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Abstract

Transformer architecture is a de-facto standard for
modeling global dependency in long sequences. How-
ever, quadratic space and time complexity for self-attention
prohibits transformers from scaling to extremely long
sequences (> 10k). Low-rank decomposition as a
non-negative matrix factorization (NMF) of self-attention
demonstrates remarkable performance in linear space and
time complexity with strong theoretical guarantees. How-
ever, our analysis reveals that NMF-based works struggle
to capture the rich spatio-temporal visual cues scattered
across the long sequences resulting from egocentric lifel-
ogs. To capture such cues, we propose a novel attention
mechanism named SEMantic Atention (SEMA), which fac-
torizes the self-attention matrix into a semantically mean-
ingful subspace. We demonstrate SEMA in a representation
learning setting, aiming to recover activity patterns in ex-
tremely long (weeks-long) egocentric lifelogs using a novel
self-supervised training pipeline. Compared to the current
state-of-the-art, we report significant improvement in terms
of (NMI, AMI, and F-Score) for EgoRoutine, UTE, and Epic
Kitchens datasets. Furthermore, to underscore the efficacy
of SEMA, we extend its application to conventional video
tasks such as online action detection, video recognition,
and action localization. Code is available at https://
github.com/Pravin74/Semantic_attention/

1. Introduction
Recently deep neural network models based on self-

attention (referred to as transformers) [60] have shown their
superiority over convolutional architecture in a variety of
tasks [17, 22, 23, 39]. Motivated by this, we explore the use
of transformer architecture for the task of activity clustering
in extremely long egocentric videos to discover the activity
patterns of the wearer. The two critical challenges while
solving the mentioned problem are: (a) extremely long se-

*equal contribution.

quences generated over multiple days, and (b) unavailabil-
ity of annotated data due to enhanced privacy concerns in
egocentric settings and massive human effort required.

Multiple researchers have pointed out the inability of
standard transformer architecture to scale for extremely
long sequences [4,9,31]. This is primarily because the self-
attention mechanism suffers quadratic compute and mem-
ory requirements with the sequence length. Further, trans-
former models typically need large supervised data, and
the lack of supervision for extremely long sequential tasks
makes it challenging for the application of transformers.

Earlier works addressing quadratic time complexity of
self-attention can be categorized into: sparse attention-
based [4, 8, 31, 57, 58, 69] and NMF-based approaches [9,
29, 49, 64]. Sparse attention-based works do not provide
theoretical guarantees and typically use fixed locations to
compute global attention, affecting generalization capabil-
ity. On the other end, NMF-based approaches are gener-
alizable and provide theoretical guarantees; therefore, we
choose to explore NMF-based approaches in this work.

Linformer, [64] learns two projection matrices to ap-
proximate the self-attention matrix using a low-rank ma-
trix in linear space and time complexity. Katharopoulos et
al. [29] use a kernel-based formulation for NMF to approxi-
mate the regular quadratic-complexity of self-attention and
use the associative property of matrix product to achieve
linear space and time complexity for the autoregressive
task. Similarly, Choromanski et al. [9] propose a theo-
retically bounded linear-complexity attention mechanism
(called Performer) that projects the query and key vec-
tors into a fixed orthogonal random subspace and the pro-
jections conceptualize the factorization of a full-rank atten-
tion matrix. One of the main observations of our work is
that the predefined kernel or random subspace-based fac-
torization is inadequate for attention modeling in long video
sequences. The recent work cosFormer [49] has used a
similar idea of NMF and proposed a cos-based reweighting
mechanism with kernelization method to concentrate more
weights on the neighboring tokens to achieve locality in at-
tention. However, this assumption doesn’t hold for the cur-
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rent problem of representation learning for egocentric lifel-
ogs, where events/activities are scattered across the days.
The key contribution of this work is to suggest a semanti-
cally aware attention factorization by projecting on the sub-
space obtained from sample-specific representative frames.

We take motivation from the NMF framework and pro-
pose a novel linear complexity factorization method to
approximate the self-attention suitable for representation
learning for the extremely long sequence where patterns are
repetitive in very long intervals. It has been shown that k-
means clustering is a tractable approximation to the non-
negative low-rank matrix factorization problem [15]. Moti-
vated by this, instead of learning the low-rank factorization
using a predefined kernel or random projections, we use a
set of representative frame R to learn low-rank matrices Q
and K such that self-attention matrix A = QR⊤RK⊤.
These representative frames are computed apriori using
video summarization methods. The use of representative
frames allows us to integrate various semantic cues into the
factorization process while ensuring theoretical guarantees
on linear space and time complexity. Our idea is backed by
the fact that for activity clustering task, the re-occurrence of
a particular (activity) pattern is an important cue to under-
stand its temporal boundaries. Rather than spreading atten-
tion weights over thousands of frames in a sequence, one
can focus on a few exemplar frames. The proposed seman-
tic attention, which factorizes self-attention through seman-
tically relevant representative frames, is called SEMA.

