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Abstract

Single image super-resolution (SISR) is a challenging
ill-posed problem that aims to up-sample a given low-
resolution (LR) image to a high-resolution (HR) counterpart.
Due to the difficulty in obtaining real LR-HR training pairs,
recent approaches are trained on simulated LR images de-
graded by simplified down-sampling operators, e.g., bicubic.
Such an approach can be problematic in practice due to
the large gap between the synthesized and real-world LR
images. To alleviate the issue, we propose a novel Invert-
ible scale-Conditional Function (ICF), which can scale an
input image and then restore the original input with different
scale conditions. Using the proposed ICF, we construct a
novel self-supervised SISR framework (ICF-SRSR) to handle
the real-world SR task without using any paired/unpaired
training data. Furthermore, our ICF-SRSR can generate
realistic and feasible LR-HR pairs, which can make existing
supervised SISR networks more robust. Extensive experi-
ments demonstrate the effectiveness of our method in han-
dling SISR in a fully self-supervised manner. Our ICF-SRSR
demonstrates superior performance compared to the existing
methods trained on synthetic paired images in real-world
scenarios and exhibits comparable performance compared
to state-of-the-art supervised/unsupervised methods on pub-
lic benchmark datasets. The code is available from this link.

1. Introduction
Single image super-resolution (SISR) as a fundamen-

tal vision problem is a procedure to reconstruct a super-
resolution (SR) image from a single low-resolution (LR)
image. SISR is an active research topic and has attracted
increasing attention in low-level computer vision. It has
many applications in various fields such as medical imag-
ing [17, 43], face recognition [19, 60], satellite image pro-
cessing [32, 51] and security video surveillance [35, 67].
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Figure 1. Real-world image super-resolution. We train our ICF-
SRSR on a single real-world smartphone photo in a self-supervised
manner to get the result for scale ×2. The other listed methods are
also zero-shot [46, 48] or unsupervised [53] methods.

Recent state-of-the-art (SOTA) SR methods have achieved
remarkable progress due to the development of deep convo-
lutional neural networks (CNNs). They are usually trained
on synthetic inputs in a fully supervised fashion, where
LR images are generated by bicubic down-sampling from
their HR counterparts. Nevertheless, models trained on the
synthetic datasets cannot generalize well when applied to
real-world inputs [6, 7]. Another problem is that acquir-
ing well-constructed LR-HR pairs from the real world is
very challenging due to cost problems or hardware limita-
tions [6, 7, 68]. Therefore, it is a common scenario that we
have LR images only rather than having LR-HR training
pairs. Several approaches adopt unsupervised adversarial
training [16] and leverage unpaired LR-HR images to alle-
viate the situation. By jointly training down-sampling and
up-sampling networks [5, 36, 37, 62, 72], those methods aim
to generate synthetic LR images that have similar character-
istics of given unpaired LR examples. Then, the synthesized
training pairs can be leveraged to optimize the up-sampling
network. However, such unsupervised strategies require
appropriate HR images, even though those images are not
paired with the given LR images. Also, Son et al. [49] have
identified that those methods are biased toward some hand-
crafted functions e.g., nearest or bicubic interpolation, which
limits the generalization.
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In this paper, we present a novel self-supervised real-
world SR framework, ICF-SRSR, to overcome the aforemen-
tioned challenges. To this end, we first propose a concept of
Invertible scale-Conditional Function (ICF). It is designed
to perform up-sampling and down-sampling within a sin-
gle model, conditioned by the scale arguments s and 1/s,
respectively. Therefore, we can resize an input by a given
scale s and restore the initial input by taking the inverse
scale 1/s. Without utilizing paired/unpaired training images
nor any specific down-sampling operator e.g., bicubic, ICF-
SRSR containing a learnable ICF can be trained in a fully
self-supervised manner. Moreover, our method can gener-
ate realistic LR-HR image pairs from a set of given images
useful for training the other off-the-shelf methods. In the
experiments, we demonstrate the ability of our ICF-SRSR to
learn from real-world datasets, restore high-/lower-resolution
images, and evaluate our method on other datasets in a self-
supervised manner. Our main contributions are threefold:

• Our ICF-SRSR is a self-supervised framework for the
SISR task that performs simultaneous SR and down-
sampling based on the proposed ICF.

• Our ICF-SRSR can learn a feasible resizing function di-
rectly from real-world LR images. Our self-supervised
approach performs better on real-world SR than exist-
ing methods trained on synthetic datasets, even with
training on a single image, as evident in Fig. 1.

