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Abstract

Traditional approaches for Person Re-identification (Re-
ID) rely heavily on modeling the appearance of persons.
This measure is unreliable over longer durations due to
the possibility for changes in clothing or biometric infor-
mation. Furthermore, viewpoint changes significantly de-
grade the matching ability of these methods. In this paper,
we propose “Contrastive Viewpoint-aware Shape Learning
for Long-term Person Re-Identification” (CVSL) to address
these challenges. Our method robustly extracts local and
global texture-invariant human body shape cues from 2D
pose using the Relational Shape Embedding branch, which
consists of a pose estimator and a shape encoder built on
a Graph Attention Network. To enhance the discriminabil-
ity of the shape and appearance of identities under view-
point variations, we propose Contrastive Viewpoint-aware
Losses (CVL). CVL leverages contrastive learning to si-
multaneously minimize the intra-class gap under different
viewpoints and maximize the inter-class gap under the same
viewpoint. Extensive experiments demonstrate that our pro-
posed framework outperforms state-of-the-art methods on
long-term person Re-ID benchmarks.

1. Introduction

Person Re-Identification (Re-ID) has emerged as a crit-
ical task in video surveillance applications that involves
matching persons across multiple non-overlapping cameras.
Traditional methods involve feature extraction [23, 32] and
metric learning [20, 22], while recent approaches adopt
deep learning techniques [21, 28]. These methods focus on
encoding appearance features and achieve notable results
on standard Re-ID datasets such as Market-1501 [38] and
CUHK03 [18]. However, their performance is severely af-
fected in two cases: (1) the person changes appearance by
changing clothes, hairstyle, or covering the face (2) differ-
ent persons wear similar clothing. Such shortcomings lead
to poor Re-ID performance in real-world situations and ne-

Figure 1. Features distribution on latent space visualized by t-SNE
using model trained without contrastive viewpoint-aware losses.
Features of different persons are not separable, showing large
intra-class and small inter-class variations which degrades Re-ID
accuracy. This forms the motivation for the proposed approach.

cessitates a Long-term Person Re-ID (LRe-ID) approach
that can deal with scenarios where appearance may become
less reliable.

To address LRe-ID, cloth-invariant features that rely on
face, hairstyle [7], or human body shape [11, 19] have been
explored, as they tend to remain relatively unchanged over
a longer period of time. However, explicitly extracting ge-
ometric cues from images is difficult due to pose variations
or occlusions. Therefore, several LRe-ID methods rely
on alternative modalities like 2D human posture keypoints
[26], contour sketches [35], or gaits [15]. However, these
works suffer from two major limitations. First, identity-
relevant local shape features have not been well captured,
leading to coarse-grained shape representation that has lim-
ited discriminability for re-identification. Second, these ap-
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proaches overlook the impact of camera viewpoint on tex-
ture and shape information. This causes severe confusion
in matching when different persons wear similar clothing
under occluded viewpoints.

In this work, we propose “Contrastive Viewpoint-aware
Shape Learning for Long-term Person Re-Identification”
(CVSL) to overcome these challenges. Our framework
aims to extract texture-invariant body shape cues, which
can effectively represent persons in long-term by mitigat-
ing the influence of clothing. To achieve this, we incorpo-
rate Relational Shape Embedding (RSE) branch and train
our framework using contrastive viewpoint-aware losses
(CVL). RSE leverages 2D skeleton-based human postures
to encode global body shape semantic information and ex-
ploit implicit local correlations between body parts, which
is lightweight and robust in long-term scenarios compared
to other modalities. RSE implements a refinement network
and a Graph Attention Network (GAT) to effectively cap-
ture the shape representation of a person that is invariant
to variations in clothing. Appearance remains a competi-
tive cue when persons slightly change clothes, so we couple
shape with appearance features for final representation.

