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Abstract

Due to the steadily rising amount of valuable goods in
supply chains, tampering detection for parcels is becom-
ing increasingly important. In this work, we focus on the
use-case last-mile delivery, where only a single RGB im-
age is taken and compared against a reference from an
existing database to detect potential appearance changes
that indicate tampering. We propose a tampering detec-
tion pipeline that utilizes keypoint detection to identify the
eight corner points of a parcel. This permits applying
a perspective transformation to create normalized fronto-
parallel views for each visible parcel side surface. These
viewpoint-invariant parcel side surface representations fa-
cilitate the identification of signs of tampering on parcels
within the supply chain, since they reduce the problem to
parcel side surface matching with pair-wise appearance
change detection. Experiments with multiple classical and
deep learning-based change detection approaches are per-
formed on our newly collected TAMpering detection dataset
for PARcels, called TAMPAR. We evaluate keypoint and
change detection separately, as well as in a unified sys-
tem for tampering detection. Our evaluation shows promis-
ing results for keypoint (Keypoint AP 75.76) and tamper-
ing detection (81% accuracy, F1-Score 0.83) on real im-
ages. Furthermore, a sensitivity analysis for tampering
types, lens distortion and viewing angles is presented. Code
and dataset are available at https://a-nau.github.io/tampar.

1. Introduction
The amount of valuable goods within postal supply

chains is increasing steadily [1]. This trend implies the
rising importance of safety and security considerations in
transportation networks. One crucial aspect to improve
safety and security along the supply chain is checking

Figure 1. We detect tampering by comparing the full parcel tex-
ture from a database (a) with the viewpoint-invariant parcel side
surfaces of a single image by exploiting parcel corner point pre-
dictions (b). Appearance change detection is performed for each
pair of matching parcel side surfaces to identify tampering (c).

parcels for damages or signs of tampering [2]. Tampering
detection, on which we focus in this work, tries to verify
and guarantee the integrity of a parcel within the supply
chain. Common cases of potential tampering are applying
new tape after opening a parcel or attaching labels to or re-
moving labels from a parcel. Of course, not all cases where
such changes occur are relevant for safety and security con-
siderations, e.g. new tape might be applied to prevent items
from falling out of a damaged parcel.

In general, tampering detection for parcels requires a
two-step pipeline: (1) We need to reliably identify a par-
cel by either its shipping label or unique visual cues on the
packaging. Especially in scenarios with numerous visually
similar parcels, using the latter can be challenging, while at
the same time, the shipping label might not always be vis-
ible. (2) We need to compare the appearance of the pack-
aging across time to detect changes that might stem from
tampering. This is a challenging task since the photos used
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for the comparison can show the objects of interest from
different viewing angles and under varying lighting condi-
tions.

In this work, we focus on step (2), since parcel re-
identification has been studied by Clausen et al. [3], and
present an approach for tampering detection for already
identified parcels (cf. Fig. 1). Since last-mile delivery is
considered as use-case, we assume that only a single RGB
image is available, which should be compared against a ref-
erence from an existing database. Similar to Noceti et al.
[1], appearance change detection is performed separately
per parcel side surface, and if at least one of the parcel side
surfaces has been tampered with, the whole parcel is con-
sidered to have undergone tampering. To tackle this prob-
lem, we suggest the usage of keypoint detection to identify
the parcel corners as a first step toward change detection.
Knowledge of the eight corner points of cuboid-shaped
parcels enables computing normalized fronto-parallel views
of all visible parcel side surfaces by applying a perspective
transformation τ (cf. Fig. 1 (b)). These views eliminate the
viewpoint variance and thus, facilitate change detection and
potentially also re-identification of parcel side surfaces. We
use the Parcel3D dataset [2] to demonstrate the capabili-
ties of keypoint detectors for generating viewpoint-invariant
parcel side surface representations from single RGB im-
ages. Additionally, we collected a novel dataset for change
detection in postal supply chains, and present a detailed
analysis of change detection approaches for tampering de-
tection. The main contributions of our work are as follows

• we suggest an effective keypoint ordering for parcel
detection and side surface segmentation,

• we present TAMPAR, a novel dataset for TAMpering
detection of PARcels, and

• we propose and evaluate an approach for tampering de-
tection, which exploits keypoint and change detection.

