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Abstract

A commonly accepted hypothesis is that models with
higher accuracy on Imagenet perform better on other down-
stream tasks, leading to much research dedicated to op-
timizing Imagenet accuracy. Recently this hypothesis has
been challenged by evidence showing that self-supervised
models transfer better than their supervised counterparts,
despite their inferior Imagenet accuracy. This calls for
identifying the additional factors, on top of Imagenet accu-
racy, that make models transferable. In this work we show
that high diversity of the filters learnt by the model promotes
transferability jointly with Imagenet accuracy. Encouraged
by the recent transferability results of self-supervised mod-
els, we use a simple procedure to combine self-supervised
and supervised pretraining and generate models with both
high diversity and high accuracy, and as a result high trans-
ferability. We experiment with several architectures and
multiple downstream tasks, including both single-label and
multi-label classification.

1. Introduction

The success of Deep Neural Networks (DNNS) in a va-
riety of computer vision tasks is largely related to their
ability to transfer feature representations learned on a pre-
trained task to leverage others. A common practice is to
pre-train a model on a large-scale supervised dataset such as
ImageNet [70] and fine-tune it on the downstream (target)
dataset that is typically of a smaller scale. This practice has
systematically advanced the state-of-the-art in tasks such as
image classification [52, 66], object detection [53, 65] and
semantic segmentation [34,53]. The pursuit after better pre-
trained models coincided with pushing the state-of-the-art
performance on ImageNet, as it was shown that supervised

* Equal contribution

pre-trained models that perform better on ImageNet tend to
perform better when fine-tuned on other tasks [44].

Recent works demonstrate that self-supervised pre-
training (SSL) without any label information can also learn
effective representations from upstream data (e.g., Ima-
geNet) and even surpass supervised methods when trans-
ferring to downstream tasks. This success in transfer learn-
ing, despite their relatively poor performance on ImageNet
[13,15,31,33,83] calls for identifying the additional factors,
on top of Imagenet accuracy, that make models transferable.

While supervised training focuses on class-level discrim-
ination, SSL focuses on instance discrimination, and mod-
els are trained to keep variants of the same instance close
together in the representation space, and sometimes also,
separated from different instances. On the other hand, su-
pervised models learn meaningful high-level semantic fea-
tures that are shared between instances of the same class,
while SSL might capture irrelevant low level visual features
(e.g., related to instance background). Thus high ImageNet
performance guarantees that the features learnt are seman-
tically meaningful and SSL learns diverse features. Those
features are extracted for an input image by applying a com-
position of filters on it, that are determined by the model’s
structure and learnt weights. This observation is supported
by recent work that combines both supervised and self-
supervised losses to improve transferability [37, 40], yet
those require intervention in the self-supervision stage and
the transferability is attributed to other less important fac-
tors than filter diversity such as the abstraction of the rep-
resentations learned (measured by Centered Kernel Align-
ment (CKA) [43] between layers) and intra-class variations.

Our contribution is two-fold: (1) We suggest Filter Di-
versity as a calibration for the Imagenet accuracy for assess-
ing the transferability of models.

CIS = Imagenet Accuracy× Filter Diversity (1)
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As we empirically validate that Calibrated Imagenet Score
(CIS) better correlates with trasferability, i.e. the averaged
log odds [44] over many downstream tasks (see Figure 1).

(2) We use a simple scheme for a Controlled Label In-
jection (CLI), that enables the injection of label information
into any self-supervised pre-trained model in a controlled
manner, for generating models of different filter diversity
and Imagenet accuracy. The resulted models increase Im-
ageNet performance while either improving or maintaining
filter diversity of the self-supervised model. This both al-
lows us to make observations about the connection between
the CIS and transferability, while at the same time this leads
to models with higher transferability.

We validate our approach over both CNNs
(ResNets [35]) and vision transformers (ViT [25]), several
self-supervised pre-training methods (e.g., MoCo-v2 [14],
SimCLR [13], SwAV [10], DINO [10] and MAE [32]),
two formulations of Filter Diversity, several downstream
vision tasks, including multi-label classification on the
MS-COCO [51] dataset and a variety of 14 single-label
classification datasets.