As shown in Figure 1, persons A and B under the same
viewpoint share similar skeleton-based shape, which results
in close features of different persons and dispersive fea-
tures of the same person on latent space. Mismatching also
happens when persons C and D wear similar clothing. In
this work, to enhance discriminability of shape and appear-
ance cues under viewpoint variations, we introduce con-
trastive viewpoint-aware losses. These losses leverage con-
trastive learning to simultaneously minimize the intra-class
gap under different viewpoints and maximize the inter-class
gap under the same viewpoint. By incorporating viewpoint
guidance, our method effectively learns to differentiate in-
dividuals under viewpoint changes, thus improving the ro-
bustness of person Re-ID systems in real-world scenarios
where surveillance cameras can capture images of individ-
uals from different angles.

The key contributions of our work can be summarized
as follows: (1) we propose a strong baseline that jointly
learns body shape embedding and appearance features un-
der moderate texture variations; (2) we propose contrastive
viewpoint-aware losses to enhance discriminability of shape
and appearance under viewpoint changes; and (3) we
present extensive experiment results, which demonstrate
that our method significantly outperforms state-of-the-arts
on LRe-ID benchmarks.

2. Related Works

2.1. Person Re-Identification (Re-ID)

Several approaches have been proposed for person Re-
ID including feature extraction [23, 28, 32] or distance met-

ric learning [20, 22]. Challenging factors that affect feature
learning in ReID such as pose [5,27] and occlusion [24,41]
have also been considered to reduce spatial misalignment.
However, these methods rely substantially on the assump-
tion of consistent clothing over long-term, which is not
practical in real-world scenarios.

2.2. Long-term Person Re-ID (LRe-ID)

LRe-ID has not been widely studied and there exists few
published datasets [26, 31, 34, 35] to help in the design and
development of novel approaches. Qian et al. [26] proposed
to extract shape embedding by a cloth-elimination shape-
distillation module. [11, 19] utilized shape cues to support
feature learning. However, these works overlooked the lo-
cal structural cues of human. Self-attention [2], regulariza-
tion [15] and clothes-based losses [7] are applied in LRe-ID
frameworks to attend to cloth-irrelevant features like face
and hairstyle. Recent works [8, 13, 36] propose to utilize
clothing status and labels for augmenting Re-ID features in
the latent space. As they solely rely on texture, occluded
viewpoints significantly limit these models’ ability for re-
identification. To enhance robustness against such chal-
lenges, our LRe-ID framework explicitly captures human
structural cues while further boosting the appearance fea-
ture learning for an accurate Re-ID model. Additionally, we
fully leverage the spatial relationships between body parts
to learn more discriminative shape feature representation.

2.3. Viewpoint-aware Person Re-ID

Viewpoint changes severely affect appearance and shape
of a person. Sun et al. [27] leveraged viewpoints to de-
termine the level of gradient update in back propagation.
However, relying solely on texture information brought by
frontal viewpoint is not applicable in LRe-ID. VTM [39]
proposed a view transform feature extraction method. In-
spired by VTM, Zhu et al. [40] proposed a method to clus-
ter persons of the same identity based on a viewpoint-aware
hyper-sphere. Multi-feature fusion frameworks driven by
viewpoint-aware loss were designed in [1, 14]. Contrastive
learning has been applied in traditional Re-ID task [16]. In
this paper, we propose contrastive viewpoint-aware losses,
which leverage contrastive learning to deal with viewpoint
variations. These losses aim to learn a latent space in which
features of the same person under different viewpoints are
pulled closer while features of different persons under the
same viewpoint are pushed away from each other.

3. Methodology
3.1. Framework and Notation

The overview of our proposed framework is shown in
Figure 2. In each training batch, the framework takes in a
set of N RGB images X = {xi}Ni=1. Relational Shape Em-
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Figure 2. Overall model architecture (left), Adaptive Fusion module (upper right) and Shape Encoder (lower right). In a training batch,
given N images, RSE branch outputs shape feature set FS , while Texture branch outputs appearance feature set FA. FS and FA are then
fed into contrastive viewpoint-aware sampling module to obtain inputs for the proposed contrastive viewpoint-aware losses (CVL).

bedding (RSE) branch first estimates skeleton-based pose
for each image using a pose estimator and then outputs a set
of shape feature vectors FS = {fs

i }
N
i=1 using a shape en-

coder built on a Graph Attention Network. Appearance still
provides valuable semantic information about the person.
Therefore, we utilize a CNN backbone to obtain a set of ap-
pearance feature vectors FA = {fa

i }
N
i=1. Feature sets FS

and FA are then used to sample inputs for the proposed con-
trastive viewpoint-aware losses LS

CV L and LA
CV L. Appear-

ance and shape features are then fused by Adaptive Fusion
module to obtain final representation sets F = {fi}Ni=1.