Many representation learning works demonstrate signif-
icant performance gain when the clustering/class informa-
tion is embedded in the representations [2, 6]. Motivated
by this notion, we choose a self-supervised learning ap-
proach to train the SEMA-based embedding network to dis-
cover the activity patterns in egocentric lifelogs. We use
self-supervised learning to generate pseudo labels and use
these pseudo labels to learn cluster-centric representations.
We train the framework like an EM algorithm by iterating
the representation learning and self-labeling.

Contributions: The key contributions of our work are:
(1) We propose a novel SEMantic Atention (SEMA) based
on the low-rank factorization of the self-attention matrix
using representative frames. The proposed architecture
can exploit sample-specific semantic cues to learn robust
representation from extremely long but repetitive video
sequences. (2) We propose a self-supervised clustering
pipeline to discover activity patterns in extremely long ego-
centric lifelogs (recorded for up to 20 days). The approach
does not rely on any priors or pre-trained networks to detect
activities, objects, and/or places. (3) We demonstrate the
performance of our contributions on the benchmark Egor-
outine, UTE, and Epic Kitchens datasets. Compared to the
current state-of-the-art approaches, the proposed technique
achieves significant performance gain of (8%, 8%, 15%),

(2%, 2%, 4%), and (8%, 8%, 17%) in terms of (NMI, AMI,
F-Score) for EgoRoutine, UTE, and Epic Kitchens datasets,
respectively. (4) To demonstrate the effectiveness of the
proposed SEMA, we opt to apply it to SOTA works in three
established video analysis tasks. We substitute their self-
-attention with semantic attention while keeping all other
aspects unchanged. These three tasks encompass online ac-
tion recognition, video recognition, and action localization.
(5) We contribute annotations for EgoRoutine comprises 7
subjects of 104 days of lifelogging and UTE comprises 4
videos of 17 hours, to be released after publication.

2. Related Work

Unsupervised Activity Segmentation and Clustering for
Sequential data: Recently, many works have demonstrated
unsupervised action segmentation [14,16,25,36,42,65] and
clustering [33, 34, 61] on video datasets comprising small
video samples (a few minutes long). A few works have
been done for egocentric videos such as [32] uses a stacked
Dirichlet process mixture model over motion histograms,
and [18, 19] use a weakly supervised technique to model
the active objects for egocentric action recognition. [5] uses
CNN-LSTM based autoencoders, whereas [56] uses topic
modeling to learn the activity patterns performed at differ-
ent time intervals over multiple days. In a nutshell, all these
works fail to model the global dependencies required for
egocentric lifelogs where activities are spread across days.
Self-Supervised Learning: [46] use a large network
trained on a pretext task to generate pseudo labels for the
target task and then train a smaller network with these
pseudo labels for transferring the knowledge. For egocen-
tric data, we do not have such large labeled data. [2] pro-
posed a fast variant of the Sinkhorn-Knopp algorithm to
generate pseudo labels for large-scale datasets. However,
the equipartition assumption used is not applicable for the
problem as the distribution of activity patterns is highly
skewed. Recently [70] proposed a joint framework for on-
line clustering that jointly perform clustering and features
learning to deal with unstable training.
Representation Learning for Global Dependencies: Sar-
fraz et al. [51, 52] proposed a temporally weighted hierar-
chical clustering approach that uses the 1-nearest neigh-
bor graph to cluster the semantically consistent frames
present in the video. Deep representation learning using
graph autoencoder is getting attention for various NLP tasks
[30, 48, 63]. However, all the GCN-based works require a
pre-computed adjacency matrix that implicitly assumes a
particular length of an event. This is problematic in our
context due to widely variable length events.
Transformers and Scaling Attention: Transformer-based
approaches show remarkable performance in sequence
modeling [60] but face scalability issues with long se-
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quences [12,40]. The complexity of self-attention is O(N2)
(where N is sequence length), becoming intractable for
large N . Thus an active research area has emerged to gain
compute and memory efficiency by approximating self-
attention. A few notable works viz Longformer [4],
Reformer [31], Fast Transformer [62], Routing
Attention [50], Long-Short Transformer [73],
Linformer [64], Performer [9], and cosFormer
[49] claim time complexities of O(N), O(N logN),
O(NCm), O(N1.5m), O(Nr), O(Nr2), O(Nrm), and
O(Nm2) respectively, where m, C, and r are the feature
dimension, the number of clusters, and the dimension of the
projection matrix, respectively. The long sequence prob-
lem becomes even more critical in vision problems, where
researchers have used spatial [41], temporal [1], and hier-
archical [17, 21] cues to scale the attention for large image
and video data.