2. Related Work
We review related literature in logistics applications, 3D

bounding box detection, keypoint estimation and change
detection in the following.

Applications in Logistics. Karaca et al. [4] present an
early approach using a stereo camera and feature matching
techniques to track parcels along a conveyor belt. Clausen et
al. [3] present an approach for tracking parcels inside a lo-
gistics facility. A Mask R-CNN-based [5] Siamese network
[6] complemented with their so-called feature improver
head is used to re-identify parcels. They create a manually
labeled dataset of 3,306 images taken by 37 different cam-
eras with a total of 14,248 parcels. The evaluation shows
that currently around 81% of parcels are tracked correctly.

For more details on literature regarding re-identification we
refer to Ye et al. [7] and Khan et al. [8]. Naumann et al. [9]
work towards parcel side surface segmentation. By com-
bining plane segmentation [10] and contour detection [11],
[12], they present an approach to refine parcel side surface
segmentation masks without relying on any task-specific
training data. Naumann et al. [2] tackle the problem of es-
timating the 3D shape of potentially damaged parcels from
a single RGB input. They extend Cube R-CNN [13] by
an iterative mesh refinement [14] and present Parcel3D, a
dataset comprising over 13,000 images of cuboid-shaped
and damaged parcels with full 3D annotations. Noceti et
al. [1] present a multi-camera system for damage and tam-
pering detection in postal supply chains. Damages are de-
tected by finding the parallelepiped which best aligns with
the captured images. For tampering detection a Histogram
of Oriented Gradients (HOG) [15] for the parcel side sur-
faces is used. Rotation invariance is accomplished by con-
sidering all possible rotations with histogram intersection
as similarity measure. Tampering is reported when the sim-
ilarity of two feature vectors is below a certain threshold.
Other works focusing on parcels consider synthetic training
data generation [16], tracking inside a moving truck [17]
and depalletization [18], [19]. Finally, Naumann et al. [20]
present a detailed overview of computer vision applications
in transportation logistics and warehousing.

3D Bounding Box Detection. Dwibedi et al. [21] present
an early deep learning-based approach to estimate the 3D
bounding box of cuboid-shaped objects. Generally, 3D
bounding box detection is a common task for autonomous
driving [22]. Approaches often rely on only estimating yaw,
since they can exploit the fact that vehicles are driving on
the road. Li et al. [23] exploit 2D/3D correspondences by
estimating keypoints of cars to improve 3D bounding box
detection. Rui et al. [24] introduce a framework for vehi-
cle recognition from a single RGB image. They estimate
a 3D bounding box which is used to compute normalized
views for the front, side and roof view of a car by applying
a perspective transformation. This information is fused with
region-aligned features of the respective region of interest to
estimate the vehicle model.

Keypoint Detection. Lots of research tackling keypoint
estimation considers monocular human pose estimation,
which is reviewed by Chen et al. [25] and Chen et al. [26].
Dörr et al. [27] treat the problem of packaging structure
recognition. The goal is to identify the number, type and
arrangement of small load carriers on a uniformly packed
transport unit from a single RGB image. They extend Cor-
nerNet [28] to leverage keypoint estimation to detect objects
based on four arbitrary corner points.
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Change Detection. To detect signs of tampering, after re-
identification, change detection is necessary. Change de-
tection is most commonly applied for remote-sensing and
street views and reviewed by Shi et al. [29]. A dataset for
change detection in industrial environments has been pre-
sented by Park et al. [30]. Furthermore, Park et al. [31] pro-
pose the novel change detection approach SimSaC which
is targeted towards industrial use-cases. SimSaC relies on
dual task learning and exploits both, dense correspondence
and mis-correspondence to increase robustness when en-
countering imperfect matches.