2. Related Work

2.1. Transfer learning

Transfer learning was shown to be highly effective in
transferring knowledge from upstream (source) datasets to
typically much smaller datasets given that their domains are
similar [59]. [36] searched for the properties that make a
dataset a good choice for transfer learning. [44] showed
that when it comes to supervised models, ImageNet accu-
racy score is highly correlated with performance over down-
stream tasks, confirming the common practice of selecting
pre-trained models for transfer learning based on their Ima-
genet accuracy. We show that when self-supervised mod-
els are included, the correlation significantly drops, call-
ing for improved measures for selection. The architecture
and depth of CNNs were also shown to impact transfer per-
formance [6]. The effects of the pre-training loss function
were studied by [37,40,42], and the importance of projector
heads design and data augmentation to control the trade-off
between performance on the upstream task and transferabil-
ity is shown by [71,79]. Improved Imagenet score might ac-
tually lead to worse transfer learning results when used as
fixed feature extractor, while the choice of the loss has little
effect when networks are fully fine-tuned on the new tasks
as shown by [42]. A combination of contrastive and super-
vised learning was shown to improve transfer leaning per-
formance [37, 40], but the factors driving the performance
are still not completely understood. Centered Kernel Align-
ment (CKA) [43] was utilized by [42] to show that differ-
ences among loss functions are apparent only in the last few
layers of the network, and [37] further showed that con-

trastive models contain more low level and mid-level fea-
tures in those layers. [28, 37, 42] connect this to intra-class
variations, concluding that representations with higher class
separation obtain higher accuracy on the upstream task, but
their features are less useful for downstream tasks. In this
work, we identify filter diversity as a more important factor
that implies on the transferability of the model, even in the
more practical use-case of fine-tuning the pretrained mod-
els on the downstream tasks. [62] quantifies transferability
between a source model and a target dataset by class sepa-
ration measures over the embeddings of the target images,
while filter diversity introduced in this paper is an intrinsic
property of the model that does not depend on the data.

2.2. Self-Supervised Learning

SSL is a subset of unsupervised learning, where neu-
ral networks are explicitly trained with automatically gen-
erated labels. In earlier works, labels were generated by
diverse pre-text tasks such as prediction of rotation [41],
colorization [85], pathces positions [24] and others [38].
More recent methods can be roughly divided to contrastive
methods [13, 14, 31, 33] and clustering methods [2, 10, 50].
Notably, MoCo-v2 [14], SimCLR [13], SwAV [10] have
shown a dramatic improvement in representation quality
learned from unlabeled Imagenet images, surpassing the
performance of modern supervised methods over various
downstream tasks [27]. They also showed that while self-
supervised features seems to discard color information,
their attentive focus is higher compared to their supervised
counterparts. This motivated the proposals of hybrid meth-
ods. [40] proposed a new contrastive loss to leverage the la-
bel information and [37] combined it with both constrastive
and cross-entropy losses. However, it is yet unclear what
self-supervised features should be maintained and how in
order to improve resulting models’ transferability. In this
work, we propose a measure that captures the diversity of
the information encoded in different networks, and a sim-
ple method to inject supervised label information to a pre-
trained SSL model, in a way that maintains this diversity in
order to improve transfer learning performance.

2.3. Filter Diversity

It has been shown that a significant portion of filters ex-
tracted by DNNs are redundant [5, 7, 11, 21, 68]. By simply
training on a low-rank decomposition of the weight matri-
ces, [20] demonstrated that a fraction of the parameters is
sufficient to reconstruct the entire network. [3] estimated
the number of redundant filters in each layer, by hierarchi-
cally clustering those according to their relative cosine dis-
tances in filter space. [4, 67] proposed regularizing corre-
lated filters based on their relative cosine distances to yield
a network with diverse filters, with less overfitting, and
better generalization. [1, 58] use determinantal point pro-
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Figure 1. Transferability vs (Left) Imagent Score, and (Middle) the Calibrated Imagenet Score (CIS) for 40 models that were pre-trained
with supervised learning, self-supervised learning or their combination. CIS correlates with transferability significantly better than ima-
genet score. (Right) The relative importance of different factors are quantified by the popular feature importance derived from XGBoost.
Most of the importance is attributed to the Calibrated Imagenet Score (CIS).

cesses to select a subset of diverse neurons or connections
and subsequently fuse the redundant ones into the selected
ones for the purpose of pruning. Differently from the afore-
mentioned, which deal mainly with reducing overfitting and
pruning, in this work we focus on the importance of learn-
ing diverse filters for the purpose of transfer learning.