3. Proposed Approach
The objective of this work is to recover activity patterns

of one’s lifelog recorded over multiple days. We formu-
late the problem as a representation learning for a mas-
sively long temporal sequence in an unsupervised setting.
The sequence representation learning formulation is moti-
vated by the intuition that similar activity patterns should
exhibit similar structures in latent space. Note that the re-
cent representation learning works [37,38,47] demonstrated
on video datasets (comprised of enormous tiny videos of
non-repetitive patterns) harnessing contrastive learning are
not applicable to the problem at hand. The core technical
contribution of this work is to learn an embedding network
(f emb

θ ) for sequence representation learning that can han-
dle extremely long sequences (hours/days) and model the
global dependencies among similar activity patterns scat-
tered across the sequences.

3.1. Overview

Consider the photo-stream lifelog of a subject recorder
over D days. We concatenate these sequences in time,
X = {Xd}Dd=1, to create a single sequence per subject
spanning across days. The concatenation is required to dis-
cover and link the activities happening even only once a
day. Let the number of frames in X be denoted by N .
For frame-level feature extraction, we use a BiLSTM model
suggested in [20] for the Egoroutine dataset and 3D CNN
model [59] (called C3D hereon), trained on the Sports-1M
dataset for the UTE and the Epic Kitchens datasets. Then
we use Principal Component Analysis (PCA) to reduce the
feature dimension and generate a 512-dimensional vector
for each frame. The vector for the ith frame in the se-
quence is denoted as xi. Our objective is to find c activity
patterns/clusters from the week-long sequence of a subject.
There is no assumption on order among a pair of activities,

nor are all activities necessarily performed each day. Fig-
ure 1 and Figure 2 show an overview of our pipeline, and
proposed SEMA respectively.

3.2. Semantic Factorization of Self Attention

Self-attention in transformers: To draw global dependen-
cies between the input sequence, we take inspiration from
the transformer network [60] and borrow the self-attention
mechanism in our embedding network (f emb

θ ) (see Figure 1)
which generates an embedding vector for each frame in the
sequence. Once the input sequence X of length N is lin-
early projected as query Q = {qi | qi ∈ Rm, i ∈ [N ]},
key K = {ki | ki ∈ Rm, i ∈ [N ]}, and value V = {vi |
vi ∈ Rm, i ∈ [N ]}, where m is the query, key, and value
dimensions, then the self-attention mechanism is given as:

Att(Q,K,V) = AN×NVN×m. (1)

Here AN×N = softmax
(

QN×mKT
N×m√

m

)
is the attention

matrix. The vanilla self-attention has O(N2) space and
time complexity and does not scale to long sequences.
Why Factorization of Self-attention Matrix? The
quadratic time complexity of the self-attention matrix
should be addressed effectively to model the global de-
pendencies in long sequential data. Our experiments also
confirm that the self-attention mechanism [60] fails miser-
ably for long sequences and gives memory error beyond
a sequence length of 14k. Active research aims to make
self-attention efficient by approximating it with heuristics
[4, 31, 50], like Beltagy et al. [4] (Longformer) pro-
posed a sparse attention mechanism that uses two types of
attention- local attention for contextual representation and
global attention for disseminating information across the
full sequence. Kitaev et al. [31] (Reformer) have pro-
posed a locality-sensitive hashing under the assumption that
the nearby vectors assign the same hash value with high
probability. In contrast, for lifelogs, we focus on linking
similar activity patterns scattered across the extremely long
sequence. A fundamental approach to addressing this issue
without relying on any heuristics and prior information is
by factorizing the attention matrix into the low-rank query
and key matrix pairs and changing the order of matrix mul-
tiplication Q(KTV) for achieving linear space and time
complexities [9, 54]. Performer [9] does the same by
projecting the query-key pair onto a random subspace [9].
Our experiments reveal that a simple factorization shows
moderate performance gain but is inadequate to capture
repetitious visual information in extremely long egocentric
videos. Hence, we propose a novel semantic factorization
based on representative frames to harness the latent charac-
teristics of the data for factorizing the attention matrix.
Semantic Factorization of Self-attention: To overcome
the quadratic complexity of self-attention, we formulate the
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Figure 1. Illustration of the flow chart of the proposed approach. Our technique consists of a neural network fθ parameterized by θ that is
divided into two parts. The first part is an embedding network (SEMAFormer), f emb

θ : Rm → Rm, that generates an embedding vector
H ∈ RN×m. The second part is a classification head, f cls

