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1 Abstract

Retinal image matching (RIM) plays a crucial role in
monitoring disease progression and treatment response as
retina is the only tissue where blood vessels can be di-
rectly observed. However, datasets with matched key-
points between temporally separated pairs of images are
not available in abundance to train transformer-based mod-
els. Firstly, we release keypoint annotations for retinal
images from multiple datasets to aid further research on
RIM. Secondly, we propose a novel approach based on
reverse knowledge distillation to train large models with
limited data while preventing overfitting. We propose ar-
chitectural modifications to a CNN-based semi-supervised
method called SuperRetina [22] that helps improve its re-
sults on a publicly available dataset. We train a com-
putationally heavier model based on a vision transformer
encoder, utilizing the lighter CNN-based model. This
approach, which we call reverse knowledge distillation
(RKD), further improves the matching results even though
it contrasts with the conventional knowledge distillation
where lighter models are trained based on heavier ones is
the norm. Further, we show that our technique generalizes
to other domains, such as facial landmark matching.

1. Introduction

Keypoint detection and matching, often referred to as
feature point extraction or feature detection, can be used as
a foundational task in computer vision to aid higher-level
tasks, such as object recognition, fine-grained matching,
image registration, image stitching, pose estimation, facial
recognition, depth estimation from stereo image pairs, and
augmented reality. The core objectives in keypoint detec-
tion and matching are the identification and localization of

1* Indicates equal contribution

salient points or landmarks in images, and matching cor-
responding keypoints across images. Alongside location
information, each point has an associated feature descrip-
tor that aids in recognition or matching with correspond-
ing points in other images. A keypoint, therefore, must ex-
hibit characteristics that are locally distinctive and robust
to image augmentations. That is, keypoint detection algo-
rithms must pinpoint image locations with local uniqueness
in terms of intensity, color, or texture. Furthermore, these
points must be associated with features that are invariant to
changes in scale, rotation, and illumination.

Over the years, a multitude of methods have been de-
veloped for keypoint detection. These methods span classi-
cal techniques like the Harris corner detector [31], scale-
invariant feature transform (SIFT) [24], and speeded-up
robust features (SURF) [8], to more recent approaches
rooted in deep learning, such as oriented fast and rotated
BRIEF (ORB) [30] and SuperPoint [12]. Various methods
have been proposed for keypoint matching in retinal im-
ages. Addison et al. [6] introduced the low-dimensional
step pattern analysis (LoSAP) technique for image regis-
tration. LoSAP adeptly handles intensity changes and re-
mains invariant to rotation. However, the SPA descrip-
tor used in LoSAP lacks the discriminatory power required
for identifying specific eye identities. Truong et al. [37]
presented a semi-supervised CNN-based feature point de-
tector known as Greedily-Learned Accurate Match points
(GLAMpoints), designed specifically for matching and reg-
istering retinal images. GLAMpoints utilizes deep learning
techniques to enhance the accuracy and precision of key-
point matching. Another approach, proposed by Hernan-
dez et al. [17], involves a registration framework based on
eye modeling. This framework concurrently estimates eye
pose and shape and addresses the registration problem as a
3D pose estimation task, utilizing corresponding points in
the retinal images. We present a technique to train a large
model for keypoints detection with limited data.
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Our work makes several contributions. Firstly, we re-
lease annotations for a meticulously curated dataset exclu-
sively tailored for the detection of keypoints in retinal im-
ages. Secondly, we introduce an architecture for keypoint
detection and matching that outperforms the state-of-the-art
(SOTA) SuperRetina model [22]. Thirdly, we compare a
CNN with heavier transformer model on limited data train-
ing regime. Lastly, we train a large model to emulate a
smaller model on limited data using reverse knowledge dis-
tillation (RKD) and show that the former generalizes bet-
ter even on limited data when trained this way. In this
approach, the larger model (student) imbibes knowledge
from the smaller model (teacher) to enhance its own perfor-
mance, ultimately surpassing its teacher’s capabilities. Our
findings are further corroborated by our experimentation on
images from a vastly different domain, namely, keypoints
detection in facial images.