While Noceti et al. [1] also tackle the problem of tamper-
ing detection, they focus on a constrained environment with
calibrated background, constant illumination and a multi-
sensory setup. In contrast to that, our approach does not
have any such constraints and relies just on a single RGB
image as input. Consequently, ours is the only approach
suitable for scenarios such as last-mile delivery and cannot
be fairly compared to the work by Noceti et al. [1]. Further-
more, we rely on existing keypoint and change detection
approaches and strive to combine them efficiently, however,
we do not aim to develop novel approaches in these areas.

3. Approach

We present our approach for parcel keypoint detection in
Sec. 3.1 and for change detection in Sec. 3.2. Details on our
novel dataset TAMPAR are given in Sec. 3.3.

3.1. Parcel Keypoint Detection

We use a Mask R-CNN [5] with keypoint head and a
ResNet-50-FPN [32], [33] backbone for our experiments.
This choice is motivated by the fact, that we do not focus on
improving keypoint detection techniques, but rather want to
demonstrate the usefulness of well-established baselines for
the use-case of parcel corner detection.

One key challenge for this use-case is to identify an un-
ambiguous keypoint ordering which works well with Arti-
ficial Neural Networks since there are several options for
ordering keypoints of a parcel. In contrast to the common
application of 3D bounding box detection for autonomous
driving, where vehicles have a well-defined front and back
side, there is no such notion for parcels. To have a con-
sistent, unambiguous keypoint ordering with explicit visual
cues, we proceed as follows. We assume, that three par-
cel side surfaces are visible in each image and define the
front of a parcel by choosing the visible parcel side surface
whose normal aligns best with a left- and front-facing vec-
tor, i.e. (x, y, z) = (1, 0,−0.5). From this, we derive our
keypoint ordering definition, which is visualized in Fig. 2
and described in the following. We denote the number of
visible α and invisible β parcel side surfaces that intersect
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Figure 2. Visualization of the consistent and unambiguous key-
point ordering for a cuboid without well-defined front and back
across different viewing angles. We highlight the front side in
green and the back side in yellow.

in keypoint ki as ki=(α, β). On the front side (highlighted
in green in Fig. 2), we define the keypoints:

• k0 = (3, 0): point of intersection of the three visible
parcel side surfaces, which is located inside the convex
hull of the parcel.

• k1=(1, 2): joint point of the two invisible parcel side
surfaces, where only two visible parcel edges intersect.

• k2=(2, 1), leftmost: leftmost point of the remaining
points, where three visible parcel edges intersect.

• k3=(2, 1), rightmost: remaining point, which is the
rightmost point that belongs to two visible parcel side
surfaces and one invisible one.

The backside (highlighted in yellow in Fig. 2) of the par-
cel is the one across from the front side, and we define the
keypoint order as follows:

• k4=(2, 1): point that is part of two visible parcel side
surfaces and thus, at this point three visible parcel
edges intersect.

• k5=(0, 3): self-occluded keypoint, which is the point of
intersection of the three invisible parcel side surfaces.

• k6=(1, 2), leftmost: leftmost point of the remaining
points, where two visible parcel edges intersect.

• k7=(1, 2), rightmost: remaining point, which is the
rightmost point where two visible edges intersect.

This keypoint ordering is used for training and evaluat-
ing corner point detection in the following. Note, that it is
not invariant to horizontal, but only to vertical flipping of
the image. Furthermore, technically, estimating seven key-
points would be sufficient to infer all eight, however, we
want to show that the estimation even works for the self-
occluded keypoint k5. The information on the seven visible
keypoints can be utilized to compute viewpoint-invariant
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parcel side surface representations by applying a perspec-
tive transformation. This, in turn, enables the composition
of parcel texture mappings as visualized in Fig. 1 (a).