• Our ICF-SRSR can also down-sample given natural
images, which enables us to construct realistic training
pairs. Therefore, we can train off-the-shelf SR meth-
ods using the generated pairs by our ICF-SRSR in the
absence of real paired training samples.

2. Related Works

In this section, we review recent SR methods from the
perspective of training supervision.

2.1. Supervised image super-resolution

Starting from Dong et al. [12], CNNs [13, 45] have
become a standard for SISR. Following VDSR [28], sev-
eral methods such as LapSRN [30], EDSR [34], and SR-
GAN [31] have taken advantage of residual learning. Ad-
vanced approaches utilize dense connections [56, 71], chan-
nel attention [11, 42, 70], and back-projection [21, 22], and
even transformers [8,14,33,40,58,63] for high-performance
SR architectures. Furthermore, recent attempts extend the
task to continuous scaling factors [9, 23, 47, 54] and even to
arbitrary shapes [50].

Nevertheless, supervised methods are still vulnerable
when a given LR image is degraded by an unknown down-
sampling function [49] that is not seen during training.

Therefore, several methods [10, 18, 25] jointly estimate la-
tent kernel parameters and SR images to alleviate the issue.
Rather than up-sampling LR images directly, Correction fil-
ter [26] first converts a given input to resemble a bicubic
down-sampled image and applies off-the-shelf SR methods.
Still, they require supervision from synthetic LR-HR pairs
for training, which prevents their real-world applications.

2.2. Unsupervised super-resolution

To reduce biases from synthetic training data, zero-shot
methods are trained on a given LR input only, without relying
on supervision from large-scale data. Ulyanov et al. [52] has
shown that the structure of CNNs can be prior for natural
image representation which can be utilized for the SR task.
Based on internal patch recurrence [41], ZSSR [46] is trained
on numerous sub-patches of the given image to construct an
input-specific SR model. Later, there has been an attempt to
integrate external and internal learning using model-agnostic
meta-learning [15]. MZSR [48] is firstly trained on a large-
scale paired dataset with multiple degradation parameters
and then adopted to a given image during the inference time.

However, the zero-shot methods assume that the degra-
dation pipeline for a given image is known, which is less
practical. To implement fully-blind SR methods, internal
patch recurrence properties have played a critical role [41].
Based on such a background, KernelGAN [3] predicts a
kernel that matches the distribution of the down-sampled
image and the original input in an unsupervised manner. The
estimated kernel can also be utilized for several SR mod-
els [46, 66] for more accurate reconstruction. Rather than
explicitly utilize the concept of image distribution, we con-
struct self-supervised chains to learn the SR model without
assuming a specific degradation model.

2.3. Cyclic architectures for super-resolution

On the other hand, a class of methods interprets SR as a
domain transfer problem between LR and HR distributions.
They introduce cyclic architectures [27] with adversarial
loss [16, 44, 73] to train consecutive down-sampling and
SR networks. CinCGAN [62] utilizes the concept of cycle
consistency to train the model on unpaired LR-HR images.
Under the cyclic framework [5, 36, 37, 72], down-sampling
models are trained to simulate the distribution of training
LR images. Then, the following SR network can learn to
generalize on given LR images even if the corresponding
HR pairs do not exist. However, they are still biased toward
handcrafted down-sampling functions [49] and lack gener-
alization. Without using adversarial loss, Guo et al. [20]
combine paired and unpaired data to train a dual regression
network with a loop. In this paper, we further propose a self-
supervised approach without requiring either paired/unpaired
training data or a specific down-sampling operator.
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Figure 2. Overview of our proposed method. (a) We introduce an invertible scale-conditional function (ICF), which receives an input
image and an arbitrary scale condition and generates a resized image. It outputs the same input image for the resized image and the inverse
scale condition. (b) We propose a self-supervised SISR framework ICF-SRSR, in which a learnable ICF up-samples and down-samples a
given image with different scale conditions and can reproduce the same input from the generated images by the inverse scales using the
defined loss functions between the predicted images and the original input.

2.4. Real-world super-resolution

To overcome the limitations of existing methods when
handling real-world data, several approaches have captured
paired LR-HR images in the wild. While they are still lim-
ited due to scene diversity [7], accurate alignment [6, 59],
real-world datasets help generalization of existing SR mod-
els with more practical training data. Zhang et al. [68] and
Xu et al. [61] leverage RAW and RGB images together to de-
liver better reconstruction quality. Nevertheless, those pairs
require careful alignment and complicated hardware setup,
which are not scalable. Recently, Real-ESRGAN [55] and
BSRGAN [65] aim to synthesize more realistic and diverse
LR images to improve the generalization ability of existing
SR models. Still, they cannot leverage information from
real-world images and heavily depend on such a synthesis
process. On the other hand, our fully self-supervised frame-
work does not require synthetic or real-world pairs and can
be trained on arbitrary LR images.