θ : Rm → Rc, consisting of a linear layer followed by the softmax operator,
which generates the predicted labels Ŷ ∈ RN×c corresponding to the input sequence of length N . We train the network using the pseudo
labels Ỹ ∈ RN×c generated using the proposed self-supervised learning framework. Once the network is trained, we perform spectral
clustering [45], with the number of clusters c, using the affinity matrix generated by the representations given by the embedding network.
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Figure 2. The figure depicts the proposed SEMA that factorizes the
self-attention using semantically meaningful subspace by utilizing
the latent characteristics of the data. It samples the representative
frames from the query Q using apriori computed representative
indices in contrast to random vectors used in the Performer.
The resulting projections Q′ and K′ are low-rank decomposition
of the self-attention matrix using the saliency of the data.

low-rank decomposition of attention matrix A as a non-
negative matrix factorization (NMF) problem. K-means can
approximate NMF, a tractable approach to non-negative
low-rank matrix factorization [15]. Precisely, we factorize a
full-rank attention matrix A to the low-rank matrices: mem-
bership matrix, K′, and reconstruction matrix, Q′, such
that: A = Q′K′. We first compute k representative frames
using a separate video summarization technique. We use
these representative frame indices to sample representative
frames from the Q, and stack them into a k×m matrix (re-
fer to the Figure 2). Then we learn a k × N matrix, K′,
such that exp(RK⊤) can be interpreted as the distance or
membership coefficient of each sample from/of each of the
k clusters (represented by the corresponding representative
frame). Here exp(·) is applied element-wise.

We interpret multiplication with Q′, i.e., Q′RK⊤, as
reconstructing a sample as the weighted sum of cluster cen-
troids. Since conceptually we expect the reconstruction
weights to be the same as the cluster membership coeffi-
cients, exp(RK⊤), hence we enforce Q′ = K′.

Mathematical Formulation of Semantic Factorization:
It is instructive to note that while our proposed factoriza-
tion provides rich conceptual motivation, mathematically,
we are simply factorizing A = Q′K′, such that Q′ =
exp(QR⊤), and K′ = exp(RK). Here, R is a matrix
formed by stacking a set of k feature vectors correspond-
ing to the representative frames that are chosen using video
summarization. Mathematically, this is no different from
Performer, in which the vectors are chosen as random
vectors orthogonal to each other. Hence, the space and
time complexity remains the same as the Performer, i.e.,
O(Nk + Nm + km) and O(Nkm), respectively, in addi-
tion to one-time representative frame computation. Further-
more, formal guarantees similar to the Performer factor-
ization hold for the proposed SEMA as well (detailed proof
in the supplementary).
Finding Set of Representative Frames: Whereas the
Performer uses random projection vectors to learn Q′,
and K′, we enforce that Q′ = exp(QR⊤), and K′ =
exp(RK⊤), where R is a matrix of features of representa-
tive frames. This ensures that the factorization proceeds by
first projecting to meaningful cluster centers and then recon-
structing based on these projections. Our proposed pipeline
allows to choose the representative frames independent of
the steps for activity clustering. In our implementation, we
use [43], which is a recent technique, especially for sum-
marizing egocentric videos. This is a one-time prior com-
putation with the number of representative frames set to 256
(m/2) for all experiments. The performance may vary by
changing the number of representative frames.

3.3. Activity Clustering using Self-Supervised
Learning

Overview: Our SEMAFormer uses the proposed semantic
attention-based factorization in a transformer architecture.
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Our objective is to use SEMAFormer to learn embeddings
for each frame in an input video which can model long-
range repetitions and give similar feature embeddings for
such frames. The embeddings can then be clustered to give
activities. In a supervised setting, we could have trained fθ
using one of the c ground truth activity labels y1, ...yN ∈
{1, ..., c} given for each frame. With ŷi as the predicted
class probability vector for a sample xi, the model is trained
using the cross-entropy loss:

L = − 1

N

N∑
i=1

c∑
j=1

yi[j] log ŷi[j]. (2)

Here y is the one-hot vector corresponding to label yi. In
our settings, long sequences and the privacy-sensitive na-
ture of egocentric data prohibit the availability of the ground
truth label. Hence, we adopt a self-supervised approach
where we first cluster the samples into c cluster based on the
learned embeddings from SEMAFormer and then use the
cluster membership to generate pseudo-labels ỹi for each
sample. We then train the embedding network using cross-
entropy loss with respect to the pseudo-labels:

L = − 1

N

N∑
i=1

c∑
j=1

ỹi[j] log ŷi[j], (3)

Generating Pseudo-labels: For clustering, we use the
core-set algorithm [53] to generate c-medoid indices using
the latest embeddings generated from SEMAFormer for
each sample. The core-set algorithm is an efficient approxi-
mation of the k-center problem [53]. We give the details of
the pseudolabel generation process in the supplementary.
Self-supervised Representation Learning: The pro-
posed architecture is trained similarly to Expectation-
Maximization (EM). The two steps, namely representation
learning and self-labeling are as follows: (1) Freeze the cur-
rent label assignment matrix ỹ, and update the model fθ by
minimizing the Equation 3. (2) Freeze the current embed-
ding (H), and compute the new c medoids and pseudo la-
bels. We run the EM for 600 iterations or until convergence,
whichever happens first. After this, we use spectral cluster-
ing [44] on the most recent embeddings for each frame to
detect activities. We chose spectral clustering because it is
rooted in graph theory and can build global dependencies
in a long sequence. However, core-set or other clustering
techniques could have been equivalently used.