2. Related work
In this section, we shall examine notable techniques for

detecting keypoints. We will also furnish an outline of vi-
sion transformers, underlining their import in the domain of
computer vision. Moreover, we will explore diverse strate-
gies utilized for training vision transformers under condi-
tions of constrained data availability.

2.1. Keypoint detection

Traditional keypoint detection algorithms have held
prominence in computer vision applications for decades.
These algorithms identify keypoints in images that remain
invariant to scaling, rotation, and lighting variations. Sub-
sequently, they characterize the local image patch around
these keypoints using a set of features, facilitating the
matching of keypoints between disparate images and ob-
ject recognition. However, these techniques possess certain
drawbacks, such as high computational complexity, dimin-
ished accuracy in the face of extreme lighting and viewpoint
changes, and challenges in managing occlusions and clut-
tered backgrounds.

In recent years, deep learning-based keypoint detection
algorithms have emerged as a promising alternative. These
algorithms possess the capability to autonomously learn ro-
bust and discriminative features directly from data. As a
result, they are better equipped to handle intricate and di-
verse image variations. This has led to their application in
various domains, including object detection, semantic seg-
mentation, and image retrieval.

In the domain of deep learning, various types of key-
point detection algorithms exist, encompassing supervised,
semi-supervised, self-supervised, and unsupervised tech-
niques. Supervised techniques necessitate annotated data,
where keypoints are manually labeled in training images.
Such algorithms prove advantageous in scenarios where a

substantial volume of labeled data is available, as observed
in facial recognition or object detection. Conversely, unsu-
pervised techniques function independently of labeled data.
Instead, the network learns to identify keypoints by max-
imizing specific objectives, such as information preserva-
tion during feature extraction. These methods are particu-
larly valuable in contexts where obtaining labeled data is
challenging or expensive, as in medical imaging or remote
sensing.

Prominent deep learning-based keypoint detection meth-
ods include UnsuperPoint, SuperPoint, GLAMpoints, and
SuperRetina. UnsuperPoint [10] introduces an innova-
tive unsupervised training approach, employing a blend of
differentiable soft nearest neighbor loss and unsupervised
clustering loss. SuperPoint [12] represents a self-supervised
deep learning-based algorithm for keypoint detection and
description. It employs a novel loss function for training on
unlabeled images, rendering it more adaptable and scalable
across diverse applications. The loss functions, including
geometric consistency loss and descriptor matching loss,
prompt the network to learn predicting the spatial placement
of keypoints and their descriptors devoid of supervision. It
relies on a convolutional neural network (CNN) to extract
keypoints and descriptors from images.

The primary distinction between UnsuperPoint and Su-
perPoint lies in their training methodologies. While Su-
perPoint adopts a self-supervised approach, UnsuperPoint
follows an unsupervised path. Additionally, UnsuperPoint
achieves the SOTA performance across various bench-
marks, even surpassing SuperPoint in challenging scenar-
ios marked by significant viewpoint alterations and illu-
mination shifts. GLAMpoints [37] emerges as a semi-
supervised deep learning-based algorithm for interest point
detection and description. It employs a unique greedy train-
ing strategy for end-to-end learning of keypoint detection
and description. This strategy involves learning to select
the most precise keypoints and their descriptors, yielding
heightened accuracy and efficiency. GLAMpoints outper-
forms both SuperPoint and UnsuperPoint in accuracy and
efficiency, particularly in demanding scenarios encompass-
ing substantial viewpoint changes, scaling, rotation, and
benchmarks like HPatches [7]. Furthermore, GLAMpoints
is adept at accommodating multiple object instances within
the same image, making it suitable for multi-object tracking
and matching. SuperRetina [22] signifies a semi-supervised
approach for keypoint detection and description in retinal
images. The technique leverages both labeled and unla-
beled data to enhance the performance of the keypoint de-
tector and descriptor. It comprises three main components:
a supervised keypoint detector, an unsupervised keypoint
descriptor, and a semi-supervised loss function that amal-
gamates labeled and unlabeled data.

The proposed method employs an iterative refinement
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process to increase the accuracy and robustness of key-
point matches. This process entails the removal of outlier
matches and the addition of new matches based on geomet-
ric constraints.