3. Method
We first introduce an Invertible scale-Conditional Func-

tion (ICF) to design our self-supervised real-world single
image super-resolution framework (ICF-SRSR); then, we
discuss our defined loss functions and the network archi-
tecture. For convenience, we denote X ∈ RH×W×3 as the
input LR image with arbitrary sizes of H and W .

3.1. Invertible scale-Conditional Function

For a given input X , a conditional function f(X|s) re-
turns different outputs for different conditions s. In this pa-
per, we design an Invertible scale-Conditional Function (ICF)
as a specific conditional function, which can act as an opera-
tion and the inverse operation for different scale conditions.
Without losing generality, we consider f as an image-to-
image mapping and s as an arbitrary scaling factor, respec-

tively. Then, we can resize an arbitrary image X as follows:

Xs = f (X|s) , (1)

where Xs ∈ RsH×sW×3 is a resized image. Furthermore,
for the same function f , we can get the original input X
again using the inverse scaling factor 1/s as follows:

X = f (Xs|1/s) . (2)

Therefore, f as an ICF can project an image to its arbitrary
scale representation and back-project it to the original input
for the scale conditions s and 1/s, respectively. Fig. 2a illus-
trates the concept of our ICF. We note that if s = 1/s = 1
the function is identity which implies f(X|1) = X .

3.2. Self-supervised SISR using ICF

One of the challenges in real-world SR is that we can-
not acquire the ground-truth HR image for an arbitrary LR
image. To overcome this limitation, we develop a novel self-
supervised SR framework, ICF-SRSR, based on the concept
of ICF. As shown in Fig. 2b, our method can simultaneously
super-resolve and down-sample the given LR image X with
different scale conditions s and 1/s, without requiring any
paired/unpaired LR-HR training samples. Specifically, we
first parameterize an ICF fθ with CNNs and utilize its prop-
erty to optimize the model. Then, we repeatedly apply fθ
to an LR image X with different scale conditions to acquire
two outputs X̌, X̂ ∈ RH×W×3 as follows:

fθ(fθ(X|s)|1/s) = fθ(Xs|1/s) = X̌,

fθ(fθ(X|1/s)|s) = fθ(X1/s|s) = X̂,
(3)

where for s > 1, Xs ∈ RsH×sW×3 and X1/s ∈
RH/s×W/s×3 are generated super-resolution (SR) and low-
low-resolution (LLR) images, respectively. For simplicity,
we assume that both H/s and W/s are integers.
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For an ideal ICF fθ, both X̌ and X̂ in Eq. (3) should be
the same as the original LR image X . Therefore, we train
fθ in a self-supervised manner by reducing the distance be-
tween X and the generated images X̌ and X̂ in two stages
simultaneously, as shown in Fig. 2b. In the up-down stage,
we minimize the distance between X̌ and X . By doing so,
the network can learn to down-sample the generated SR im-
age Xs by restoring the output X̌ as the approximation of the
original input X . On the other hand, in the down-up stage,
we aim to approximate the original input X by reducing the
distance between X̂ and X . Then, the network can learn
to up-sample the generated LLR image X1/s. Therefore, by
leveraging the learned up-sampler and down-sampler applied
on the generated images X1/s and Xs, respectively, we can
generate favorable SR and LLR images Xs and X1/s by em-
ploying the learned model fθ on the input X with the scale
conditions s and 1/s, respectively.

We note that our method is different from CycleGAN [73],
which utilizes unpaired LR-HR images and performs two
independent cycles on LR and HR images separately. Rather,
our model is trained in a self-supervised manner by opti-
mizing the fθ jointly with two stages on LR images only,
without requiring the adversarial loss. In other words, fθ
can perform simultaneous up-sampling and down-sampling
without requiring prior information or paired/unpaired data.