4. Datasets and Evaluation Methodology
Dataset: We showcase results on a publicly available
EgoRoutine dataset [56], comprising lifelogging of seven
subjects for a total of 104 days. The dataset is captured
by a wearable camera fixed on the chest of a subject,

capturing at 2 fpm, constituting 115, 685 captured frames
in total. Compared to conventional egocentric datasets,
this dataset is recorded in a highly unconstrained envi-
ronment that includes a variety of indoor and outdoor
scene contexts. The activities are shopping, visiting restau-
rants/museums/concerts, traveling on flight/bus/cab/metro,
working in a lab, attending conferences, cycling, sitting at
the beach, etc. The dataset does not provide activity anno-
tations. However, we have annotated all seven subjects for
our experiments. Due to the scarcity of week-long lifelog-
ging datasets, we chose the UTE [35] dataset to demonstrate
the generalization and efficacy of the proposed framework
on a video dataset. The UTE dataset is not a week-long
lifelogging dataset but comprises recordings of subjects per-
forming daily activity tasks ranging up to 5 hours. Though
not day-long, it still suffices to understand the key strength
of the proposed model for understanding long-range repe-
titions. We also annotated all four videos of this dataset.
Furthermore, we also synthesize a long video sequence (ap-
prox. 20k frames) using the Epic Kitchens dataset [11]
(refer to supplementary material for details). We further
demonstrate SEMA on three standard video analysis tasks.
We use the THUMOS14 [28] and AVA [24] datasets for on-
line action detection and video recognition, respectively.
For action localization, we employ the ActivityNet 1.3 [27]
and THUMOS14 [28] datasets.

Evaluation and Annotations: For evaluation, we use the
commonly used clustering evaluation metrics: Adjusted
Mutual Information (AMI), Normalized Mutual Informa-
tion (NMI), and F-score [55, 68]. These metrics range in
[0, 1], where larger values indicate better performance (re-
fer to the supplementary material for more details).

Baselines: We compare with a SOTA egocentric work [13]
to demonstrate the efficacy of SEMA. Dimiccoli et al. [13]
use a threshold to control the granularity of segmenta-
tion. We tweak the threshold to generate the appropri-
ate clusters for each subject. Due to the scarcity of re-
cent works for activity pattern recovery, we select five Vi-
sion/NLP works aligned to our problem [2, 3, 7, 48, 51].
Part et al. [48] propose a novel convolutional graph au-
toencoder called GALA (Graph convolutional Autoencoder
using LAplacian smoothing and sharpening) for represen-
tation learning. we generate a sparse adjacency matrix
by considering τ closest frames for an input frame in Eu-
clidean space under the assumption that the events are of
equal length. We choose τ = 30 to demonstrate the re-
sults. Similarly, Bai et al. [3] propose Deep Autoencod-
ing Predictive Components (DAPC) that mask the feature
dimension and temporal dimension of the input sequence
and reconstruct the masked component from the latent rep-
resentations. The Transformer encoder shows mem-
ory error in our case due to long sequences. Hence, we
show results on bi-GRU [10] configuration of DAPC. Sar-
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Methods
c = 12 c = 13 c=15

F1↑ AMI↑ NMI↑ F1↑ AMI↑ NMI↑ F1↑ AMI↑ NMI↑
SR-clustering [13] 0.3044 0.0913 0.0924 0.2697 0.1294 0.1312 0.2614 0.1537 0.1557
TW-FINCH [51] 0.3132 0.1548 0.1603 0.3259 0.1649 0.1655 0.3072 0.1530 0.1545
SeLa [2] 0.6642 0.6291 0.6299 0.6662 0.6150 0.6158 0.5855 0.5954 0.5963
DAPC + bi-GRU [3] 0.7135 0.6129 0.6135 0.6152 0.6040 0.6048 0.6343 0.6080 0.6089
GALA [48] 0.6357 0.6079 0.6085 0.6458 0.6084 0.6093 0.5381 0.5932 0.5941
CARL [7] 0.5551 0.5219 0.5253 0.5847 0.5258 0.5262 0.5721 0.5139 0.5144
Ours+naive⋆ [60] 0.2262 0.1651 0.1674 0.2257 0.1749 0.1769 0.2292 0.1423 0.1451
Ours+Long [4] 0.5576 0.5989 0.5995 0.6212 0.6066 0.6073 0.6575 0.5982 0.5990
Ours+Perf [9] 0.6955 0.6219 0.6224 0.6001 0.5938 0.5944 0.6842 0.5996 0.6006
Ours+SeLa [2] 0.6478 0.5991 0.6025 0.6573. 0.6152 0.6160 0.7185 0.6276 0.6286
Ours+cos [49] 0.7233 0.6299 0.6305 0.6965 0.6328 0.6335 0.5739 0.5875 0.5885