2.2. Vision transformers

Inspired by successful transformer models in natural lan-
guage processing, vision transformers adopt self-attention
for visual data processing [23,40]. Treating images as token
sequences, they excel at capturing global dependencies. De-
spite their performance, training vision transformers with
limited data is challenging due to their complexity and risk
of overfitting.

Strategies to address this include data augmentation,
generating examples through transformations [35]. Trans-
fer learning leverages pre-trained models, fine-tuning on
smaller datasets [38]. Regularization methods like dropout
and weight decay prevent overfitting [35], enhancing gener-
alization.

2.3. Knowledge distillation

Knowledge distillation [15] is a technique wherein a pre-
trained model (referred to as the teacher model) is employed
to guide the training of another model (the student model).
The student model learns to replicate the predictions or in-
ternal data representations (features) of the teacher model.
Typically, this is done to transfer the knowledge and gen-
eralization capabilities of the larger teacher model into a
smaller student model.

In our work, we adopt reverse distillation: a small CNN-
based model serves as the teacher model, while a large
transformer-based model functions as the student model.
We hypothesize that larger models can encounter overfitting
when fitting a smaller-dimensional output. However, this
issue can potentially be circumvented if they are trained to
accommodate a larger dimensional representation (feature
vector) [21].

3. Datasets

For training a retinal image keypoint detection network,
precise keypoint labels are vital. We used the FIRE dataset
for testing, as previous methods did. Yet, private dataset
access was elusive, so we formed training annotations from
available datasets meant for other tasks like retinal disease
classification. Given our limited expertise in the domain,
our focus centered on normal images. This approach aimed
to bolster keypoint detection skills, encompassing both nor-
mal and abnormal images, including those within the FIRE
dataset. This section details our dataset, annotations, and
the FIRE dataset.

3.1. MeDAL-Retina Dataset

Our dataset consists of 261 retinal images curated from
multiple public datasets, and it is divided into 208 for train-
ing and 61 for validation [14]. These images were metic-
ulously annotated to identify keypoints at intersections,
crossovers, and bifurcations, with detected keypoints rang-
ing from 18 to 86 per image, averaging 42.96± 14.03. The
distribution is visually depicted in the supplementary data
distribution figure [32]. To compile the dataset, we merged
201 normal images from the e-ophtha dataset [1] and 60
images from the retinal disease classification dataset [5], as
shown in the supplemental material’s dataset figure [32].
An annotation team of five engineering students executed
the process, taking approximately five minutes per image
and eight minutes for a pair. A Python script facilitated the
annotation.

In Section 4, we explore the use of Swin UNETR [16] as
a network backbone. We undertook self-supervised Swin
UNETR training, necessitating a sizable dataset due to sig-
nificant distribution differences from ImageNet [11]. We
sourced ∼ 1.9K images from various online resources [2–
4, 18, 33]. This dataset also served for descriptor decoder
training.

Preprocessing involved z-score normalization, fol-
lowed by contrast limited adaptive histogram equalization
(CLAHE) and gamma correction. The preprocessed images
were normalized by dividing by 255. The green channel
was consistently used for its high information content in
retinal images.

3.2. FIRE Dataset

The FIRE dataset centers on fundus image registration,
comprising 129 retinal images [18]. These images were cat-
egorized into 134 pairs based on overlap and deformation
levels, each assigned to specific categories: S, P, and A.
In the S category, 71 image pairs exhibit substantial over-
lap (> 75%) and minimal anatomical differences, showing
brightness changes, slight shifts, and rotations. The P cat-
egory involves 49 pairs with smaller overlaps, displaying
significant shifts and rotations. The A category holds 14
pairs with large overlaps, acquired at different times, result-
ing in notable anatomical changes like spots, cotton-wool
patches, and increased vessel tortuosity.

Images possess a resolution of 2912 × 2912 pixels and
a 45° field of view in both dimensions. These images were
sourced from 39 patients. Examples from our dataset [14]
and the FIRE dataset are shown in the supplemental mate-
rial’s dataset figure [32].