3.3. Training loss functions

To train the proposed ICF fθ, we design a set of self-
supervised loss functions. First, we formulate the consis-
tency loss LCons, which preserves information during the
simultaneous up-down and down-up stages. The proposed
consistency loss LCons on the approximated LR images X̂
and X̌ , and the original input X is defined as follows:

LCons = ∥X̂ −X∥+ ∥X̌ −X∥. (4)

For simplicity, we use ∥·∥ to represent the L1 norm. The
proposed consistency term LCons guarantees to generate reli-
able up-sampled and down-sampled images simultaneously.
Furthermore, to stabilize the training and preserve colors
between the input and intermediate images Xs and X1/s,
we utilize the low-frequency loss [49]. We implement the
low-pass filter with a spatial pooling operator P (·, w, s),
where w and s are window size and stride, respectively. Our
color-preserving loss LColor is defined as follows:

LColor = ∥P (Xs, 4s, 4s)−P (X, 4, 4)∥
+ ∥P

(
X1/s, 4, 4

)
−P (X, 4s, 4s)∥,

(5)

where the window size and stride are adjusted to match di-
mensions between each of (Xs, X) and

(
X1/s, X

)
. The total

training objective LTotal is the combination of the aforemen-
tioned two loss terms, which is defined as follows:

LTotal = LCons + λColorLColor. (6)

3.4. Network architecture

Our ICF-SRSR architecture leverages a single model to
handle different scale conditions. To implement the pro-
posed method, we modify the existing SISR model, e.g.,
EDSR [34] as our baseline backbone architecture. Since
the body part is invariant to the scale image (i.e., the input
and output have the same resolution), we introduce multi-
ple tail parts for different scale conditions. Employing a
single network with the shared body part is more efficient
and can improve performance by observing more augmented
data, i.e., images with different scales, during the training.
In the supplementary material, we provide the details of
the network architecture and illustrate that our method is
model-agnostic and can leverage different SOTA baselines.

4. Experiments

We first introduce training and evaluation configurations
of the proposed ICF-SRSR framework. Then we conduct
comprehensive experiments, extensive quantitative and qual-
itative comparisons with the other methods, and an in-depth
analysis of our proposed method.

4.1. Training details

Dataset. We train and evaluate our method on two scenarios.
1) Synthetic datasets, where the training and testing LR im-
ages are synthesized by a uniform degradation process (e.g.,
bicubic down-sampling) from HR images. 2) Real-world
datasets, which provide paired LR-HR images from the real-
world captured by adjusting the focal length of a camera.

To train our ICF-SRSR, we use 800 bicubic LR images
from the DIV2K [1] dataset. For evaluation, we adopt five
standard benchmarks: Set5 [4], Set14 [64], BSD100 [38],
Urban100 [24], and Manga109 [39]. We also use the high-
quality DIV2K validation set for evaluation.

To train and evaluate our ICF-SRSR under real-world
scenarios, we utilize real-world datasets [6, 59] for the SISR
task. RealSR-V3 [6] includes paired LR-HR images cap-
tured by two different cameras, Canon and Nikon. For each
camera, about 200 training images are captured from differ-
ent scenes for each scaling factor ×2, ×3, and ×4. We used
only LR images with scaling factors ×2 and ×4 for training
and evaluated our method on the pairs of tests 50 for each
scale. DRealSR [59] also contains images captured by five
DSLR cameras. We conduct our experiments using images
for ×2 and ×4 SR, containing 884 and 840 LR images, re-
spectively. For evaluation, we use 83 and 93 test pairs in
DRealSR for ×2 and ×4, respectively.

Hyperparameters. During the training, we extract random
patches of size 48 × 48 from LR images of both synthetic
and real-world datasets. For all our experiments, we set
the batch size to 16, and λColor = 0.2. Random flip and
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Supervision Method Set5 Set14 BSD100 Urban100 Manga109 DIV2K
×2/×4 ×2/×4 ×2/×4 ×2/×4 ×2/×4 ×2/×4

Bicubic 33.66/28.42 30.24/26.00 29.56/25.96 26.88/23.14 30.80/24.89 31.01/26.66

Supervised

VDSR [28] 37.53/31.35 33.03/28.01 31.90/27.29 30.76/25.18 37.22/28.83 33.66/28.17
EDSR [34] 38.11/32.46 33.92/28.80 32.32/27.71 32.93/26.64 39.10/31.02 36.22/30.52
CARN [2] 37.76/32.13 33.52/28.60 32.09/27.58 31.92/26.07 38.36/30.47 - /30.10
RCAN [70] 38.27/32.63 34.12/28.87 32.41/27.77 33.34/26.82 39.44/31.19 36.13/30.52
RDN [71] 38.24/32.47 34.01/28.81 32.34/27.72 32.89/26.61 39.18/31.00 - / -
DRN-S [20] 37.80/32.68 33.30/28.93 31.97/27.78 31.40/26.84 38.11/31.52 35.77/30.79
LIIF [9] 38.17/32.50 33.97/28.80 32.32/27.74 32.87/26.68 - / - 34.99/29.27
ELAN [69] 38.36/32.75 34.20/28.96 32.45/27.83 33.44/27.13 39.62/31.68 - / -