3. Filter Diversity Measures

Previous work connected the transferability of a model
to data-dependent measures, such as the abstraction of rep-
resentations learnt for the upstream data and the variations
in its embedding space [37, 42], the number of non-zero el-
ements in the activations [42] and robustness to corrupted
data [37]. Considering that transfer learning deals with dif-
ferent, sometimes unknown in advance, downstream tasks,
we instead search for a connection to an intrinsic data-
independent property of the model. Intuitively, the more
diverse the information learnt by the pre-trained model is,
the more likely this information can be utilized in trans-
fer learning to a larger variety of downstream tasks. With
this intuition, since the information learnt by the pre-trained
model is encoded in its weights, we need a way to quantify
the diversity of filters learnt by the pre-trained model.

We adapt two measures, illustrated in Figure 2, both of
which view the weights of the various neural layers as vec-
tors in a metric space. The measures quantify the scatter of
those vectors in the filter space. We describe in more detail
the first measure, which is based on clusterability proper-
ties of the filters. The second measure, based on spectral
analysis of the filters distribution, is presented in more de-
tails in Appendix E for brevity. Empirical evaluation with
both measures leads to similar conclusions and validates the
importance of filter diversity for transferability (Figure 1).

3.1. Clustering Filter Diversity

The first measure we adapt to evaluate filter diversity is
based on assessing the organization of the filters into clus-
ters, and is inspired by [3]. Filters that are grouped together

into tight clusters imply low diversity, while filters that are
sparsely spread imply high diversity. We next extend this
idea to measure the overall clusterability of a deep neural
network’s filters across all of its layers.

Let W = [wi, . . . , wn] ∈ Rd×n be a weight matrix
whose columns {wi}ni=1 are its filters. We apply the ag-
glomerative clustering approach of [23,78], while adjusting
it to fit our purpose. The clustering continues agglomera-
tively, merging two clusters Ca and Cb as long as their av-
erage mutual cosine similarity SC(Ca, Cb) [49, 57] crosses
some threshold τ :

SC(Ca, Cb) =

∑
{wa,wb}∈Ca⊗Cb

cos(wa, wb)

|Ca| · |Cb|
> τ (2)

The cluster ratio between the number of clusters and the
number of filters for a given threshold τ quantifies the re-
sulted clusterability, as illustrated in Figure 2 (Left). Due to
different neural layers of the same model learning different
levels of abstractions, a single threshold τ value does not fit
all. Hence, differently from [3], we evaluate the clusterabil-
ity of the entire model by averaging the cluster ratio of all
layers across a spectrum of threshold values. For the full
technical details and illustrations see Appendix D.

3.2. Spectral Filter Diversity

Another way to evaluate the distribution of filters is sug-
gested next, based on spectral analysis of the filter vectors.
Principal component analysis (PCA) [29] is an effective ap-
proach for evaluating variance along principal directions in
the filter space. Low diversity implies that the filter distri-
bution can be captured by a small number of principal di-
rections, while high diversity implies requiring many prin-
cipal directions, as illustrated in Figure 2 (Right) while the
technical details and exact calculations are provided in Ap-
pendix E for brevity. Table 1 shows that both measures of
Filter Diversity improve the correlation of the Calibrated
Imagenet Score with the transferability in both cases of lin-
ear probing and finetuning, while for the former the spectral
version is favourable, and for the latter the clustering based
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Figure 2. Illustration of the two adapted measures for Filter Diversity. (Left) Low and high diversity result in low and high clustering ratio
respectively. (Right) For low and high diversity the variance of filters is explained by fewer or more directions respectively.
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Figure 3. (Left) Circle size corresponds to the transferability averaged over 14 downstream tasks, as a function of Imagenet top-1 accuracy
(x axis) and filter diversity (y axis). Results shown for 3 different training methods (see legend). The background colors and curves show
the Calibrated Imagenet Score. Evidently, models with both high Imagenet accuracy and high Filter Diversity, that together result in high
Calibrated Imagenet Score (in yellow), transfer better (larger circles). (Right) SSL methods learn more diverse filters.

one is. For the corresponding Figure 1 in the case of linear
probing see Appendix J.2.