3.3. Wider Facial Landmarks in-the-wild dataset

We additionally tested our method on facial landmark
detection using the Wider Facial Landmarks in-the-wild
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(WFLW) dataset.It comprises 10,000 faces, with 7,500 des-
ignated for training and 2,500 for testing [39], where each
face has 98 landmarks. For more details, please see the sup-
plementary materials.

4. Proposed Method

SuperRetina [22] represents a cutting-edge technique for
identifying crucial keypoints in retinal images. Derived
from the SuperPoint model [12], SuperRetina is a tailored
version for robust retinal image analysis. It uses a semi-
supervised learning framework that adeptly combines su-
pervised and unsupervised techniques to maximize the uti-
lization of limited labeled retinal image data. The network
architecture comprises an encoder for extracting downsam-
pled feature maps, and two decoders – one for detecting
keypoints and another for generating descriptors for these
keypoints. The keypoint detector is trained with a blend
of labeled and unlabeled data, while the descriptor training
employs self-supervised learning.

Rigorous experimentation on benchmark retinal image
datasets demonstrates its superior performance in keypoint
detection and matching accuracy, surpassing existing meth-
ods [26].

4.1. UNet-empowered SuperRetina

SuperRetina’s architecture follows U-Net [29]. Its shal-
low encoder includes one convolutional layer followed by
three blocks, each with two convolutional layers, a 2 × 2
max pooling layer, and ReLU activation. For keypoint de-
coding, three blocks house two convolutional layers each,
utilizing encoder skip connections for bilinear upsampling,
ReLU activation, and concatenation, yielding feature maps
of the input image’s size. The detection map (P ) is gener-
ated through a convolutional block with three convolutional
layers and a sigmoid activation.

In descriptor decoding, encoder feature maps downsize
to w

16×
h
16×d. A transposed convolutional block upsamples

to match input image size, yielding a full-sized descriptor
tensor (D) of dimensions h× w × d, L2-normalized.

We enhanced SuperRetina by refining the encoder. This
entails architectural adjustments using CNN and trans-
former approaches to boost overall outcomes.

4.2. Large kernel-empowered SuperRetina

Inspired by Jia et al.’s work [20], which effectively
boosts a basic U-Net to rival the potent transformer archi-
tecture, our approach involves embedding kernels of vary-
ing sizes into each layer of SuperRetina’s encoder. This
effectively captures long-range dependencies in retinal im-
age matching. Our modification focuses on SuperRetina’s
encoder architecture. Instead of using a 3×3 kernel in each
layer, we employ three kernels of different sizes: 1×1, 3×3,

and 5× 5. These changes propel the enhanced SuperRetina
beyond the SOTA method for RIM. It outperforms all prior
approaches assessed on the FIRE dataset, excelling across
all evaluation metrics and establishing its supremacy.

4.3. Swin UNETR-empowered SuperRetina

After observing promising outcomes from experiments
involving larger kernels to expand SuperRetina’s encoder
receptive field, we considered boosting performance further
by introducing a transformer-based encoder. This choice
aligns with transformers’ inherent ability to capture ex-
tended dependencies, advantageous for our task. Nonethe-
less, training a transformer with limited data poses substan-
tial challenges, detailed in the following paragraphs.

To comprehensively convey our modifications to Su-
perRetina’s architecture, we first introduce Swin Trans-
former [23] and Swin UNETR [16] concepts, which serve
as foundational references. We then detail our specific ar-
chitectural adjustments to SuperRetina and outline the dis-
tinctive approach used to train this computationally inten-
sive model on our small dataset.

4.3.1 Swin transformer and Swin UNETR

The core reason behind the Swin Transformer’s success lies
in its hierarchical structure [23]. Rather than processing the
entire image as a single entity, it breaks the image into non-
overlapping patches, treating each patch as a token. It intro-
duced the notion of shifted windows, where tokens selec-
tively interact with a restricted nearby set of tokens, avoid-
ing attention to all tokens. Utilizing a multi-stage hierarchi-
cal design, the Swin Transformer adeptly captures exten-
sive dependencies while keeping computational complexity
manageable.