Unsupervised

SelfExSR [24] 36.49/30.31 32.22/27.40 31.18/26.84 29.54/24.82 35.78/27.82 - / -
ZSSR [46] 37.37/31.13 33.00/28.01 31.65/27.12 29.34/24.12 35.57/27.04 34.45/29.08
MZSR [48] 37.25/31.59 33.16/27.90 31.64/ - 30.41/25.52 36.70/29.58 - / -
DASR [53] 37.87/31.99 33.34/28.50 32.03/27.52 31.49/25.82 - / - - / -

Self-supervised
ICF-SRSR (Ours) 37.01/30.81 32.86/27.76 31.54/26.99 30.39/24.72 36.45/28.01 35.19/29.48
EDSR (LLR,LR) (Ours) 37.09/31.06 32.91/27.97 31.63/27.10 30.51/24.92 36.68/28.29 35.26/29.64

Table 1. Quantitative comparisons on synthetic datasets. We compare ICF-SRSR with several supervised/unsupervised methods on the
benchmarks [4,24,38,39,64] and DIV2K [1] validation set for scales ×2 and ×4 with PSNR metric. ICF-SRSR refers to our self-supervised
method, while EDSR (LLR,LR) is the model EDSR trained on our generated pairs (LLR,LR) of the DIV2K.

LR Bicubic EDSR [34] DRN-S [20] LIIF [9] LR Bicubic EDSR [34] DRN-S [20] LIIF [9]

DASR [53] MZSR [48] ZSSR [46] ICF-SRSR (Ours) GT (HR) DASR [53] MZSR [48] ZSSR [46] ICF-SRSR (Ours) GT (HR)

Figure 3. Qualitative comparisons on a synthetic dataset. We compare our ICF-SRSR method with bicubic up-scaling, supervised
methods EDSR [34], DRN-S [20], and LIIF [9] and also unsupervised methods DASR [53], MZSR [48], and ZSSR [46] trained on the
DIV2K [1] training set and evaluated on the DIV2K validation set for scale ×2.

rotation augmentations are applied to the input images to in-
crease the number of effective training samples. We train our
model using ADAM [29] optimizer with initial learning rate
1×10−4, which decays by a factor 0.5 after every 200 epoch.
For quantitative comparisons, we adopt structural similar-
ity (SSIM) [57] and peak signal-to-noise ratio (PSNR) on the
luminance channel for experiments on synthetic datasets and
real-world dataset DRealSR [59] and also on RGB channels
for RealSR-V3 dataset [6]. All experiments are done using
PyTorch 1.8.1 and Quadro RTX 8000 GPUs.

4.2. Evaluation on synthetic datasets

We train our ICF-SRSR on the DIV2K [1] dataset with
EDSR-baseline [34] and test it on the public benchmark
datasets [4, 24, 38, 39, 64] and also the validation set of
DIV2K. We note that the proposed method is trained in a self-
supervised manner by targeting a certain scale s. Specifically,
we train (×2,×1/2) ICF and (×4,×1/4) ICF independently.
Tab. 1 shows extensive comparisons between the proposed

self-supervised approach and the other representative super-
vised/unsupervised SR methods with the PSNR metric. We
demonstrate that our ICF-SRSR approach achieves supe-
rior performance compared to the SelfExSR [24] model and
comparable performance to the other unsupervised and super-
vised methods. We note that the ground truth HR images in
Set5 and Set14 are relatively noisier than the other datasets,
preventing our self-supervised framework from learning ac-
curate scaling functions. We will discuss more details about
the noisy cases in our supplementary material. Notably,
ICF-SRSR outperforms unsupervised method ZSSR [46]
by 1.05dB on scale ×2 of Urban100 dataset and supervised
methods [9, 28] on both scales of DIV2K validation set.

Moreover, we apply the trained ICF-SRSR to LR images
from the DIV2K training dataset and get LLR-LR paired im-
ages. Then, we train off-the-shelf EDSR on the synthesized
paired data from scratch and evaluate it on the test datasets as
shown in Tab. 1. The results demonstrate that EDSR (LLR,
LR) trained on our generated pairs (LLR, LR) achieves supe-
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Training Set Supervision Method
RealSR (Canon) RealSR (Nikon) DRealSR
×2 ×4 ×2 ×4 ×2 ×4

(PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM) (PSNR/SSIM)