3.2. Change Detection

In our use-case, we assume that a postman takes a sin-
gle image of a parcel which seems suspicious of potential
tampering. First, the parcel keypoints are extracted and the
viewpoint-invariant parcel side surfaces of size 400 × 400
pixels are computed as described in Sec. 3.1 and visualized
in Fig. 1 (b). By exploiting this information, we can re-
duce the task of tampering detection of parcels to compar-
ing fronto-parrallel parcel side surface representations. If
one parcel side surface has been tampered with, the parcel
is considered tampered.

While the usage of viewpoint-invariant representations
alleviates the problem of perspective distortion, change
detection remains challenging since image alignment is-
sues cannot fully be resolved, and additionally, the lighting
might vary significantly (cf. Fig. 1 (c)). To cope with these
issues, we use SimSaC [31]. SimSaC is a recent approach
for robust change detection with imperfect matches. It es-
timates scene flow using correspondence maps at the same
time as change masks by exploiting mis-correspondences.
This enables robustness against geometric transformations
and differences in lighting.

We benchmark SimSaC against several baselines, each
combining an image homogenization approach and a sim-
ilarity metric. For image homogenization, we utilize (cf.
Fig. 3)

• DexiNed: Dense EXtreme Inception Network for Edge
Detection [12]

• Canny: Adaptive Canny edge detection [11], [34]
• Laplacian: Laplacian filter
• Mean Channel: Per-channel mean alignment

As image similarity metrics, we consider

• Learned Perceptual Image Patch Similarity (LPIPS)
[35],

• Structural Similarity (SSIM) [36],
• Multiscale Structural Similarity (MS-SSIM) [37],
• Complex Wavelet Structural Similarity (CW-SSIM)

[38],
• HOG [15] feature similarity 1, and
• Mean Absolute Error (MAE).

A change is detected when the input and reference parcel
side surface image after applying the image homogenization
to both, have a low image similarity. Suitable thresholds for
image similarity will be determined in Sec. 4.2.

1We use 9 orientation bins, 8 pixels per cell and 2 cells per block.

3.3. Dataset

Our dataset resembles a use-case with multisensory se-
tups within logistics facilities and a simple cell phone cam-
era during the last-mile delivery. More precisely, we assume
that multiple cameras are used to capture and segment all
five visible parcel side surfaces in logistics facilities. Note
that we also suppose that the side surface with the unique
identifier is always visible, which means that the opposing
side surface is never visible. Subsequently, the parcel ID
and texture map, as visualized in Fig. 1 (a), are saved to
a database. Finally, a single RGB image of a parcel with
suspected tampering is taken during last-mile delivery and
compared against its high-quality reference texture.

To generate a suitable dataset for this use-case, we pro-
ceed as follows. We use ArUco markers to uniquely iden-
tify parcels and the spatial relationships between their side
surfaces. The parcel textures for the database are generated
by taking several images of the parcel in its original state,
i.e. without tampering. By manually labeling the parcel cor-
ner points, we automatically generate the full parcel texture
by applying perspective transformations. Subsequently, we
apply different types of tampering to three out of the five
relevant parcel side surfaces. While real-world tampering
attempts focus on a single parcel side surface, our dataset
design enables a more diverse analysis of tampering detec-
tion by considering a larger number of tampering examples.
As mentioned before, transferring side surface tampering to
the parcel level is straightforward. We consider three differ-
ent types of tampering flags, each with an easy and a hard
to detect variant:

• Label: Adding a new shipping label (easy) or trans-
portation hints (hard)

• Tape: Adding new tape, which covers more than 50%
of the longer side (easy), or less than 25% of the
shorter side (hard)

• Writing: Adding manually written text, using a pen
with 5-15mm (easy) or 1.5−3mm of width (hard)

Note that adding written text usually would not be con-
sidered tampering. However, we strive to detect diverse
appearance changes to reliably flag parcels for manual in-
spection. In total, we collect and annotate 296 images of
10 parcels for the training/validation and 614 images of 20
parcels for the test set. Since each image contains three vis-
ible parcel side surfaces, TAMPAR comprises 888 images
for training/validation and 1842 images for testing change
detection. The main difference to existing datasets such as
Parcel3D [2] and Parcel2D Real [16] is that we have paired
images of the same parcel across different points in time,
i.e. before and after tampering.
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(a) None (b) SimSaC (c) DexiNed (d) Canny (e) Laplac. (f) Mean Ch.