Swin UNETR was purpose-built for semantic segmenta-
tion, fusing Swin Transformer and CNNs in a UNet-style
setup for pixel-level segmentation [16]. The UNet’s promi-
nent advantage is its deployment of skip connections. In
our research, we swapped SuperRetina’s encoder with Swin
UNETR’s encoder.

4.3.2 Reverse knowledge distillation

In our research, we addressed the challenge of training a
transformer model when faced with limited data. Our aim
was to develop models capable of handling complex depen-
dencies over extended sequences. Despite our diligent ef-
forts to utilize self-supervision and transfer learning tech-
niques, the performance of our transformer model consis-
tently lagged behind that of a CNN model. To tackle this
issue, we turned to a strategy known as knowledge distilla-
tion.

In machine learning, ”knowledge distillation” typically
involves the process of transferring knowledge from a larger

7781



and more complex model (referred to as the ”teacher”) to a
smaller and simpler model (the ”student”) [15]. This us-
age of the term is the most prevalent and aligns with the
concept of distillation in the usual sense, where the dis-
tillate is smaller than the original substance. However,
when the knowledge transfer goes from a smaller model to
a larger one, it deviates from this conventional definition,
and we propose using the term reverse knowledge distilla-
tion (RKD). That is, RKD uses the simplified learning in
a smaller teacher model to enhance the performance of a
larger student model having more capacity. The simplified
knowledge structure learned by teacher may have a regular-
ization effect on the student. In practice, we found that a
larger student can generalize better than the teacher.

The loss function architecture supporting our reverse
knowledge distillation strategy consists of a weighted sum
of two essential components. Initially, we compute the loss
between the predictions of the student network and the ac-
tual output, akin to conventional loss functions. Simultane-
ously, we introduce a distillation loss between the outputs
of the student network and the teacher network. This inno-
vative paradigm introduces additional steps in each train-
ing iteration. In addition to the standard training proce-
dures, our approach incorporates keypoint heatmap gener-
ation using the teacher model. The subsequent computa-
tion of the dice loss between the keypoint heatmaps of the
student and teacher models is denoted as ”lRKD

clf .” Further-
more, we integrate contrastive matching between descrip-
tors from both the teacher and student models, which we
refer to as ”lRKD

des .” The integration of both the detection
RKD loss lRKD

clf and descriptor RKD loss lRKD
des seamlessly

fits into the original detector and descriptor loss functions.
For a comprehensive understanding of the original Super-
Retina loss functions, please refer to [22].

Additionally, the distinction between traditional knowl-
edge distillation and reverse knowledge distillation res-
onates with the insights presented in the work of Jiang et
al. [21]. This work showcases the potential of knowledge
transfer and demonstrates the effectiveness of their reverse
knowledge distillation technique in various classification
tasks. Their experiments, which employ shallower CNNs
as teachers and deeper CNNs as students, underscore the
significance of loss calibration in achieving superior per-
formance. While traditional knowledge distillation primar-
ily aims to improve the accuracy of smaller models using
insights from larger models, their focus lies in enhancing
the confidence calibration within larger, complex models
by drawing on insights from smaller models. This nuanced
distinction aligns harmoniously with the fundamental moti-
vations and methodologies of our proposed technique.

Equations 1, 2, 3, and 4 represent the detector loss
of our Swin UNETR-boosted SuperRetina model, with
SuperRetina/LK-SuperRetina as a teacher. See Fig. 1.
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Figure 1. The architecture of the proposed method.

The total loss of the detector 1 is

ldet = l
′

clf + lgeo (1)

l
′

clf = lclf + lRKD
clf (2)

lclf (I;Y ) = 1−
2.
∑

i,j(P ◦ Ỹ )i,j∑
i,j(P ◦ P )i,j +

∑
i,j(Ỹ ◦ Ỹ )i,j

(3)

where Ỹ is the smoothed version of the binary ground truth
labels Y of the keypoints after blurring them with a 2D
Gaussian.

lRKD
clf (IS ; IT ) = 1−

2.
∑

i,j(PS ◦ PT )i,j∑
i,j(PS ◦ PS)i,j +

∑
i,j(PT ◦ PT )i,j

,

(4)
where PS stands for the keypoint heatmap of the student,
and PT refers to the keypoint heatmap of the teacher model,
lgeo is the Dice loss between the output heatmap of the stu-
dent model when the input is the image I , and the inverse
projection of the heatmap produced by the student when the
input to it is the augmented version of the image I , I