Given X , we denote the corresponding identity label set
as Y ID =

{
yIDi

}
N
i=1, clothes label set as Y C =

{
yCi

}
N
i=1

and estimated viewpoint label set as Y V =
{
yVi

}
N
i=1,

where xi ∈ R3×h×w, yIDi ∈ N, yCi ∈ N, and yVi ∈ N.
The total number of clothing classes is the cumulative num-
ber of suits worn by all individuals in the training set.

3.2. Relational Shape Embedding (RSE) branch

Body shape is an important cue in LRe-ID. It remains
relatively stable and can be used to distinguish persons from
one another, unlike clothing which can vary significantly in
color, style, and pattern. Shape refers to the geometric form
of the human body and can be described using the skeleton
representation. We incorporate body shape information and
improve the accuracy and robustness of our Re-ID frame-
work for long-term scenarios.

3.2.1 Pose Estimation

RSE employs OpenPose [3], which is an off-the-shelf pose
estimator that has achieved decent performance for pose es-
timation. Given an image x ∈ X , OpenPose outputs a set
J = {ji}ki=1 of k body joints, which is used to represent

body pose of the person in the image x. Each joint is repre-
sented by the relative position of the joint in the input image,
i.e. a set of two coordinates (xi, yi) indicating the position
of the pixel corresponding to the location of the joint.

3.2.2 Shape Encoder

Shape embeddings are extracted using an attention-based
encoder with the architecture shown in Figure 2. Given
(w, h) as the original width and height of the image, the co-
ordinates of all joints in J are then normalized, giving the
representation of joint ji =

(
xi

w , yi

h , w
h

)
, i = 1, ..., k. We

then refine the body joints representation set J by passing
them through a refinement network R(·). The refinement
network R(·) is designed to output a feature vector for each
keypoint to capture the fine-grained details of the person’s
body shape. As shown in Figure 2, our refinement network
R(·) consists of a sequence of fully connected layers. R(·)
refines joint ji ∈ J by:

ĵi = R(ji) (1)

where ĵi ∈ Rd is the higher-dimensional refined represen-
tation of ji and d is the dimension of the last layer in R.

Intuitively, the feature of a single joint is not sufficient
to capture the information of body shape. We amplify the
relations between pairs of keypoints to capture local geo-
metric features of a person’s body. To this end, we propose
a Graph Attention Network (GAT) [30] to exploit local rela-
tionships between body parts and obtain a more discrimina-
tive shape embedding of the person, especially when input
image suffers from severe occlusion and global shape can
not be fully captured. GAT is a type of Graph Convolutional
Networks (GCN) that operates on graphs and is designed
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to learn features that are aggregated across neighborhoods
in a graph using message passing. GAT employs attention
mechanism [29] to perform aggregation and updating for
several graph attention layers, allowing the network to cap-
ture high-order relationships between keypoints.

Specifically, as shown in Figure 2, the refined keypoint
feature set Ĵ = {ĵi}ki=1 are then used to construct a graph
that represents the person’s body shape. Each keypoint is
treated as a node in the graph, and edges are added between
nodes that are connected in a body skeleton (i.e. elbow and
shoulder, torso and knee, etc.). Our GAT G consists of L
graph attention layers G(l), l = 0, ..., L−1. Consider a node
ĵi ∈ Ĵ , then the lth layer G(l) operates on ĵi by aggregating
features and updating ĵi using set Ni containing indices of
neighboring nodes of ĵi, given as:

ĵ
(l+1)
i = σ

∑
j∈Ni

MijW
(l)ĵ

(l)
j

 , (2)

where M = (αij),M ∈ Rk×k, αij specifies the weight
between ĵi and ĵj (i.e. the importance of joint ĵj to joint
ĵi), σ is an activation function and Ni can be defined via
adjacency matrix. Denote d(l) as the dimension of node-
level feature vector at layer G(l) (i.e. d(0) = d), then W(l) ∈
Rd(l+1)×d(l)

is the weight matrix of layer G(l). Note that
unlike in traditional GCN where M is explicitly defined,
GAT G implicitly computes αij ∈ M by:

αij = softmaxj

(
h
(
Wĵi,Wĵj

))
, (3)

where h : Rd(l+1) × Rd(l+1) → R is a byproduct of an
attentional mechanism. GAT trivially attends over neigh-
borhoods and implicitly amplifies importance of each joint
to its different neighbors, thus enables our shape encoder
to exploit local relations between body parts. Finally, after
L graph attention layers, a global max pooling layer is em-
ployed to aggregate the high-order representations of joint

set Ĵ (L−1) =
{
ĵ
(L−1)
i

}N

i=1
, producing a fixed-length vec-

tor that summarizes information from the skeleton graph:

fs = GMP
(
Ĵ (L−1)

)
, (4)

where GMP denotes global max pooling, fs is the image-
wise global shape representation.

3.3. Texture branch

The texture branch consists of a CNN backbone Fθ(.)

with parameters θ and a clothes classifier Cclf
ϕ with param-

eters ϕ. Given training batch of images X , we first ex-
tract global appearance feature fa

i of image xi ∈ X by
fa
i = Fθ(xi). Then, we capture local clothes-invariant

information and couple it with the body shape feature to

enhance the global representation [7]. This also helps en-
hance the model’s ability to distinguish different identities
wearing similar clothing. Specifically, predicted clothes
class ŷCi of input image xi is output by clothes classifier:
ŷCi = Cclf

ϕ (fa
i ). Then, given clothes label c = yCi and the

total number of clothes classes NC , clothes classification
loss LC based on cross entropy loss is then employed to
optimize clothes classifier

Lclf
C = −

N∑
i=1

log
e(f

a
i ·ϕc/τ)∑NC

j=1 e
(fa

i ·ϕj/τ)
, (5)

where τ ∈ R+ is a temperature parameter. Then, tex-
ture branch is able to highlight clothes-irrelevant features
via clothes-based adversarial loss LCA, which penalizes the
predictive power of the Re-ID model with respect to differ-
ent clothes of the same identity, given as:

LCA = −
N∑
i=1

NC∑
c=1

s(c) log
e(f

a
i ·ϕc/τ)

e(f
a
i ·ϕc/τ) +

∑
j∈C−

i
e(f

a
i ·ϕj/τ)

,

(6)
where s(c) denotes the cross entropy loss for cth clothes
class. Minimizing clothes-based loss LC = Lclf

C + LCA

forces the backbone to output fine-grained global appear-
ance by coupling clothes-irrelevant features such as face
and hairstyle with human geometric cues.

3.4. Contrastive Viewpoint-aware Losses

Figure 1 demonstrates the effect of viewpoint changes
and similar clothing on re-identification. Although body
shape is a stable cue which represents the geometric charac-
teristic of a person in the long term, different viewpoints re-
sult in highly dissimilar skeleton-based body shape, which
leads to small inter-class variation and large intra-class vari-
ation. Texture branch faces a similar issue and struggles to
identify different identities being captured from the same
viewpoint and wearing similar clothing. To address these
issues, we propose two contrastive viewpoint-aware losses,
LS
CV L and LA

CV L, to guide the training of the RSE branch
and texture branch for more discriminative embeddings.