4. Scheme for High CIS
We present a simple scheme that produces models with

both high filter diversity as well as high ImageNet accu-
racy. The scheme is generic in the sense that it can be
applied to any type of model and training method. The
proposed scheme, illustrated in Figure 4, is composed of
two stages. First, we train a model using Self-Supervised
Learning (SSL). Then, we gradually introduce supervision
by injecting label information in a controlled manner, while
fine-tuning the model.

4.1. Controlled Label Injection

The scheme has two stages. It starts with Self-supervised
learning (SSL) that typically yields pre-trained models with
higher diversity, because the underlying contrastive learning
views each sample as a unique class. We observe that filters
learnt by SSL methods are richer and more diverse com-
pared to supervised models that effectively capture much
fewer classes, as shown in Figure 3 (Right). The sec-

ond stage injects label information into any self-supervised
pre-trained model in a controlled manner, and through that
increases ImageNet accuracy while at the same time ei-
ther improving or maintaining filter diversity of the self-
supervised model. We show empirically that this scheme
leads to models with higher transferability.

Denote by fWB
and gWFF

the backbone model and the
classification model on top of it, with weights WB and
WFF respectively, such that ŷ = gWFF

(fWB
(x)) holds for

an input sample x and its predicted label ŷ. The backbone
weights WB were trained by any self-supervised method
and WFF is randomly initialized.

We fine-tune the weights by training with controlled su-
pervision, according to Algorithm 1. Considering that the
classifier for pre-training is to be replaced eventually, the
backbone weights WB are updated once every T updates of
the classifier WFF , thus the classifier is encouraged to un-
dertake most of the classification burden, and only some of
it is passed through to the backbone, whose weights change
more slowly. While other valid implementation alternatives
for CLI might result this desired effect, e.g., assigning a
higher learning rate to the classifier, the chosen implemen-
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Linear Probing Finetune
ρ r R2 τ ρ r R2 τ

ImageNet Score 0.55 0.73 0.13 0.38 0.74 0.81 0.47 0.53
Spectral CIS 0.91 0.89 0.74 0.75 0.89 0.83 0.56 0.72
Cluster CIS 0.89 0.88 0.71 0.72 0.93 0.88 0.70 0.77

Table 1. The Spearman (ρ), Pearson (r), R2 and Kendall-tau (τ ) correlation coefficients between transferability and standard or Calibrated
Imagenet Score (CIS) computed with the proposed filter diversity measures. Both diversity based CIS measures show significantly higher
correlation than the plain Imagenet accuracy, with an advantage to Spectral Filter Diversity for linear probing and to Clustering Filter
Diversity for finetune.

tation is analysed empirically (Section 4.2) and shows to be
effective (Section 5.2). Effectively, T = 1 is a standard
fine-tuning and T → ∞ is linear probing. Hence, the diver-
sity is maintained for a large enough control cycle T , when
starting from models of high filter diversity.

Algorithm 1 Controlled Label Injection (CLI)

input Self-supervided pretrained weights WB ,
Upstream train set Dtrain, Control cycle T
Fine-tuning steps T , Learning rate η

1: WFF ←RandomInit()
2: for t = 1, . . . , T do
3: Sample an i.i.d train batch (xt, yt) ∼ Dtrain

4: WFF ←WFF−η∇WFF
LCE (gWFF

(fWB
(xt)), yt)

5: if mod(t, T ) == 0 then
6: WB ←WB − η∇WB

LCE (gWFF
(fWB

(xt)), yt)
7: end if
8: end for

output WB

SSL Pre-trained Model of 
Low Feature Diversity

Controlled Label Injection

SSL Pre-trained Model of 
High Feature Diversity

CIS = Diversity × Imagenet

More
Label 
Injection

CIS = Diversity × Imagenet

More
Label 
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Backbone

FF

CE Loss

Update
every 
few
steps

Update
every 
step

Controlled Label Injection

Backbone

FF

Update
every 
many
steps

Update
every 
step

Accuracy Accuracy

CE Loss

Filter DiversityFilter Diversity

Figure 4. The CLI Scheme: control the injected label information
to the backbone by updating it more/less frequently for less/more
diverse pretrained SSL models respectively.