′
. Sim-

ilarly, the new descriptor loss is a combination of the orig-
inal descriptor loss and the reverse knowledge distillation
loss as in 5

lDes = ldes + lRKD
des (5)

When feeding the image I and its augmented version I
′

to the student network, we optain two tensors for the de-
scriptors D, and D

′
. For each keypoint (i, j) in the non-

maximum supressed keypoint set P̃ , two distances are com-
puted Φrand

i,j between the descriptors of (i, j) in the set P̃
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and a random point from registered heatmap H(P̃ ). And
Φhard

i,j the minimal distance. As 6 depicts

ldes(I,H) =
∑

(i,j)∈P̃

max(0,m+Φi,j−
1

2
(Φrand

i,j +Φhard
i,j ))

(6)
Similar to ldes, we compute lRKD

des between the descriptors
generated when passing I to the student model, and the de-
scriptors generated when passing I to the teacher model.
For further details on the reverse knowledge distillation
method and the loss functions.

5. Experiments
We rigorously evaluated our proposed technique by com-

paring it to various approaches in the retinal image match-
ing task. Table 1 presents a comparison between our leading
technique and alternative methods for retinal image match-
ing. This encompasses both traditional and deep learning-
based approaches, and our results clearly indicate the effec-
tiveness of our method, surpassing all others.

The evaluation metrics comprise two aspects: failure
rate and acceptance rate. The failure rate is determined
by the number of matches between a query image and its
reference. A registration is considered unsuccessful if the
matches are fewer than 4, the minimum required for esti-
mating a homography, H. Conversely, the acceptance rate is
computed for each query point in the image. It involves cal-
culating the L2 distance between a registered point and its
corresponding reference point in the reference image. The
median distance defines the median error (MEE) for each
query image, with the maximum distance denoting the max-
imum error (MAE). For acceptance, MEE must be under 20,
and MAE must be under 50. Otherwise, the registration is
deemed inaccurate, please refer to MAE and MEE figures
in the supplementary material.

To assess a method’s overall performance, we report
the area under the receiver operating characteristic curve
(AUC). AUC estimates the acceptance rates’ expectation
concerning the decision threshold, reflecting performance
across all methods. Additionally, AUC is separately com-
puted for each category (Easy, Mod, Hard), and their mean
(mAUC) is used as an overall measure.

In conclusion, the superior method exhibits a higher ac-
ceptance rate or AUC and lower inaccuracies or failures.
For analyzing the impact of various encoder modifications,
diverse techniques for training the Swin UNETR encoder,
and differing kernel sizes of the large kernel-boosted Su-
perRetina, we conducted ablation studies, detailed below.

5.1. Different kernel sizes

By conducting an ablation study centered around kernel
size, we found that a blend of kernels with dimensions of

1 × 1, 3 × 3, and 5 × 5 yielded the most favorable results
for the large kernel-enhanced SuperRetina. Refer to the ab-
lation studies in Table 2.

5.2. Transfer learning

To mitigate the challenge of training a transformer model
with limited data, we turned to transfer learning. Our ap-
proach involved amassing a substantial dataset of retinal
images from online sources. This dataset was leveraged to
train a Swin UNETR model across diverse tasks, including
image inpainting and angle prediction. The pretrained en-
coder weights from this model were then adopted as initial
weights for the SuperRetina’s encoder. The outcomes of
employing a pretrained Swin UNETR as the backbone of
SuperRetina are presented in Tab. 2. Although this model
outperforms others in terms of one specific evaluation met-
ric, namely AUC-Mod, the overall performance is not con-
sistent across all metrics.

5.3. Reverse knowledge distillation

As highlighted in the study by Dosovitskiy et al. (2020)
[13], transformers have a high demand for extensive train-
ing data and tend to perform less effectively than CNNs
when dealing with limited data. Reverse knowledge distil-
lation involves using the knowledge acquired by a smaller
model, such as a CNN, to train a larger model, like a trans-
former. Typically, the knowledge of a larger model is em-
ployed to train a smaller model in knowledge distillation, as
discussed in works like Chen et al. (2022) [9], Touvron et
al. (2021) [36], and Hinton et al. (2015) [19].