Bicubic 30.35/0.876 25.80/0.744 29.66/0.854 25.50/0.718 32.67/0.877 30.56/0.820

Synthetic Supervised

EDSR [34] 30.58/0.880 26.05/0.754 30.00/0.861 25.89/0.735 32.82/0.869 30.64/0.821
RRDB [56] - / - 26.05/ - - / - 25.91/ - - / - 30.55/ -
IKC [18] - / - 25.71/0.751 - / - 25.27/0.740 - / - - / -
BilndSR [10] 27.99/0.822 - / - 26.68/0.794 - / - - / - - / -
DRN-S [20] 30.57/0.879 26.07/0.755 29.99/0.860 25.92/0.736 32.81/0.879 30.63/0.821

Real-world

Supervised

EDSR [34] 32.45/0.913 27.59/0.792 31.59/0.888 27.14/0.771 34.24/0.908 32.03/0.855
RRDB [56] - / - 27.90/ - - / - 27.39/ - 33.89/0.906 31.92/0.856
RCAN [70] 32.69/0.919 27.66/0.793 31.61/0.888 27.09/0.771 34.34/0.908 31.85/0.857
LP-KPN [6] - / - 27.76/0.807 - / - 26.34/0.774 33.88/ - 31.58/ -
DRN-S [20] 32.50/0.912 27.79/0.805 31.43/0.884 - / - 33.91/0.898 - / -

Unsupervised ZSSR [46]+ [3] 28.79/0.826 23.68/0.673 27.54/0.799 22.46/0.645 - / - - / -

Self-supervised
ICF-SRSR (Ours) 30.98/0.885 26.27/0.763 30.31/0.864 25.89/0.742 32.87/0.880 30.65/0.821
EDSR (LLR,LR) (Ours) 31.13/0.888 26.32/0.764 30.33/0.865 25.92/0.742 32.91/0.881 30.68/0.823

Table 2. Quantitative comparison on real-world datasets. We compare our self-supervised ICF-SRSR and EDSR (LLR,LR), i.e., the
model EDSR [34] trained on our generated paired dataset (LLR,LR), to several supervised/unsupervised methods trained on synthetic
DIV2K [1], real-world RealSR-V3 [6] and DRealSR [59] datasets for scales ×2 and ×4 with PSNR and SSIM metrics.

rior performance than ICF-SRSR, which illustrates the merit
of our method to generate useful training image pairs.

Fig. 3 further visualizes the qualitative results of ICF-
SRSR on two validation images from the DIV2K dataset [1].
Our method achieves results comparable to those of the
supervised methods [9,34] while restoring more details com-
pared to unsupervised methods [46, 48]. We note that the re-
sults in ZSSR [46] show lost information and scratched texts,
and on MZSR [48] include severe artifacts and color shifting.
For an in-depth comparison, we also provide quantitative
results with SSIM metric in our supplementary material.

4.3. Evaluation on real-world datasets

We train and evaluate ICF-SRSR for each scale ×2 and
×4 independently on the LR images of each Canon and
Nikon camera from the real-world dataset RealSR-V3 [6]
separately and also on the LR images of the real-world
dataset DRealSR [59] in a self-supervised manner. We fur-
ther train the model EDSR [34] on our generated (LLR, LR)
image pairs. We compare our method with the supervised
methods [6, 20, 34, 56, 70] trained on real paired images,
which serve as the upper bounds for the SR problem.

On the other hand, we employ the pre-trained supervised
models EDSR [34], RRDB [56], IKC [18], BlindSR [10]
and DRN-S [20] on the synthetic DIV2K [1] dataset to super-
resolve the LR images in the testing sets of RealSR-V3 [6]
and DRealSR [59]. Moreover, we utilize Kernel-GAN [3]
to approximate the down-sampling kernel from a single LR
image and use ZSSR [46] as a zero-shot SR to apply to real
LR images. Our extensive comparisons with the various
methods trained on real and synthetic datasets are summa-

rized in Tab. 2. We illustrate that our self-supervised method
can achieve superior performance compared to the meth-
ods pre-trained on the synthetic datasets and unsupervised
method ZSSR [46]+Kernel-GAN [3] in terms of both PSNR
and SSIM metrics, which emphasizes the fact that the trained
models on synthetic datasets with known degradations can-
not perform well on real-world scenarios. We qualitatively
compare our method with the various existing methods on
the RealSR-V3 dataset and visualize the SR results and their
corresponding error maps with respect to the GT (HR) in
Fig. 4. We demonstrate that our self-supervised method can
achieve comparable and sometimes better performance to
the supervised method LP-KPN [6] trained on real paired
images. We note that our method is generally more suit-
able for restoring the texture and preserving color compared
to supervised method IKC [18] and unsupervised method
ZSSR [46]+Kernel-GAN [3] as evident in appearance and
PSNR, SSIM, and mean absolute error (MAE) metrics. We
show more qualitative results in the supplementary material.