Figure 3. Examples of the different image homogenization methods before (top) and after (bottom) tampering. Note that SimSaC [31] is
the only approach that localizes potential tampering and directly outputs change maps.

4. Evaluation
We first evaluate keypoint detection for parcel corners

separately in Sec. 4.1. Subsequently, we evaluate the con-
sidered change detection approaches isolated and in com-
bination with keypoint estimation in Sec. 4.2. Furthermore,
we present a sensitivity analysis on the influence of the tam-
pering type, lens distortion and viewing angles.

4.1. Parcel Corner Point Estimation

For all experiments, we use a ResNet-50-FPN [32], [33]
that was pre-trained on MS COCO [39] as backbone and
freeze its weights at stage four. We use Stochastic Gradient
Descent with Momentum (SGD+M) with a batch size of 16
and a cosine learning rate schedule [40]. The initial learn-
ing rate is set to 0.001 and the final learning rate to 0 after
10 000 iterations. Moreover, a linear warm-up during the
first 1000 iterations is applied.

Training is always performed on the synthetic dataset
Parcel3D [2] which contains cuboid-shaped and damaged
parcel images. For the evaluation, we consider synthetic
and real-world data in the following. We evaluate bounding
box detection, instance segmentation and keypoint detec-
tion, and summarize the quantitative results in Tab. 1.

For the evaluation of keypoint detection using
Keypoint AP2, it is necessary to define κi for each
keypoint. This value is usually obtained by comparing
redundantly annotated images to infer each keypoints’ an-
notation precision. Since no redundantly annotated images
are available, we select κ5 = 0.1 for the self-occluded and
κi = 0.05, i ∈ {0, 1, 2, 3, 4, 6, 7} for the visible keypoints,
which is close to the κ for human hips (0.107) and human
wrists (0.062), respectively [39]. We argue that human
wrists are a suitable approximation because the keypoints
for Parcel3D and Parcel2D Real are computed from 3D

2See https://cocodataset.org/#keypoints-eval for details.

bounding boxes, frequently leading to a misalignment
between the parcel corners in the image and the actual
annotated keypoints. This misalignment is also present for
damaged parcels, where the keypoints correspond to the
ones of the pristine version of the parcel.

4.1.1 Synthetic Data

The quantitative results from Tab. 1 indicate excellent per-
formance for bounding box detection and instance segmen-
tation, with a Box AP of 93.62 and a Mask AP of 97.54.
Likewise, keypoint detection achieves strong results with a
Keypoint AP of 88.80.

Qualitative examples are presented in Fig. 4. For in-
tact, i.e. cuboid-shaped, parcels keypoint detection enables
computing high-quality fronto-parallel views of the parcel
side surfaces as can be seen in Fig. 4a. Strong distortions
of parcel side surface views, however, cannot be recovered
and lead to low-quality representations, which are challeng-
ing to use for tampering detection. In the case of damaged
parcels, the representations’ quality strongly depends on the
degree of deformation (cf. Fig. 4b). Strong deformations
also impede tampering detection. Problematic cases can in-
clude imprecise or missing detections (cf. Fig. 4c).