In our research, the CNN serves as the ”teacher” model,
previously trained for the keypoint detection task. The goal
is to transfer the CNN’s knowledge and generalization abil-
ities to a transformer model, referred to as the ”student”
model. The distillation process entails training the student
model to replicate the behavior of the teacher model, of-
ten by using the output probabilities or feature representa-
tions of the teacher model as soft targets during the student
model’s training. By emulating the teacher’s predictions,
the student model effectively captures the teacher’s knowl-
edge and decision-making process.

While we initially anticipated that distilling knowledge
from a CNN to a transformer could harness both the CNN’s
local feature extraction abilities and the transformer’s long-
range dependency modeling, our experimental results indi-
cate that even after knowledge distillation, the transformer
model’s performance fell short of our expectations. Please
refer to Table 2. To address this, as evident in Table 2, we
introduced a 50% dropout, resulting in a significant per-
formance boost for the Swin UNETR-empowered Super-
Retina. This adjustment led to 100% accuracy on the testing
dataset. The improvement can be attributed to the network’s
enhanced generalization on testing data, achieved by reduc-
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Figure 2. Comparison of our proposed methods on three example scenarios from FIRE dataset [18]: class S (easy), class A (moderate),
and class P (hard) from left to right. LK stands for large kernel, RKD refers to Reverse Knowledge Distillation with 50% Dropout.

Method Failed Inaccurate Acceptable AUC-Easy AUC-Mod AUC-Hard mAUC

SIFT, IJCV04 [24] 0.00% 20.15% 79.85% 0.903 0.474 0.341 0.573
PBO, ICIP10 [25] 0.75% 28.36% 70.89% 0.844 0.691 0.122 0.552
REMPE, JBHI20 [17] 0.00% 02.99% 97.01% 0.958 0.660 0.542 0.720
SuperPoint, CVPRW18 [12] 0.00% 05.22% 94.78% 0.882 0.649 0.490 0.674
GLAMpoints, ICCV19 [37] 0.00% 07.46% 92.54% 0.850 0.543 0.474 0.622
R2D2, NIPS19 [27] 0.00% 12.69% 87.31% 0.900 0.517 0.386 0.601
SuperGlue, CVPR20 [34] 0.75% 03.73% 95.52% 0.885 0.689 0.488 0.687
NCNet, TPAMI22 [28] 0.00% 37.31% 62.69% 0.588 0.386 0.077 0.350
SuperRetina [22] 0.00% 01.50% 98.50% 0.940 0.783 0.542 0.755
Ours-1 (Large kernel-SuperRetina) 0.00% 00.75% 99.25% 0.942 0.783 0.558 0.761
Ours-2 (Swin UNETR-SuperRetina) 0.00% 00.00% 100.0% 0.935 0.780 0.550 0.755

Table 1. A comparison among various techniques for retinal image matching, specifically focusing on the results obtained when testing the
methods on the FIRE dataset [18]. Our proposed method demonstrates superior performance when compared to both traditional and deep
learning approaches. Ours-1 refers to large-kernel-empowered SuperRetina, while Ours-2 refers to Swin UNETR-empowered SuperRetina
with SuperRetina as a teacher and drop out 50%. In the table we provide the percentage values [%] of failed, inaccurate, and acceptable.

ing overfitting on the training data, coupled with reverse
knowledge distillation. In conclusion, regularization strate-
gies like dropout play a crucial role in reverse knowledge

distillation. The dropout technique showcased an improved
generalization capability in the student model, enabling it to
surpass its teacher model on the testing dataset. For a visual
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Method Failed Inaccurate Acceptable AUC-Easy AUC-Mod AUC-Hard mAUC