4.4. Ablation study

We conduct various ablation studies on the model design,
down-sampling operators, few-shot learning, augmentation,
and the effect of loss functions to better analyze our method.

Model design. We conduct an experiment to show the supe-
riority of a developed baseline as a single conditional model
compared to two independent models and also the effect
of training our two-stage framework compared to training
each Up-Down and Down-Up stage separately. Our results
on synthetic dataset DIV2K [1] and Canon and Nikon im-
ages from real-world dataset RealSR-V3 [6] for scale ×2
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Supervised Real. Supervised Syn. Unsupervised Self-Supervised

Input (LR)

LP-KPN [6]
(22.01/0.672)

IKC [18]
(24.95/0.745)

ZSSR [46]+ [3]
(16.66/0.507)

ICF-SRSR (Ours)
(25.82/0.731)

GT (HR)
(PSNR/SSIM)

ErrorLP-KPN [6]
(=15.78)

Error IKC [18]
(=11.13)

Error ZSSR [46]+ [3]
(=30.29)

ErrorICF-SRSR
(=10.13)

Zero
( MAE)

Input (LR)

LP-KPN [6]
(30.24/0.871)

IKC [18]
(27.96/0.832)

ZSSR [46]+ [3]
(23.82/0.741)

ICF-SRSR (Ours)
(29.49/0.852)

GT (HR)
(PSNR/SSIM)

Error LP-KPN [6]
(=4.66)

Error IKC [18]
(=6.15)

Error ZSSR [46]+ [3]
(=9.52)

Error ICF-SRSR
(=5.24)

Zero
( MAE)

Figure 4. Qualitative comparisons on a real-world dataset. We visualize the super-resolution results (first row) and their corresponding
error maps with respect to the GT (second row) for an image captured by each Nikon and Canon camera. We compare our self-supervised
method ICF-SRSR with the supervised method LP-KPN [6] and the unsupervised method ZSSR [46]+ [3] trained on the RealSR-V3 [6]
dataset and the supervised method IKC [18] trained on synthetic dataset DIV2K [1] for scale ×4 with PSNR, SSIM, and MAE metrics.

show that training with two independent models or using
only one stage (half) results in unsatisfactory performance,
demonstrating the uniqueness of our method in using a single
invertible scale-conditional model as shown in Tab. 3.

Method DIV2K (×2) Canon (×2) Nikon (×2)

Two Models 34.81 30.61 30.01
Up-Down 29.92 28.56 27.52
Down-Up 34.59 30.58 30.00

ICF-SRSR 35.19 30.98 30.31

Table 3. Ablation on model design.

Evaluation of down-sampling. Due to the invertibility
attribute of ICF, our method can be interpreted as a learnable
down-sampler. Therefore, we analyze our model fθ as a
down-sampling operator in three aspects.

First. We train ICF-SRSR on HR images from RealSR-
V3 [6] and evaluate the model on HR images of the test
dataset to gather the generated down-sampled images. Then,
we compare ground-truth LR images with our generated LR
images, as well as LR images obtained by down-sampling
functions e.g., Nearest, Bicubic, Gaussian+Nearest, and
Gaussian+bicubic (σ = 0.4). Tab. 4 provides a compari-
son of LR images for different down-sampling models based
on PSNR. The values show the superiority of our learnable
down-sampling method in generating more realistic LR im-
ages compared to ones with other down-sampling operators.

Down-sampling Canon Nikon
×2 ×4 ×2 ×4

Nearest 29.35 24.51 28.54 23.91
Bicubic 30.27 25.76 29.71 25.56
Gaussian+Nearest 29.62 24.65 28.87 24.09
Gaussian+Bicubic 30.61 25.95 30.12 25.81

ICF-SRSR 32.46 28.93 32.12 29.15

Table 4. Ablation on down-sampling performance.

Second. We further analyze our learnable down-sampling
operator fθ compared to non-learnable down-sampling ap-
proaches. We use our learnable down-sampling operator fθ,
bicubic down-sampling, and Gaussian (σ = 0.4) filtering
followed by different nearest and bicubic down-sampling
operators to generate the LLR images from given input LR
images on the training sets. Then, we train the model EDSR
on the generated paired images (LLR, LR) to learn generat-
ing SR images given LR counterparts. We summarize the re-
sults for scale ×2 of the benchmarks Set5 [4] and Set14 [64],
and Canon and Nikon sets of RealSR-V3 [6] dataset for both
non-learnable and our learnable down-sampling operators
in Tab. 5. The results indicate the effect of our learnable
down-sampling operator to generate appropriate image pairs
for training, which results in a significant improvement com-
pared to known down-sampling operators.
Third. By using different down-sampling methods, we first
generate LR samples from the real training HR images and
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Down-sampling Set5 Set14 Canon Nikon