Ours+SEMA 0.7482 0.6510 0.6515 0.7976 0.6837 0.6842 0.7960 0.6806 0.6814

Table 1. Comparison between various SOTA approaches for subject S1 in EgoRoutine dataset. For c = 13, we merge ‘in cab’ and ‘in
metro’ to ‘transportation’ class and ‘in lab kitchen’ to ‘walking in lab and chitchatting’ class in the ground truth annotations. For c = 12,
we further merge the ‘food in lab’ to ‘at restaurant’ class. ⋆ represents that the self-attention gives memory error after 14000
sequence length, the results are evaluated for less than 14000 sequence length.
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Figure 3. The figure demonstrates the visualization of a comparison between the predicted class and ground truth for different days (for better visualization,
we have divided the concatenated sequence into multiple days). We use Hungarian matching for a one-to-one mapping between ground truth and predicted
clusters. Figure best visible in color.

fraz et al. [51] proposed a temporally-weighted hierarchi-
cal clustering (TW-FINCH) algorithm that groups semanti-
cally related frames of a video using a 1-nearest neighbor
graph. The algorithm partitioned the data at multiple gran-
ularities. We picked the partition closest to ground-truth
clusters for comparison. Chen et al. [7] proposed a con-

trastive action representation learning (CARL) framework
that uses a novel sequence contrastive loss. We trained
the architecture on our datasets and used spectral cluster-
ing on the frame-wise representations generated. Further-
more, to prove the efficacy of the proposed SEMA, we re-
place it with four SOTA attention mechanisms, namely self-
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attention, Longformer, Performer, and cosFormer
in the proposed pipeline, and call them as Ours+naive
(i.e. Transformer), Ours+Long, Ours+Perf, and
Ours+cos, respectively. We also integrate the SOTA self-
supervised method name, SeLa [2] in the proposed pipeline
and replace the fully connected layer with the proposed
SEMAFormer and named it Ours+SeLa.
Implementation Details: The SEMAFormer comprises
six transformer layers, wherein the conventional self-
attention has been replaced by the proposed SEMA mech-
anism. We use Principal Component Analysis for dimen-
sionality reduction for all the experiments, which resulted
in a 512-dimensional feature vector. We utilize m/2 frames
to compute the representative loss at each layer and set c to
the number of activity patterns in the input sequence (from
GT). For medoids matching, we use bipartite matching be-
tween the previously generated medoids (extract the cur-
rent embedding corresponding to the previously generated
indices stored in medoids memory) and current medoids in
Euclidean space. We generate pseudo labels for every 50th

epoch. We set the learning rate as 0.01, the number of neu-
rons at the feedforward network as 2048, and the adam opti-
mizer with a 40 epoch of warmup [60]. We use f = ReLU
for better generalization, similar to Performer. We re-
move the positional encoding as the sequence of the events
is stochastic for the problem at hand.

5. Experiments & Results

Id Score
SeLa DAPC GALA CARL Ours+ Ours+ Ours+
[2] [3] [48] [7] Perf cos SEMA

P01
AMI 0.5036 0.219 0.5068 0.4024 0.4999 0.5108 0.5116
NMI 0.5056 0.223 0.5089 0.4080 0.5019 0.5128 0.5136
F1 0.5517 0.1239 0.5557 0.4415 0.5325 0.5522 0.5562

P02
AMI 0.5449 0.2445 0.5432 0.4501 0.5413 0.5601 0.5603
NMI 0.5455 0.2481 0.5438 0.4529 0.5419 0.5607 0.5608
F1 0.519 0.2179 0.5813 0.4821 0.5716 0.5714 0.5870

P03
AMI 0.4149 0.1876 0.4051 0.2534 0.4261 0.4426 0.4400
NMI 0.4166 0.1892 0.407 0.2589 0.4277 0.4441 0.4461
F1 0.5503 0.2814 0.6093 0.2816 0.5923 0.6186 0.6198

P04
AMI 0.3038 0.1123 0.4253 0.2981 0.3632 0.4164 0.4339
NMI 0.3052 0.1156 0.4264 0.2962 0.3644 0.4176 0.4351
F1 0.3328 0.3581 0.5559 0.3287 0.4488 0.5311 0.6870

Table 2. Performance comparison with SOTA in terms of F1 score,
AMI, and NMI for all the subjects of the UTE dataset.