4.2. Empirical Analysis of the CLI Procedure

Figure 5 shows the impact of the control cycle. Start-
ing from a SSL pretrained model of high filter diversity
(SwAV), we apply Algorithm 1 with different control cycle

values. At the left side we show the similarity between the
learnt representations of the final model and: (i) the original
SSL model, and (ii) a fully supervised model. The similar-
ity is measured by the average Centered Kernel Alignment
(CKA) [43] between all pairs of stages of two Resnet50
models. When the label injection is high (low control cy-
cle T ) the similarity to the initial SSL model is low and the
similarity to a fully supervised model is high. Our exper-
iments show that the best transferability is obtained when
those similarities are similar. At the right side of the fig-
ure, we empirically validate that the proposed label injec-
tion scheme improves Imagenet accuracy while maintaining
most of the filter diversity of the input SSL model (SwAV).
This is true up to a certain tipping point (T = 3 in this
case), where the tranferability is the highest and right after
the aggressive label injection ruins the initial filter diversity
and thus the Calibrated Imagenet Score drops together with
the transferability.

Figure 3 (Left) shows how the control label injection can
start off from different SSL pre-trained models of both low
(MoCo-v2) and high (SwAV) filter diversity and generate
models of different levels of Imagenet accuracy and filter
diversity for different control cycle values. Those generated
models allow us to make observations about the connection
between Imagenet Score and Filter Diversity to the trans-
ferability through the Calibrated Imagenet Score, as shown
in Figure 1. The trajectory for every origin SSL model tra-
verses the Calibrated Imagenet Score contour lines towards
more transferable regions, as expressed by the circle’s size.

This is further shown for more SSL methods applied on
CNN in Figure 6, where the connection between the con-
trol cycle, Filter Diversity, CIS and transferability is shown.
Noteably, SSL models of low filter diversity benefit from
the maximal label injection, while the filter diversity of
highly diverse models is to be maintained by strenghtning
label injection for increasing the Imagenet accuracy right
up to the point where the diversity drops. Those control cy-
cle values are aligned with the points of highest CIS and
ultimately highest transferability. Besides, SSL method un-
dergoing CLI, two supervised models are presented, the first
is trained shortly for 200 epochs and the second is trained
longer for 600 epochs. Longer supervised training increases
both Imagenet accuracy and Filter Diversity.
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Figure 6. Demonstrating the effect of the Controlled Label Injection (CLI) on the Filter Diversity (Left) Calibrated Imagenet Score (Middle)
and Transferability (Right) on different SSL pre-trained models. SSL models of low filter diversity benefit from the maximal label injection,
while the filter diversity of highly diverse models is to be maintained. The points of highest transferability are aligned with those of the
highest CIS (vertical lines).

5. Experimental Settings
5.1. Downstream Datasets

We evaluated models for multi-label image classifica-
tion on the popular MS-COCO [51] dataset and another 14
single-label image classification datasets ranging in training
set size from 1,020 to 80,800 images (20 to 5,000 images
per class; Table 2). These datasets covered a wide range
of image classification tasks, including superordinate-level
object classification (CIFAR-10 [46], CIFAR-100 [46],
Caltech-256 [30]); fine-grained object classification of
different kinds (Food-101 [8], NABirds [75], Stanford
Cars [45], FGVC Aircraft [56], OxfordIIIT Pets [63], Ox-
ford Flowers-102 [61], Stanford Dogs [39], CUB-200 [77]);
texture classification (DTD [16]); and scene classification
(MIT indoor 67 [64], SUN397 [81]).

5.2. Comparison to Other Supervised and SSL
Combining Methods

5.2.1 Improved Transferability for CNN

Tables 3 and 4 compare the transfer learning performance
of Resnet50 pretrained models across 15 downstream tasks,

specified in Table 2, and averaged following [44] (see
Appendix A) for linear probing and finetuning respec-
tively. The compared models include pure supervised and
unsupervised (MoCO-v2, SwAV, SimCLR, DINO) learn-
ing, supervised constrastive learning (SupCon [40]), a pre-
training combining supervised and self-supervised losses
(CE+SelfSupCon [37]) and label injected models following
Algorithm 1. The behaviour for linear probing and fine-
tuning is similar. Specifically, certain label injected models
transfer best. As SwAV and DINO benefit from high filter
diversity (see Figure 3), once label injected to the point of
high Calibrated Imagenet score (see Figure 6) it transfers
better than all the rest both in terms of overall transferabil-
ity score and for the most downstream datasets individually.
Since MoCo-v2 and SimCLR have relatively low filter di-
versity (see Figure 3), those benefit from more label injec-
tion that increases both their Imagenet accuracy and filter
diversity together, as shown in Figure 6. Indeed, those at-
tain the best transferability at T = 1. Those observations
call for further future research about the underlying mech-
anisms that make different SSL methods resulting in differ-
ent levels of filter diversity, as discussed in section 7.
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Category Name Symbol Classes Train Size Test Size