Bicubic 35.30 31.53 30.41 29.80
Gaussian+Nearest 30.79 28.39 29.41 28.60
Gaussian+Bicubic 35.43 31.84 30.47 29.86

ICF-SRSR 37.09 32.91 31.13 30.33

Table 5. Comparison with non-learnable down-sampling opera-
tors to generate paired training data for SR task.

then train a vanilla EDSR model using the generated pairs,
i.e., (LR, HR). As shown in Tab. 6, our synthesized pairs
can provide more suitable training data compared to ones by
previous learnable down-sampling methods ADL [49] and
DRN-S [20] as the EDSR performs much better for the ×2
SR tasks on real dataset RealSR-V3 [6].

Downsampling Canon (×2) Nikon (×2)

ADL [49] 30.76 30.44
DRN-S [20] 30.82 30.24

ICF-SRSR 31.94 31.24

Table 6. Comparison with learnable down-sampling operators
to generate paired training data for SR task.

Few-shot learning. We train and evaluate our method
on small datasets to show the advantage of our method to
learning from only a few images without requiring a large-
scale training dataset. Therefore, we train the model ICF-
SRSR (Small) on the test sets of synthetic datasets Set14 [64],
BSD100 [38] and Urban100 [24] and also real-world datasets
RealSR-V3 [6] and DRealSR [59] and show their results on
the corresponding test datasets in Tab. 7. We demonstrate
that our method can achieve slightly lower performance even
when trained on very small datasets compared to our model
ICF-SRSR (Large) trained on large-scale training datasets.

Training set Set14 BSD100 Urban100
×2 ×4 ×2 ×4 ×2 ×4

Large 32.86 27.76 31.54 26.99 30.39 24.72
Small 32.44 27.19 31.34 26.82 30.26 24.66

Training set Canon Nikon DRealSR
×2 ×4 ×2 ×4 ×2 ×4

Large 30.98 26.26 30.31 25.89 32.87 30.65
Small 30.67 26.08 29.99 25.76 32.83 30.62

Table 7. Few-shot learning.
Multi-scale augmentation. As we mention in Sec. 3.4,
augmented data with different scales can lead to performance
improvement. Therefore, when we train ICF-SRSR directly
on the test samples, we adopt diverse scaling factors as well
as their reciprocals to compensate for the limited number of
training data. In Tab. 8, we show that increasing the number
of inputs induced by various scaling factors, e.g., ×2, ×4,
and ×8, and their inverses can lead to obtaining superior

Scale Canon (×2) Nikon (×2)

2 30.67 29.99
2,4 30.75 30.09
2,4,8 30.78 30.11

Table 8. Multi-scale augmentation.

performance on the RealSR-V3 [6] dataset. More details
about our multi-scale augmentation strategy are described in
our supplementary material.

Effects of loss functions. We analyze the effects of losses
discussed in Sec. 3.3. As shown in Tab. 9, our novel self-
supervised consistency loss LCons can drastically improve
the performance when it is added to the loss LColor on both
synthetic and real-world datasets. In our supplementary
material, we further discuss the effect of the weight λColor.

Loss DIV2K (×2) Canon (×2) Nikon (×2)

LColor only 30.31 29.12 28.38
LColor,LCons 35.19 30.98 30.31

Table 9. Effect of loss functions.

5. Conclusion

We propose ICF, a novel invertible scale-conditional func-
tion that receives an image and an arbitrary scaling factor and
generates the resized image, and can reconstruct the same in-
put image by the given resized image and the inverse scaling
factor. Then, we utilize ICF to design a self-supervised real-
world single-image super-resolution framework ICF-SRSR.
Accordingly, our framework is able to generate up-sampled
and down-sampled images simultaneously, where the gener-
ated down-sampled images can be used to construct paired
images appropriate for training existing models. Extensive
experiments demonstrate the strengths of our self-supervised
method on both synthetic and real-world datasets and su-
perior performance on the real-world dataset compared to
supervised models trained on the synthetic datasets.

Limitations and future works. One remaining limitation is
that we only apply our method to a few real-world datasets
due to the lack of aligned LR-HR image pairs for evaluation
in other real-world datasets. Therefore, we aim to provide a
large-scale real-world dataset from various scenes for better
evaluation in our future work. Moreover, we will investigate
the applications of our defined ICF to self-supervised image
warping and other image restoration tasks.
Acknowledgements. This work was supported in part
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