Specifically, inputs for LS
CV L are contrastively sampled

based on viewpoints as follows: for each shape feature vec-
tor fs

i ∈ FS as anchor, if anchor is captured under frontal
or back viewpoint, images of different identities but same
viewpoint are chosen as positive samples, while images of
the same identity but side viewpoint are considered negative
samples. The reason is frontal and back viewpoints bring
similar skeleton-based shape, while side viewpoint brings
highly dissimilar shape. The proposed LS

CV L loss is then
able to pulls the shape feature vectors of the same identity
under different viewpoints closer in the latent space. De-
noting yVi = {1, 0,−1} corresponding to frontal, side, and
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back viewpoint of input image xi, LS
CV L is formulated as:

LS
CV L = −

N∑
i=1

log

∑
j∈S+

i
ed(f

s
i ,f

s
j )/τ∑

k∈S−
i
ed(f

s
i ,f

s
k)/τ

, (7)

where S+
i =

{
j ∈ [1, ..., N ] | yIDj = yIDi , yVj = yVi ± 1

}
and S−

i =
{
k ∈ [1, ..., N ] | yIDk ̸= yIDi , yVk = yVi

}
are the

indices sets of positive and negative samples, and d(·, ·) de-
notes the cosine distance.

For texture branch, we first mitigate the influence of
viewpoint variations by proposing LA

V where we consider
images of same identity and different viewpoint as pos-
itive samples and images of different identity and same
viewpoint as negative samples. This helps pushing appear-
ance feature vectors of different identities under the same
viewpoint farther in the latent space. Given positive set
A+

i =
{
j ∈ [1, ..., N ] | yIDj = yIDi , yVi ̸= yVj

}
and nega-

tive set A−
i =

{
k ∈ [1, ..., N ] | yIDk ̸= yIDi , yVk = yVj

}
, LA

V

has the formulation as:

LA
V = −

N∑
i=1

log

∑
j∈A+

i
ed(f

a
i ,fa

j )/τ∑
k∈A−

i
ed(f

a
i ,fa

k )/τ
. (8)

In this work, we further deal with persons wearing similar
clothes by proposing hard-mining triplet loss LA

sim. In each
training step, for every fa

i ∈ FA, we compute the pairwise
distance between fa

i and every other feature vector in FA.
Then, by considering that the vector that is most similar to
the anchor is likely to share similar clothing, triplet is cho-
sen as follows: vector that has the largest (smallest) distance
to fa

i , with the same (different) identity is the positive sam-
ple fa,p

i and negative sample fa,n
i , respectively. Given the

sampled triplet, LA
sim is formulated as:

LA
sim =

N∑
i=1

(d (fa
i , f

a,p
i ) + max {0,m− d (fa

i , f
a,n
i )}) ,

(9)
where m is margin parameter that controls the separation
between the positive and negative pairs. In this work, m is
set to 0.3. Finally, we have LA

CV L that drives the training of
texture branch as LA

CV L = LA
V + LA

sim.

3.5. Adaptive Fusion Module (AFM)

We propose to fuse shape feature fs
i and appearance fea-

ture fa
i by AFM as shown in Figure 2. Specifically, features

are first transformed and projected onto a common latent
space by a convolutional layer:

fsi = σ(Conv(∥fs
i ∥2), fai = σ(Conv(∥fa

i ∥2), (10)

where σ(.) denotes sigmoid activation function. Then, to
amplify the contribution of each feature to the final repre-
sentation, we force them to optimize each other by concate-
nating two vectors and feeding them into the corresponding

Figure 3. Samples images from LTCC [26] and PRCC [35]
datasets. Viewpoints are clustered into three groups: frontal, side
and back. PRCC is collected under good lighting condition and no
occlusion, while LTCC poses severe challenges for Re-ID.

convolutional layers Convs and Conva which estimate cor-
responding weights ws

i and wa
i . Global representation fi

of input image xi is obtained by fi = ws
i ⊙ fsi +wa

i ⊙ fai .
Batch feature set F = {fi}Ni=1 serves as input to identifi-
cation loss LID, which is the sum of a cross-entropy-based
classification loss Lce and pair-wise triplet loss Ltri, i.e.
LID = Lce + Ltri. Finally, the overall CVSL model is
trained by the total loss:

L = LS
CV L + LA

CV L + LC + LID. (11)

4. Experimental Setup

4.1. Datasets and Evaluation Protocol

Two large-scale LRe-ID datasets including LTCC and
PRCC are used for experiments in our work. LTCC [26]
is an indoor cloth-changing person Re-ID dataset which has
152 identities. Each person has 2 to 14 outfits, in total
478 different outfits were captured from 12 camera views.
PRCC [35] dataset consists of images from 221 identi-
ties. Each person in Cameras A and B is wearing the same
clothes, but the images are captured in different rooms. For
Camera C, the persons wear different clothes, and the im-
ages are captured on a different day. Samples from three
viewpoints from the two datasets are visualized in Figure 3,
which shows a large variation in image quality between the
two datasets.