(a) Intact Parcels (b) Damaged Parcels

(c) Problematic Cases

Figure 4. Exemplary qualitative results for synthetic parcels.
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Box Mask Keypoint
Dataset AP AP75 AP AP75 AP AP75

Parcel3D 93.62 (0.1) 98.46 (0.2) 97.54 (0.2) 98.58 (0.3) 88.80 (0.2) 94.06 (0.2)
Parcel2D Real 84.88 (0.2) 97.28 (0.1) 85.02 (0.2) 96.92 (0.6) 75.76 (0.5) 85.36 (1.2)
TAMPAR (ours) 96.38 (0.2) 99.72 (0.5) 98.94 (0.2) 99.70 (0.5) 97.18 (0.5) 99.12 (0.4)

Table 1. Quantitative performance analysis of the ResNet-50-FPN for bounding box detection, instance segmentation and keypoint detec-
tion. We repeated all trainings five times and report mean (standard deviation).

4.1.2 Real Data

Due to the fact that training was only performed on the
synthetic training dataset Parcel3D [2], a domain gap oc-
curs when evaluating on the two real-world datasets Par-
cel2D Real [16] and TAMPAR. This domain gap manifests
itself in the generally lower performance on Parcel2D Real
compared to the evaluation on synthetic data, as seen in
Tab. 1. At the same time, performance on TAMPAR is
higher, presumably due to the simpler nature of the dataset
- all images are high-quality and show only a single par-
cel in the center. Performance for bounding box detection
and instance segmentation remains high with a Box AP of
84.88/96.38 and a Mask AP of 85.02/98.94, on Parcel2D
Real and TAMPAR, respectively. The same holds true for
the performance of keypoint detection, which reaches 75.76
and 97.18 Keypoint AP.

Quantitative inspection of the prediction results confirms
the suitability of Parcel3D and our proposed keypoint order-
ing. Especially for cuboid-shaped parcels, as visualized in
Fig. 5a, results look very promising for applications in tam-
pering detection. Furthermore, we evaluate our approach
on images of damaged parcels without ground truth annota-
tions (cf. Fig. 5b). These qualitative impressions also under-
pin the suitability of our approach, however, detecting key-
points accurately for damaged parcels seems to be a more
difficult task. Examples of failed detections include miss-
ing and imprecise keypoint localizations, as visualized in
Fig. 5c.

4.1.3 Sensitivity Analysis: Lens Distortion

We investigate the influence of barrel distortion according
to

rsrc = rdist ·
(
A · r3dist +B · r2dist + C · rdist +D

)
with rsrc being the radial distance from the image center in
the input image, and rdist the one, in the distorted output.
We analyze six different settings, which are visualized in
Fig. 6 by creating distorted dataset versions with parame-
ter A ∈ [−0.08,−0.04,−0.02, 0.04, 0.08, 0.16], B = 0,
C = 0, and D = 1.0. Note that these datasets can be
smaller in size, since we discard instances if the distortion

(a) Intact Parcels

(b) Damaged Parcels

(c) Problematic Cases

Figure 5. Exemplary qualitative results for real parcels.

corrupted the annotations (e.g. keypoints lie outside the im-
age) or the ArUco detection. Results in Fig. 7 indicate that
instance segmentation performance is robust w.r.t. distor-
tion effects. While keypoint detection only degrades for
pincushion distortions (A < 0), bounding box detection re-
sults are also affected by strong barrel distortions (A > 0).

4.2. Tampering Detection

We evaluate change detection in isolation by using the
ground truth keypoint annotations, as well as in a combined
system on our novel dataset TAMPAR by using keypoint
predictions from Sec. 4.1. Furthermore, we analyze the in-
fluences of tampering types, lens distortion, and viewing
angles.
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Figure 6. Visualization of the investigated distortion effects with
parameter A ∈ [−0.08,−0.04,−0.02, 0.04, 0.08, 0.16], B = 0,
C = 0, and D = 1.0.
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Figure 7. Quantitative performance analysis of the ResNet-50-
FPN under different types of lens distortion. We repeated all train-
ings five times and report mean values with standard deviations as
error boundaries.

