94 43.71 40.90 44.79 37.13 41.22
HRNet-dataAug 38.11 50.18 36.26 50.94 37.91 50.02 38.11 51.44 40.95 51.06 37.33 48.22

Table 2. Results on the test set of DIG. Above the dashed line represents segmentation creation and below represents segmentation refinement.
SAM [25] performs the best during segmentation creation while HRet-dataAug the best during refinement.

SAM-R - positive with respect to RICEglobal), while having
99.56% fewer parameters and no extra input requirements.
For the segmentation refinement setting, HRNet-dataAug
performs the best overall. In contrast, SAM-C [25] has the
worst results, likely due to the problem that SAM discards
the relevant mask when the first interaction has negative
context. Overall, we contend that the advantages of the less
cumbersome, more lightweight HRNet-dataAug outweigh
those of SAM based models.

For methods that only support clicks (i.e., RITM, Fo-
calClick), not only do they require additional input informa-
tion compared to our proposed models, but they also perform
worse. For example, the most effective single-gesture ap-
proach (i.e., FocalClick - positive) performs 2.86 percentage
points worse than our baseline with respect to the RICElocal
score for clicks during segmentation creation. Similarly,
it performs 1.36 percentage points worse with respect to
RICEglobal. We hypothesize this is partly because click-based
methods are tailored for optimizing for the different metric
of NoC for scenarios with multiple sequential interactions.

Qualitative results are shown in Figure 4 for segmentation
creation. Results for single-gesture methods (i.e., top two
rows) reinforce the quantitative findings that they struggle
to segment the region of interest. As exemplified, a plau-
sible reason for their shortcomings is that gestures such as
lassos and bounding boxes have the context outside or at the
boundary of the region. While we observe a similar pattern
for SAM [25]-C, we find this issue is resolved when using

instead rectangle encodings (i.e., SAM-R). This is likely
because, unlike SAM-C, SAM-R does not rely on contextual
information. We also observe that in Figure 4(b) that only
the multi-gesture methods target the shirt of the baseball
player rather than the entire player. We suspect this is due to
the inclusion of annotations for region parts in the datasets
used for training, including from our DIG dataset. A further
encouraging outcome is that when the image marking targets
the entirety of the desired region (i.e., using lassos), then the
proposed appropriately segment the entire person.

Analysis With Respect to Gesture Type. There is a dis-
parity in the performance of different gesture types across
methods. Among single-gesture methods, clicks yield the
most favorable results, while loose lassos display the least
effectiveness. This observation is likely due to the training
approach, where the interactions in single-gesture methods
are typically centered around the region of interest. In con-
trast, loose lassos typically fall outside the region of interest,
although they may intersect with it due to the boundary sam-
pling and interpolation methods discussed in Section 4.1.
For multi-gesture methods such as SAM [25], we find that
clicks and rectangles yield similar results during segmenta-
tion creation with positive context, likely due to the fact that
these are the gestures that are natively supported by SAM,
requiring no separate encoding.

In contrast to methods that take in context, our HRNet
variants show better performance with tight lassos across all
evaluation metrics, while clicks tend to yield poorer results
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Figure 4. Results for each gesture type for segmentation creation.
From the top down: RITM [54] - positive, FocalClick [10] - posi-
tive, SAM [25]-C - positive, SAM [25]-R - positive, HRNet-base,
HRNet-dataAug. (a) is the input image with ground truth overlaid,
(b)-(f) show the results of each method with the gesture used.

during segmentation creation. Intuitively, a tight lasso sur-
rounding the region’s boundary provides the most guidance
on what to select for interactive segmentation methods while
clicks perform the least. Scribbles and rectangles provide
similar performance as they may both only envelope part of
a region of interest. However, we observe that SAM obtains
top performance for segmentation creation when using rect-
angles. This can likely be attributed to rectangles being the
supported gesture type that provides the most guidance for
SAM during its large-scale training.

We also observe that the disparity in performance between
different gesture types is smaller for segmentation refinement
(Table 2). For instance, when using HRNet-dataAug, the gap
between the RICElocal score achieved by clicks and tight
lassos reduces from 24.31 percentage points for segmenta-
tion creation to 4.96 percentage points during refinement.
One plausible explanation is that the refined segments are
typically smaller in size than the entire regions, thereby al-
lowing algorithms to respond more uniformly among gesture
types. However, as the spatial size of available corrections
diminishes, the utilization of clicks becomes increasingly
advantageous. In the NoG setting, described in the Supple-
mental Materials, we observe that clicks outperform other
methods in terms of minimizing failures in reaching a spec-
ified IoU. This may be attributed to corrections becoming

thinner as they become smaller. Consequently, the effective-
ness of boundary level guidance, especially when applied
with a fixed thickness (e.g., a radius of 5 in our annotations),
may be diminished. In contrast, clicks may be more desir-
able due to their ability to cover a smaller spatial extent.
An additional explanation is that the observed performance
advantage of clicks during refinement could be influenced
by the implicit bias from training with superpixel previous
segmentations in DIG. Future research could explore more
efficient methods for generating on-the-fly interactions to
alleviate potential biases.

Analysis with Respect to Segmentation Refinement. Our
results on segmentation refinement reveal that single-gesture
methods have limited ability to improve upon previous seg-
mentations, while multi-gesture methods display compara-
tively better but still suboptimal performance. We observe
that context-based methods struggle to enhance previous seg-
mentations when using a single interaction, as evidenced by
our proposed RICE metric. One possible explanation is that
the widely used metric of IoU may not be a reliable indicator
of how well a method has improved a prior segmentation,
if at all. For example, when analyzing the RICEglobal score
for the RITM method, we observe a relatively low score
of 6.11, despite achieving a mean Intersection over Union
(mIoU) of 83.74 for the same setting10. Moreover, methods
that rely on interaction history, such as SAM perform poorly
when correcting pre-computed segmentations due to the re-
quirement for knowledge of previous interactions. Under
the NoG setting, we find this issue remedied by leveraging
subsequent interactions, but find these algorithms struggle
when context is not available. Furthermore, SAM-R suffers
a disadvantage when refining a previous segmentation as it
expects rectangles to add content to a segmentation, rather
than remove it.

7. Conclusion

Our proposed gesture-agnostic, context-free interactive
segmentation task suports a less cumbersome, more flexible
interaction from users. By only accepting user markings on
images, it eliminates common additional input requirements,
such as the context of an interaction or type of gesture.
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