We utilize mean average precision (mAP) and rank-1 ac-
curacy to evaluate the performance of our model. Following
the evaluation procedures in [26,35], we validate our model
in cloth-changing setting where only cloth-changing sam-
ples are used for evaluation. We also report results in stan-
dard setting, where for PRCC, the test set consists of only
cloth-consistent samples, while for LTCC, the test set in-
cludes both cloth-consistent and cloth-changing samples.
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Methods Modalities
LTCC PRCC

Cloth-changing Standard Cloth-changing Standard
R-1 mAP R-1 mAP R-1 mAP R-1 mAP

PCB [28] RGB 23.5 10.0 65.1 30.6 41.8 38.7 99.8 97.0
RGA-SC [37] RGB 31.4 14.0 65.0 27.5 42.3 - 98.4 -
RCSANet [12] RGB - - - - 48.6 50.2 100 97.2

CAL [7] RGB 40.1 18.1 74.2 40.8 55.2 55.8 100 99.8

PRCC-contour [35] RGB + sketch - - - - 34.4 - 64.2 -
GI-ReID [15] RGB + sil 23.7 10.4 63.2 29.4 33.3 - 80.0 -
CESD [26] RGB + pose 26.1 12.4 71.4 34.3 - - - -
FSAM [11] RGB + pose + sil 38.5 16.2 73.2 35.4 54.5 - 98.8 -

CASE-Net [19] RGB + pose - - - - 39.5 - 71.2 -
3DSL [4] RGB + 3D pose + sil 31.2 14.8 - - 51.3 - - -

CVSL (Ours) RGB + pose 44.5 21.3 76.4 41.9 57.5 56.9 97.5 99.1

Table 1. Quantitative results comparison between CVSL and state-of-the-arts (SOTAs) on LTCC and PRCC datasets. Overall, our frame-
work outperforms SOTAs on both datasets in cloth-changing setting, demonstrating the effectiveness of CVSL in real-world scenarios.

4.2. Implementation Details

Our work is implemented in PyTorch [25]. To estimate
viewpoint, we leveraged MEBOW [33] and directly per-
formed inference on training set using provided pretrained
model. We choose ResNet-50 [9] initialized with weights
pretrained on ImageNet [6] as CNN backbone for texture
branch. For pose estimation, we employed OpenPose [3] to
obtain 19 keypoints in COCO format. As we do not need
specific features from nose, eyes, and ears, we averaged 5
keypoints from face as one point, leading to 14 keypoints
in total. Refinement network consists of 3 linear layers of
[128, 512, 2048] neurons respectively, while GAT consists
of two layers. During training, the images are resized to
256 × 128. Horizontal flipping and random erasing are ap-
plied for data augmentation. Batch size is 32 where 8 iden-
tities and 4 images per identity are sampled. Adam [17]
optimizer is used with initial learning rate of 5e−4, momen-
tum of 0.9 and weight decay factor for L2 regularization of
1e− 6. Learning rate is reduced by a factor of 0.1 after ev-
ery 30 epochs. τ is set to 1/16. Our model was trained on a
single NVIDIA GeForce GTX 1080 16GB RAM GPU for
a total of 80 epochs, which took around 4 hours.