SuperRetina [22], KS 3× 3 0.00% 01.50% 98.50% 0.940 0.783 0.542 0.755
LK-SuperRetina, KS 1× 1, 3× 3, 5× 5 0.00% 00.75% 99.25% 0.942 0.783 0.558 0.761
LK-SuperRetina, KS 1× 1, 3× 3, 5× 5, 7× 7 0.00% 02.25% 97.74% 0.925 0.717 0.502 0.714
Swin UNETR-SuperRetina, Trained from scratch 0.00% 16.55% 83.45% 0.891 0.649 0.318 0.619
Swin UNETR-SuperRetina, SuperRetina as teacher w/o dropout (DO) 0.00% 01.50% 98.50% 0.947 0.769 0.549 0.755
Swin UNETR-SuperRetina, SuperRetina as teacher, DO 50% 0.00% 00.00% 100.0% 0.935 0.780 0.550 0.755
Swin UNETR-SuperRetina, LK-SuperRetina as teacher, DO 50% 0.00% 00.75% 99.25% 0.914 0.774 0.558 0.749
Pretrained Swin UNETR-SuperRet., LK-SuperRet. as teacher, DO 50% 0.00% 00.75% 99.25% 0.928 0.774 0.559 0.754

Table 2. Ablation studies on FIRE dataset [18], where KS represents the kernel size, and DO is the drop out percentage

Method SuperRetina Swin U-SR RKD-SR

NME(%) 20.43 11.15 10.92

Table 3. Results on facial landmarks, where Swin U-SR is Swin
UNETR-SuperRetina, and RKD-SR is RKD-SuperRetina. We got
RKD’s results for λ = 10.

comparison between our proposed methods, kindly refer to
Fig. 2.

5.4. Facial landmarks detection

To rule out the possibility that our proposed method’s
success on the RIM task is due to the simplicity of the
FIRE benchmark, we conducted experiments on facial land-
mark detection using the WFLW dataset [39]. For addi-
tional information regarding the dataset and task, please re-
fer to our supplementary material. We also assessed other
methods using normalized mean error for a facial land-
marks detection task, as shown in Table 3. We adopted
the Mean Squared Error (MSE) loss as the detector loss for
both SuperRetina and the transformer-based SuperRetina.
However, for the RKD-based SuperRetina, our approach
involves combining the predicted output’s MSE loss with
the Reverse Knowledge Distillation (RKD) loss. This RKD
loss, which calculates the MSE between the coordinates of
the student’s predicted keypoints and those of the teacher’s
predicted keypoints, is depicted in Equation 7. Formally,
the modified MSE loss, denoted as l

′

mse, is computed as
follows:

l
′

mse = lmse + λlRKD
mse , (7)

where λ represents a balancing factor that guides the influ-
ence of the RKD loss in the overall detector loss calculation.

In Figure 3, the top row illustrates the effective perfor-
mance of SuperRetina in contrast to Swin UNETR Super-
Retina, particularly in eyebrow keypoints. Conversely, for
nose keypoints, the situation is reversed, with SuperRetina
performing well. Remarkably, RKD-SR combines the fa-
vorable aspects of both models. Moving to the second row,
it’s noteworthy that only RKD-SR demonstrates robustness
against outliers.

Figure 3. The visual outcomes for facial landmarks by Swin
UNETR-SuperRetina (Swin U-SR) RKD-SuperRetina (RKD-SR,
using λ = 10), and SuperRetina. Red and green points denote
ground truth and predictions, respectively, with latter on top in
case of an overlap.

6. Conclusion

In our study, we aimed to improve SuperRetina method
of retinal image matching. Our targeted architectural ad-
justments in CNN encoders led to improvement of keypoint
detection for retinal images over the previous state-of-the-
art by effectively capturing keypoints.

We also addressed the challenge of training larger mod-
els, such as transformers, using limited data using re-
verse knowledge distillation, from a smaller CNN teacher
model to a larger transformer student model. Implement-
ing reverse knowledge distillation in our SuperRetina model
led to a notable 2.5% accuracy boost over the baseline.
Our findings in RKD-based keypoint detection was further
confirmed through facial landmarks detection, achieving a
9.51% reduction in normalized mean error compared to the
baseline SuperRetina. Moreover, we contributed to the re-
search community by providing a public dataset with an-
notations for retinal image applications to foster algorithm
development.
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