Upstream Imagenet [47] ImNet 1000 1,281,167 100,000

Superordinate- CIFAR-10 [46] CIFAR10 10 50,000 10,000
level object CIFAR-100 [46] CIFAR100 100 50,000 10,000

classification Caltech-256 [30] Caltech 256 24,581 6,026
Food-101 [8] Food 101 80,800 20,200
NABirds [75] Birds 555 24,615 23,912
Stanford Cars [45] Cars 196 8,041 8,144

Fine-grained FGVC Aircraft [56] Aircraft 100 3,334 3,333
object OxfordIIIT Pets [63] Pets 37 3,680 3,669

classification Oxford Flowers-102 [61] Flowers 102 1,020 6,149
Standord Dogs [39] Dogs 120 12,000 8,580
CUB-200 [77] CUB 200 5,994 5,794

Texture DTD [16] DTD 47 1,880 1,880
Scene MIT indoor 67 [64] Indoor 67 5360 1,340

classification SUN397 [81] SUN 397 19,850 19,850
Multi-label MS-COCO [51] COCO 80 82,081 40,137

Table 2. Datasets examined in transfer learning
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SU
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Transfer

Supervised 78.7 46.4 60.9 93.0 77.1 71.5 89.1 67.4 69.5 90.4 86.5 70.0 78.7 93.0 63.1 7.3
SupCon [40] 77.3 50.9 56.6 94.9 79.2 69.0 88.5 72.6 70.2 90.5 89.1 68.6 79.3 92.5 63.6 12.6
CE + SelfSupCon [37] 77.3 40.2 52.8 93.3 76.5 63.0 87.3 58.1 67.6 94.0 85.6 67.4 76.6 92.6 61.3 -3.9
MoCo-v2 61.9 43.9 38.9 93.4 76.4 53.8 83.5 59.3 69.7 68.0 85.3 68.5 76.0 84.6 60.6 -31.1
MoCo-v2 (T = 1) 78.7 35.8 55.9 92.4 74.6 65.6 87.3 52.7 67.8 91.6 80.6 65.4 76.3 93.1 60.5 -12.4
MoCo-v2 (T = 4) 76.0 41.3 57.3 92.2 74.4 66.2 87.0 57.0 66.9 87.5 83.5 67.2 76.9 91.9 60.8 -11.8
SwAV 72.0 52.0 53.3 93.2 77.8 66.7 86.5 71.0 71.4 76.4 90.6 73.2 81.6 88.9 65.1 0.3
SwAV (T = 1) 79.2 44.0 62.8 93.3 77.4 71.2 89.2 64.2 70.7 91.1 86.6 70.2 80.1 93.3 63.5 8.9
SwAV (T = 4) 78.1 53.4 65.7 93.1 78.8 73.2 89.8 69.8 72.2 87.0 90.4 73.2 81.6 93.1 65.8 18.1
DINO 75.0 54.8 54.8 93.7 78.6 68.9 87.1 74.5 72.7 75.9 92.5 74.7 81.7 89.3 66.1 8.1
DINO (T = 1) 77.6 46.0 63.4 93.5 78.3 73.2 89.2 66.2 71.0 90.9 87.0 71.2 80.9 93.8 64.2 13.1
DINO (T = 4) 77.5 53.8 66.0 93.8 79.5 74.3 89.7 70.5 73.0 86.9 91.8 74.8 82.2 93.3 66.0 22.6
SimCLR 68.1 43.4 35.3 89.1 69.0 50.5 82.4 56.2 65.4 65.4 85.2 62.2 72.4 83.8 58.2 -48.0
SimCLR (T = 1) 78.1 47.8 61.1 93.8 77.7 71.3 88.7 65.8 70.9 88.9 87.5 70.5 80.2 92.9 64.0 8.9
SimCLR (T = 4) 75.0 50.4 55.3 93.7 77.6 67.5 87.5 66.8 69.8 82.4 88.0 69.2 77.0 91.3 63.0 -1.5

Table 3. Linear probing performance of different CNN models, including different levels of label injected models) fit on the downstream
datasets in terms of top-1 accuracy (%) and the overall transferability score. The models are grouped by the underlying base SSL method.
The best performance of each column appears in bold and the best in each group is underlined. Label injected models transfer best.