4.2.1 Pipeline Evaluation

Considering the input and reference parcel we first perform
marker-based side surface matching. Subsequently, we ap-
ply the image homogenization to both (input and reference
side surface view) and compute their image similarity using
all metrics mentioned in Sec. 3.2. We denote the combi-
nation of image homogenization Method A and similarity
Metric B as (Method A, Metric B), and seek to determine
the best image similarity metrics and corresponding thresh-
olds. SimSaC [31] poses a special case since it uses the
input and reference image to output change maps. This en-
ables localization of tampering, which is advantageous in
practice, however, not evaluated in this work. Instead, we
compare the binary change map to a black image (i.e. the
change map corresponding to no changes) to compute im-
age similarity. We summarize the evaluation results using
simple thresholding by training a decision tree of depth one
per method using all similarity metrics as input in Tab. 2.

Results in Tab. 2 using predicted keypoints show that
(SimSaC, LPIPS) yields the best performance and reaches
0.81 accuracy and an F1-Score of 0.83. The by far highest
precision is also achieved by (SimSaC, LPIPS), which indi-
cates cautious change detection for our use-case. The high-
est recall is reached by (DexiNed, HOG) and (Mean Ch.,
LPIPS), however, at the cost of precision. Performance dif-
ferences between using predicted and ground truth keypoint
positions are comparatively small due to the high accuracy
of the keypoint detection (cf. Tab. 1).

4.2.2 Sensitivity Analysis: Tampering Types

The analysis of performance differences across tampering
types in Tab. 3, shows that labels can be detected most re-
liably, while tape and especially writing (hard) are more
difficult to recognize. Surprisingly, when detecting writing
performance deteriorates when using ground truth keypoint
annotations. One potential reason for this might be, that
inaccurate keypoints enlarge the region of interest unpro-
portionally.

4.2.3 Sensitivity Analysis: Lens Distortion

We analyze the influence of six different degrees of dis-
tortion (cf. Fig. 6) on the tampering detection quality us-
ing predicted keypoints and (SimSaC, LPIPS). These distor-
tions imply that our simple perspective transformation can-
not accurately create normalized side surface views and the
change detection approach needs to handle these inaccura-
cies. The results in Fig. 8 suggest robustness w.r.t. distor-
tions, with a slight negative trend for distortions with dis-
tortion strength A > 0. This is in line with the fact, that our
approach can cope with lens distortion effects across the
two real-world dataset TAMPAR and Parcel2D Real, while
being trained on different, synthetic data.
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Figure 8. Sensitivity analysis for tampering detection w.r.t. to the
distortion strength A using pred. keypoints and (SimSaC, LPIPS).
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Method Metric Accuracy Precision Recall F1-Score ROC-AUC

None LPIPS/MS-SSIM 0.66/0.65 0.66/0.65 0.91/0.93 0.76/0.76 0.60/0.58
SimSaC LPIPS/MAE 0.81/0.80 0.91/0.93 0.76/0.72 0.83/0.81 0.82/0.82
DexiNed HOG/SSIM 0.60/0.62 0.60/0.63 1.00/0.91 0.75/0.74 0.48/0.54
Canny MS-SSIM/SSIM 0.60/0.60 0.62/0.61 0.91/0.91 0.74/0.73 0.52/0.52
Laplacian LPIPS/LPIPS 0.65/0.68 0.71/0.71 0.72/0.80 0.71/0.75 0.64/0.65
Mean Ch. LPIPS/MS-SSIM 0.63/0.65 0.62/0.65 0.99/0.94 0.76/0.77 0.53/0.58

Table 2. Quantitative performance analysis of the tampering detection using a decision tree with depth one. The metric indicates the
selection for thresholding during the training of the decision tree. We report metric names and scores for predicted / ground truth keypoints.

Tampering Label Tape Writing
Type easy hard easy hard easy hard

Number of Samples 606 570 462 546 624 498
Recall (Pred. Keypoints) 1.00 1.00 0.58 0.48 0.87 0.52
Recall (GT Keypoints) 1.00 0.99 0.59 0.49 0.80 0.36

Table 3. Sensitivity analysis on the performance differences across tampering types using (SimSaC, LPIPS).