Quantitative Comparison for Different Number of Clus-
ters: Table 1 shows the quantitative evaluation based on
AMI, NMI, and F-score for different granularities of clus-
ters. We demonstrate that Ours+SEMA outperforms all
the SOTA frameworks with a huge margin for 14 days
long sequence of subject S1. When we replace the SEMA
with SOTA attention mechanisms, the performance drops

Score
SeLa DAPC GALA CARL Ours+ Ours+ Ours+
[2] [3] [48] [7] Perf cos SEMA

AMI 0.3229 0.0267 0.3900 0.3158 0.3884 0.4102 0.4710
NMI 0.3234 0.0271 0.3904 0.3140 0.3887 0.4105 0.4713
F1 0.3161 0.2051 0.3154 0.2992 0.4543 0.3644 0.4830

Table 3. Performance comparison with SOTA in terms of F1 score,
AMI, and NMI for the Epic Kitchens dataset.

Id Score
TW-FINCH SeLa DAPC GALA CARL Ours+ Ours+ Ours+

[51] [2] [3] [48] [7] Perf cos SEMA

S1
AMI 0.1530 0.5954 0.6080 0.5932 0.5139 0.5939 0.5875 0.6806
NMI 0.1545 0.5963 0.6089 0.5941 0.5144 0.5948 0.5885 0.6814
F1 0.3072 0.5855 0.6343 0.5381 0.5721 0.6423 0.5739 0.7960

S2
AMI 0.3489 0.4832 0.4794 0.4901 0.3811 0.4765 0.4829 0.4901
NMI 0.3551 0.4889 0.4852 0.4932 0.3820 0.4824 0.4887 0.4957
F1 0.2541 0.4497 0.4504 0.4901 0.3729 0.4395 0.4383 0.4960

S3
AMI 0.1038 0.4704 0.5083 0.5262 0.4334 0.4891 0.4787 0.5756
NMI 0.1055 0.4717 0.5096 0.5275 0.4347 0.4905 0.4800 0.5768
F1 0.2227 0.4885 0.5546 0.5965 0.5018 0.5208 0.4499 0.7202

S4
AMI 0.4640 0.5474 0.5518 0.5630 0.4939 0.5663 0.5704 0.5750
NMI 0.4699 0.5513 0.5557 0.5668 0.4955 0.5699 0.5740 0.5786
F1 0.2882 0.4200 0.4415 0.5117 0.5192 0.4575 0.4390 0.5821

S5
AMI 0.4722 0.5845 0.5868 0.5658 0.4932 0.5787 0.5865 0.5913
NMI 0.4769 0.5870 0.5892 0.5685 0.4983 0.5812 0.5890 0.5937
F1 0.3230 0.4808 0.4907 0.4707 0.4594 0.4671 0.4912 0.6074

S6
AMI 0.1801 0.5371 0.5078 0.5838 0.4866 0.5277 0.5839 0.6252
NMI 0.1823 0.5392 0.5101 0.5857 0.4823 0.5297 0.5860 0.6272
F1 0.2645 0.5453 0.4213 0.6720 0.5681 0.4928 0.6470 0.6813

S7
AMI 0.3057 0.5510 0.5625 0.5630 0.4034 0.5569 0.5620 0.5833
NMI 0.3078 0.5553 0.5667 0.5675 0.4068 0.5612 0.5662 0.5873
F1 0.3584 0.4764 0.4953 0.5093 0.3979 0.5264 0.5488 0.5745

Table 4. Performance comparison with SOTA in terms of F1 score,
AMI, and NMI for all the subjects of the EgoRoutine dataset.

considerably as the SOTA mechanism fails to harness the
rich semantic information. Furthermore, Ours+SeLa use
the equipartition assumption for generating the pseudo la-
bels hence underperforms compared to Ours+SEMA as the
equipartition assumption used in [2] does not hold for the
highly skewed activity patterns in egocentric lifelogs.

Qualitative Results: Figure 3 demonstrates a visualization
of the results obtained for the sequence corresponding to
subject S1 (all 14 days concatenated sequentially). The fig-
ure shows that SEMA performs robustly for all activity pat-
terns. We observed that the most repetitious activity pat-
tern, ‘working in lab’ is handled and significantly recov-
ered. Furthermore, the SEMA is robust for minority classes
as well and precisely recovers ‘in cab’ (appeared once on
day 10, refer Figure 3) and ‘at metro station’. However, we
observe misclassifications due to high overlap among the
context and the objects involved in the activity patterns. For
example, ‘food in lab’ is frequently misclassified as ‘walk-
ing in lab and chitchatting’ or ‘kitchen’ as the former shares
the common context (the lab) and the latter shares com-
mon objects (the food). Furthermore, ‘walking in lab and
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Model SharedQK F1 AMI NMI

Ours+Perf NA 0.6842 0.5996 0.6006
Ours+SEMA ✗ 0.7235 0.6319 0.6328
Ours+SEMA ✓ 0.7960 0.6806 0.6814

Table 5. Performance comparison the proposed framework Ours+SEMA
with various desing choises for subject ‘S1’ for ‘c’ =15. SharedQK and
NA represent the linear layer shared for the query and the key and not
applicable, respectively.

chitchatting’ shows confusion with ‘walking in building’
and ‘working in lab’ at the boundaries due to the smooth
transition between the activity patterns. We also demon-
strate similar visualization for the UTE and Epic Kitchens
datasets in the supplementary material.