5.2.2 Improved Transferability for ViT

Similar results are shown for vision transformers (ViT) in
Table 5 and Appendix L. Specifically, label injected ViT
models obtain better transfer learning performance than
their pure SSL counterparts. Notably, for all the SSL meth-
ods examined for ViT, the maximal label injection strength
results in the best transferability. Interstingly, this is also
true for DINO applied to ViT, when this is not true when
applied to CNNs. This observation invites future research
on the reasons why ViT tend to learn less diverse filters than
CNNs when pre-trained with the same SSL method, see sec-
tion 7 for a further discussion.

6. Feature Importance for Transfer Learning
In this section we empirically analyze the importance of

different factors to transferability. We consider the Cali-

brated Imagenet Score (CIS) and the previously suggested
[37,42] CKA, intra-class variance and class separation. The
relative importance of those factors is quantified in Figure 1
(Right) by the ability to predict the transfer learning perfor-
mance after finetuning, by the popular XGBoost [12], that
allows feature importance analysis [86], for more technical
details see Appendix H. It is evident that CIS is highly pre-
dictive of the transferability, and specifically significantly
more important than the other factors inspected. Notably,
both measures of Filter Diversity capture the importance of
CIS compared to other factors. This shows that the very
notion of filter diversity and the way it calibrates Imagenet
accuracy are valid. Moreover, calibrating Imagenet accu-
racy by any other of the inspected factors is not predictive
of the transferability (see Appendix H). Similar results are
shown in Appendix J.2 for the case of linear probing.
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Supervised 78.7 86.9 97.6 86.0 85.9 69.3 82.0 85.3 81.3 74.9 99.1 92.4 94.4 82.9 65.3 0.012 81.9
SupCon [40] 77.3 86.3 97.6 85.7 85.0 69.8 84.1 86.1 81.4 73.1 99.0 91.9 94.7 83 65.2 0.007 81.2
CE+SelfSupCon 76.4 86.3 97.6 85.8 85.9 69.5 83.3 86.3 80.9 74.1 98.7 92.4 94.8 85.3 64.4 0.003 82.0
MoCo-v2 61.9 78.1 96.7 82.0 79.4 66.3 80.1 85.4 75.6 61.1 98.5 86.8 93.5 73.4 56.3 -0.352 78.7
MoCo-v2 (T = 1) 78.7 87.3 97.6 86.3 85.9 70 83.0 86.1 82.2 73.9 99.2 92.8 94.4 84.4 65.1 0.054 81.9
MoCo-v2 (T = 4) 76.0 86.4 97.6 86.1 85.7 69.7 82.8 86.1 82.3 73.3 98.9 92.0 94.3 81.5 64.8 -0.010 81.7
SwAV 64.2 87.0 97.8 86.6 84.3 72.1 82.3 87.4 83.1 75.1 98.9 90.3 93.6 80.6 67.8 0.005 82.8
SwAV (T = 1) 79.2 87.5 97.7 86.5 86.5 71.3 83.4 86.8 82.3 75.8 99.0 92.5 94.6 83.6 66.4 0.062 82.3
SwAV (T = 4) 78.1 88.4 97.8 87.1 86.6 72.9 82.8 87.6 84.4 76.1 99.3 91.9 94.6 82.1 67.8 0.118 83.2
DINO 75.0 87.2 97.8 86.9 83.7 72.1 80.6 87.5 83.2 74.5 98.7 89.6 93.8 80.1 67.6 -0.024 82.7
DINO (T = 1) 77.6 87.4 97.7 86.7 86.3 71.1 83 87.1 82.7 76.2 99.4 92.5 94.7 82.9 66.2 0.095 82.3
DINO (T = 4) 77.5 88.2 97.8 87.5 86.5 72.1 82.8 87.6 84.1 76.5 99.4 92.1 94.7 82.1 67.6 0.126 83.1
SimCLR 68.1 85.4 97.9 86.3 78.3 65.9 77.2 84.0 75.4 62.6 97.6 86.6 91.6 73.8 62.9 -0.318 80.5
SimCLR (T = 1) 78.1 86.3 97.6 86.3 85.6 70 82.8 85.9 80.7 72.8 99.1 91.4 94.5 80.8 65.5 -0.013 81.2
SimCLR (T = 4) 75.0 86.6 97.7 86.7 82.7 69.5 81.1 84.9 79.3 68.0 98.7 89.5 93.5 77.9 64.9 -0.120 81.5