5. Results and Ablation Study

5.1. Results

Quantitative results of our proposed CVSL framework
is reported in Table 1. We compared CVSL with existing
methods, categorized by modalities utilized, including tech-
niques based on RGB modalities only (i.e. PCB [28], RGA-
SC [37], RCSANet [12] and CAL [7]), RGB with parsing
(i.e. PRCC-contour [35] and GI-ReID [15]), and RGB with
pose (i.e. CESD [26], FSAM [11], CASE-Net [19] and
3DSL [4]). Except for traditional methods PCB [28] and
RGA-SC [37], the remaining are specifically designed for

Methods
LTCC PRCC

R-1 mAP R-1 mAP
Texture, w/o CVL 38.9 16.5 45.7 41.1
Texture, w/ CVL 40.1 17.2 46.5 43.4

RSE, w/o CVL 32.1 14.2 42.2 39.2
RSE, w/ CVL 35.2 14.9 43.1 41.9

Joint, w/o CVL 42.1 20.1 53.6 51.1
Joint, w/ Triplet loss 42.3 20.5 54.1 51.4

CVSL (Ours) 44.5 21.3 57.5 56.9

Table 2. Ablation studies of (1) the RSE branch and (2) the
contrastive viewpoint-aware losses (CVL) on LTCC and PRCC
datasets in cloth-changing setting only.

LRe-ID. Overall, CVSL outperforms current state-of-the-
art methods in both cloth-changing and standard settings on
LTCC and in cloth-changing setting on PRCC. Since PRCC
contains images which are clear and captured under good
lighting condition (Figure 3), results are saturated in same-
clothes (standard) setting using texture-based models. On
the other hand, on LTCC, compared to methods using RGB
modalities only, our CVSL framework shows superiority by
coupling human geometric features with texture informa-
tion which can be severely affected by lighting condition
and viewpoints in reality. Compared to other LRe-ID meth-
ods that also utilize auxiliary cues like pose and silhouette,
our method significantly outperforms them by effectively
capturing local relations between body parts, which is more
stable in long-term and not affected by occluded viewpoints
in certain cases like global shape. We also effectively mit-
igate the influence of viewpoint variations, resulting in a
more robust model.

5.2. Ablation Study

We carry out ablation study on the two key components
of our proposed CVSL framework: (1) the effectiveness of
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shape features produced by RSE branch when being cou-
pled with appearance features from texture branch; and
(2) the effectiveness of the proposed contrastive viewpoint-
aware losses LS

CV L and LA
CV L. Overall, RSE branch effec-

tively extracts clothing-invariant body shape cues that can
be coupled with appearance for long-term person represen-
tations. CVL also significantly boosts the accuracy of the
Re-ID framework.

5.2.1 RSE branch

Table 2 reports quantitative comparison results of appear-
ance, shape, and joint representation. It can be seen that
models with texture branch achieve higher performance
than models with RSE branch on both datasets. The rea-
sons are two-fold. First, in cases of slight cloth-changing
or cloth-consistence, appearance remains a competitive fea-
tures for re-identification. In those cases, body shape be-
comes less competitive than exploiting visual similarities
from persons. Second, discriminability of shape from RSE
branch relies on the accuracy of pose estimator which may
struggle to produce accurate poses from low quality and oc-
cluded images. Overall, the joint representations outper-
form appearance and shape by a large margin, showing that
RSE branch effectively extracts discriminative body shape
cue that can be coupled with appearance and other clothes-
irrelevant features to boost the model’s performance.

Our CVSL framework surpasses CAL [7], which uses
RGB modalities only, by a margin of 4.4% in R-1 and
3.2% in mAP on LTCC. The reason is that LTCC contains
a large number of low-quality and occluded images (Fig-
ure 3), which limits the model’s ability to mine texture in-
formation. Our method effectively utilizes body shape cue
as complementary to appearance for a more discriminative
global representation.

Our CVSL framework also achieves superior perfor-
mance over 3DSL [4], which incorporates information from
3D shape and silhouette in addition to appearance. These
modalities require complicated estimation and additional
3D ground truths, leading to heavy multi-stage training.
CVSL is an end-to-end framework with lightweight RSE
branch. Most importantly, results reveal that 2D shape fea-
tures extracted by our method can effectively enhance ro-
bustness of model against clothing changes.