4.2.4 Sensitivity Analysis: Viewing Angles

We approximate the viewing angle per parcel side surface
by considering the angle between the x- and y-axis, and the
polygon spanned by the four side surface corner points. No
clear trend emerges from this analysis in Fig. 9, which sug-
gests that our approach is robust w.r.t. a reasonable spectrum
of viewing angles. Note, however, that TAMPAR does not
feature extreme viewing angles. Due to the strong distor-
tions under such viewing angles, we expect the performance
of tampering detection to degrade heavily.
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Figure 9. Sensitivity analysis for tampering detection w.r.t. to the
viewing angle per side surface using predicted keypoints and (Sim-
SaC, LPIPS). Tampering types are encoded with different geome-
tries and the prediction correctness with color-coding.

5. Conclusion
In this work, we propose a tampering detection pipeline

for parcels that leverages keypoint and change detection.
We utilize the parcel keypoints to compute viewpoint-
invariant parcel side surfaces, which reduces the problem
of tampering detection to (1) identifying identical parcels
and their side surfaces across time and (2) applying change
detection on them. We propose an unambiguous keypoint
ordering for parcels and evaluate well-established baseline
algorithms for the task of parcel corner point detection on
real-world data. Our approach reaches 75.76 and 97.18
Keypoint AP on two real-world datasets when trained only
on synthetic images from Parcel3D [2]. Moreover, we in-
troduce the first publicly available benchmark for tampering
detection on parcels called TAMPAR. We propose a sys-
tematic approach for tampering detection which combines
image homogenization approaches to alleviate lighting dif-
ferences with several image similarity metrics. To make a
prediction, the most suitable metric is chosen and simple
thresholding is applied. Our approach performs best when
combining SimSaC [31] with LPIPS [35] and reaches 0.81
accuracy and an F1-Score of 0.83. The additional sensitiv-
ity analysis w.r.t. tampering types, lens distortion and view-
ing angles demonstrates the robustness of our approach.

Future work can incorporate recent advances in keypoint
detectors and also exploit shape priors by utilizing a van-
ishing point loss [24] or enforcing 2D/3D consistency [23].
Furthermore, fine-tuning SimSaC [31] for tampering de-
tection and more complex decision rules such as random
forests are expected to improve performance significantly
provided suitable datasets are available.
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Furmans, Literature Review: Computer Vision Appli-
cations in Transportation Logistics and Warehous-
ing, 2023. arXiv: 2304.06009 [cs].

[21] D. Dwibedi, T. Malisiewicz, V. Badrinarayanan, and
A. Rabinovich, Deep Cuboid Detection: Beyond 2D
Bounding Boxes, 2016. arXiv: 1611.10010.

[22] E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D.
Oxtoby, and A. Mouzakitis, “A Survey on 3D Ob-
ject Detection Methods for Autonomous Driving Ap-
plications,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 20, no. 10, pp. 3782–3795,
2019.

[23] P. Li, H. Zhao, P. Liu, and F. Cao, “RTM3D: Real-
Time Monocular 3D Detection from Object Key-
points for Autonomous Driving,” in Computer Vision
– ECCV 2020, A. Vedaldi, H. Bischof, T. Brox, and
J.-M. Frahm, Eds., vol. 12348, Cham: Springer Inter-
national Publishing, 2020, pp. 644–660.

[24] Z. Rui, G. Zongyuan, D. Simon, S. Sridha, and
F. Clinton, “Geometry-Constrained Car Recognition
Using a 3D Perspective Network,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34,
no. 01, pp. 1161–1168, 2020.

[25] Y. Chen, Y. Tian, and M. He, “Monocular human
pose estimation: A survey of deep learning-based
methods,” Computer Vision and Image Understand-
ing, vol. 192, p. 102 897, 2020.

[26] H. Chen, R. Feng, S. Wu, H. Xu, F. Zhou, and Z. Liu,
“2D Human pose estimation: A survey,” Multimedia
Systems, 2022.
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