Table 4. Performance of different CNN models fine-tuned on the downstream datasets in terms of top-1 accuracy (%) (averaged over 3
runs) and the overall transferability score. The models are grouped by the underlying base SSL method. The best performance of each
column appears in bold and the best in each group is underlined. Label injected models transfer best.

Pretrain

Im
N

et

C
altech

C
IFA

R
10

C
IFA

R
100

C
U

B

D
TD

A
ircraft

Food

Indoor

B
irds

Flow
ers

Pets

C
ars

D
ogs

SU
N

Transfer

Supervised 81.0 90.9 98.6 89.6 82.3 70.8 60.8 87.9 83.2 79.6 91.3 93.8 85.4 91.5 68.1 -0.101
MAE 68.0 89.2 98.1 86.9 75.4 68.5 53.8 88.8 82.2 81.2 70.6 91.2 79.6 83.2 67.6 -0.425
MAE (T = 1) 83.4 93.0 98.8 90.6 84.3 73.7 73.1 90.6 85.4 86.2 94.4 94.8 89.8 89.5 71.1 0.131
MAE (T = 4) 81.3 92.2 98.8 90.1 84.5 73.2 72.4 90.2 85.0 85.6 94.6 94.6 89.2 88.2 71.0 0.095
DINO 78.2 87.2 97.8 86.9 83.7 72.1 80.6 87.5 83.2 74.5 98.7 89.6 93.8 80.1 67.6 -0.187
DINO (T = 1) 83.2 93.1 99.0 91.2 84.7 74.6 72.1 89.9 86.3 84.9 94.7 94.3 89.4 90.5 71.5 0.148
DINO (T = 4) 82.3 92.8 98.8 91.0 84.7 75.2 71.2 90.0 85.8 85.2 95.4 94.7 89.1 88.3 71.5 0.131

Table 5. Performance of different ViT models fine-tuned on the downstream datasets in terms of top-1 accuracy (%) and the overall
transferability score. The models are grouped by the underlying base SSL method. The best performance of each column appears in bold
and the best in each group is underlined. Label injected models transfer best.

7. Discussion and Future Work

While we showed that models with high diversity trans-
fer better, a natural extension would be to better understand
how and why some training methods produce higher diver-
sity than others. Indeed [4] uses an explicit diversity reg-
ularization. We don’t expect a diversity regularization dur-
ing training to work well since diversity encourages high
complexity models. In comparison, standard regulariza-
tion restrict model complexity as a balance to the models
overparamtrization. Indeed, there are many ways the net-
work can increase the diversity metric with no real change
to the model behavior. One such trivial way to increase the
Spectral Filter Diversity is to scale each filter Ŵi = Wi

∥Wi∥
and then insert ∥Wi∥ into subsequent BatchNorm. Simi-
larly, Cluster Diversity is based on cosine similarity, which
is scale agnostic, thus filters that are redundant, or close to
zero can be set to orthogonal vectors with epsilon scale. We

hope this paper motivates future work in ways to increase
real filter diversity, and transferability.

8. Conclusions
In this paper, we analyse the importance of different

properties of pre-trained models to their transferability. We
identify the notion of filter diversity as one of the key fac-
tors for transferability, together with the performance on the
upstream task. A simple fine-tuning procedure is used for
improving the transferability of given self-supervised pre-
trained models, by injecting controlled supervision to those,
while maintaining their filter diversity and improving their
performance on the upstream task. Our study holds for dif-
ferent popular architectures of CNNs and ViTs and self-
supervised methods, two different formulations for captur-
ing filter diversity and many downstream tasks of multi-
label and single-label classification over more than 15 dif-
ferent datasets.
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