Quantitative Comparison for All Subjects: Table 4, Ta-
ble 2, and Table 3 demonstrate the quantitative compari-
son with the SOTA techniques for EgoRoutine, UTE, and
Epic Kitchens datasets, respectively. We show significant
performance improvement in terms of F1-score, AMI, and
NMI for all three datasets. We observe that the GALA [72]
performs comparably to SEMA for subject S2 of the EgoR-
outine dataset as it uses a sparse adjacency matrix with τ
closest frames, and the choice of τ seems best for this sub-
ject. Similarly, Ours+cos also demonstrates comparable
performance for the UTE dataset and perform marginally
better for subject P03 in term of AMI. CARL [7] performs
poor for all three egocentric datasets as it uses frame-level
ResNet-50 [26] features followed by Transformer for
harnessing the local temporal context (of 240 frames).

Ablation Study: Table 5 presents a comprehensive abla-
tion analysis that illustrates the contribution of various de-
sign choices in Ours+SEMA. Initially, we replace the SEMA
with Performer attention [9]. The result indicates that
SEMA outperforms Performer attention by a significant
margin. Additionally, we introduce a constraint where Q′

is set to be equal to K′. This constraint not only aligns with
the conceptual framework but also leads to significant per-
formance enhancements compared to the setting when Q′

and K′ are allowed to differ. It’s important to note that the
bandwidth of the representative frames (set as m/2 for all
subjects) remains a latent characteristic of the data and is
influenced by the diversity of lifelogs, hence resulting per-
formance might change. By employing the shared Q′ and
K′ approach, the proposed attention mechanism surpasses
the SOTA frameworks by a substantial margin. For a more
detailed exploration, the supplementary material provides
visualizations and a comparative analysis of the attention
maps generated by SEMA and Performer.

Standard video tasks with SEMA: To prove the general-
izability of SEMA, we demonstrate its application on three
standard video analysis tasks: online action detection, video

Task Action Detection Video Recognition
Method LSTR [67] MeMViT [66]
Dataset THUMOS14 [28] AVA [24]
Eval. Measure mAP% ↑ GPU mem ↓ mAP% GPU mem
Self-Atten 69.5 1195MB 24.5 2205 MB
SEMA 69.6 813 MB 21.65 1986 MB

Table 6. Performance comparison of SEMA with SOTA for online
action detection and video recognition tasks.

Task Action Localization (ActionFormer [71])
Dataset ActivityNet 1.3 [27] THUMOS14 [28]
Eval. Measure Avg. mAP ↑ GPU mem ↓ Avg. mAP GPU mem

Self-Atten 36.06 1608 MB 66.33 2820 MB
SEMA 35.30 1162 MB 65.65 2316 MB

Table 7. The table demonstrates the performance comparison of
SEMA for action localization task on two standard datasets.

recognition, and action localization. In each of these tasks,
we choose a SOTA and substitute the self-attention block
with SEMA, keeping intact the rest of the architecture and
hyperparameters. The results showcased in Table 6 and Ta-
ble 7 illustrate that when working with 15% representative
frames, SEMA delivers performance on par with that of self-
attention across all the tasks. It is noteworthy, however, that
SEMA exhibits significantly lower GPU memory consump-
tion compared to self-attention, particularly when consider-
ing a batch size of 1. This characteristic indicates its poten-
tial utility in edge AI scenarios.

6. Conclusion
We focus on the problem of activity pattern clustering

from the week-long recordings of a subject from an egocen-
tric camera in a completely unsupervised setting. Current
transformer models could not handle such long sequences,
and hence, we have introduced a novel semantic attention
transformer that can exploit the redundancy present in the
lifelogs for scaling to such long sequences. We propose to
factorize the attention matrix into the low-rank query and
key matrices using learnable and parameter-free semantic
attention. Our results on the EgoRoutine, UTE, and Epic
Kitchens datasets, demonstrate the efficacy of SEMA on the
focused task. The proposed semantic attention-based fac-
torization is a generic idea and can also be used for other
video analysis requiring long-range contextual cues. We
demonstrate the same on three tasks, viz. action recogni-
tion, video recognition, and action localization.
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