5.2.2 Contrastive Viewpoint-aware Losses (CVL)

Table 2 reports the comparison of models trained with and
without the proposed contrastive viewpoint-aware losses
LS
CV L and LA

CV L, while a comparison in viewpoint varia-
tions between LTCC and PRCC is shown in Figure 4. Over-
all, in all model settings, it can be observed that CVL sig-
nificantly improves the re-identification accuracy. Further-
more, Figure 5 shows that features produced by CVSL are

Figure 4. Comparison in viewpoint variations between LTCC and
PRCC. Most images in PRCC are of frontal viewpoint, which is
less challenging than LTCC.

more separable on latent space than model trained with-
out CVL. The reasons are two-fold: (1) LS

CV L guides the
models to minimize the confusion caused by dissimilarity
of shape from the same person under different viewpoints;
and (2) side and back viewpoints cause severe occlusion,
which makes captured clothes-irrelevant features not dis-
criminative enough. In this case, LA

V and LA
sim effectively

complement the missing texture information by explicitly
pulling features of the same identity closer while pushing
those of different identities away on latent space. Our pro-
posed framework also shows superiority over model trained
with the widely used Triplet loss [10].

Compared to FSAM [11], which utilizes human geomet-
ric cues but overlook the effect of viewpoints, our frame-
work outperforms FSAM by 6.0% in R-1 and 5.1% in mAP
on LTCC, while only a slight performance gap can be noted
on PRCC. This shows effectiveness of CVSL in real-world
scenarios since unlike PRCC, LTCC poses large variations
in occluded viewpoints (Figure 4).

Figure 5. Distribution on feature space of global representations
produced by model trained without CVL (left) and our CVSL
(right); Visualized by t-NSE from 10 identities and 10 images per
identity under different viewpoints randomly selected from LTCC.
It can be seen that CVL is able to enhance simultaneously the intra-
class similarity and inter-class diveristy, leading to more separable
feature embeddings.
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5.3. Further Analysis

Graph Attention Network (GAT). In Table 3, we vali-
date the effectiveness of the proposed GAT in capturing lo-
cal and global shape features. Compared to the model using
the widely used Graph Convolutional Network (GCN), the
proposed CVSL framework achieves higher performance
on both datasets. Different from GCN, by incorporating an
attention mechanism, GAT is capable of: (1) capturing finer
local shape features and (2) amplifying the contribution of
each keypoint feature for a discriminative aggregated global
shape embedding.

Methods
LTCC PRCC

R-1 mAP R-1 mAP
Model using GCN 43.1 20.4 56.3 55.2

CVSL (Model using GAT) 44.5 21.3 57.5 56.9

Table 3. Comparison between the model using GCN and the pro-
posed CVSL using GAT on LTCC and PRCC in cloth-changing
setting only.

Adaptive Fusion Module (AFM). In Table 4, we vali-
date the effectiveness of AFM in aggregating shape and ap-
pearance embeddings for final representations of identities.
Concatenating the two embeddings degrades the model’s
performance on both datasets, showing the superiority of
AFM which first projects the embeddings onta a latent space
then amplifies the importance of each embedding to the fi-
nal representation. This mitigates the influence of shape or
appearance under severely occluded viewpoints.

Methods
LTCC PRCC

R-1 mAP R-1 mAP
Concatenation 43.6 20.8 56.7 55.4

AFM 44.5 21.3 57.5 56.9

Table 4. Comparison between the two methods for aggregating
shape and appearance embeddings: concatenation and the pro-
posed AFM, on LTCC and PRCC in cloth-changing setting only.

6. Conclusion

In this paper, we have presented CVSL, a framework
for Long-term Person Re-ID which is robust to clothing
changes and viewpoint variations. We address the challenge
of clothing-confusion in Re-ID by exploiting body shape
which is a stable cue in long-term for re-identification.
Shape features are extracted both locally and globally using
the proposed Relational Shape Embedding branch, and then
effectively coupled with appearance and clothes-irrelevant
features using the Adaptive Fusion module. We further

improve the performance of the model by proposing con-
trastive viewpoint-aware losses. We mine viewpoint infor-
mation to guide the model in learning a latent space where
features from the same identity under different viewpoints
are pulled closer, while those from different identities that
share similar geometric shape or clothing are pushed away.
Extensive experiments have shown the superiority of our
proposed framework over state-of-the-art methods.
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