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Abstract

Healthcare data often come from multiple sites in which
the correlations between confounding variables can vary
widely. If deep learning models exploit these unstable cor-
relations, they might fail catastrophically in unseen sites.
Although many methods have been proposed to tackle un-
stable correlations, each has its limitations. For example,
adversarial training forces models to completely ignore un-
stable correlations, but doing so may lead to poor predic-
tive performance. Other methods (e.g. Invariant Risk Mini-
mization) try to learn domain-invariant representations that
rely only on stable associations by assuming a causal data-
generating process (input X causes class label Y ). Thus,
they may be ineffective for anti-causal tasks (Y causes
X), which are common in computer vision. We propose a
method called CoPA (Conditional Prevalence-Adjustment)
for anti-causal tasks. CoPA assumes that (1) generation
mechanism is stable, i.e. label Y and confounding vari-
able(s) Z generate X , and (2) the unstable conditional
prevalence in each site E fully accounts for the unstable
correlations between X and Y . Our crucial observation is
that confounding variables are routinely recorded in health-
care settings and the prevalence can be readily estimated,
for example, from a set of (Y,Z) samples (no need for cor-
responding samples of X). CoPA can work even if there is
a single training site, a scenario which is often overlooked
by existing methods. Our experiments on synthetic and real
data show CoPA beating competitive baselines.

1. Introduction
Out-of-domain (OOD) generalization is essential in

many fields like healthcare, in which data come from mul-
tiple sites. Between sites, the data are not identically dis-
tributed, and correlations between (confounding) variables
can vary widely (i.e., are unstable). For example, differ-
ent hospitals may use different imaging devices, making the
scans look different. Furthermore, imaging techniques may
be spuriously correlated with diagnosis at some hospitals
but not others. ML models trained to diagnose using im-

ages might exploit unstable correlations [3,9,28] to increase
training predictive accuracy and could perform poorly at
new sites.

Understanding the data-generating process and how it
changes between sites could help account for unstable cor-
relations. In this work, we restrict our attention to the case
where the label Y (e.g., an object in a scene) and confound-
ing variable(s) Z (e.g., camera type) are causes of X (e.g.,
the image). Y and Z may be (spuriously) correlated. Fig-
ure 1 shows 6 causal graphs (E1 through E6) representing
6 data-generating processes under this case. Unstable cor-
relations are indicated with red edges in the graphs. We
also assume that the mechanism that generates X from its
causal parents (i.e. P (X|Y,Z)) is stable, while the remain-
ing mechanisms may vary between sites. Consequently, the
correlations between X and its parents are stable and are
denoted using black edges.

Some prior methods, like domain-adversarial train-
ing [10], aim to ensure that the model does not exploit
spurious correlations between Y and Z. Such methods
implicitly assume that the unstable correlations between Y
and Z (through the backdoor path) can vanish in test data,
as shown in E2. When the test data distribution deviates
from E2, however, these methods can be sub-optimal.
For example, the unstable correlations between Y and Z
may simply change in degree (e.g., weaken as in E3),
so exploiting these may still be useful for predictions 1.
Additionally, data generation can change due to a chang-
ing prior on Y , i.e., label-shift (E4). Although some
methods have been proposed to address label-shift [23],
it remains an under-studied problem [33]. There is a lack
of methods that account for both spurious correlations
and label-shift [33] even though they often co-occur in
reality. Furthermore, these methods are also not applicable
when the link between Y are Z are causal (Y causing
Z, as in E5 or vice-versa, as in E6). Other methods,
e.g. Invariant risk minimization (IRM) [4], leverage data
from multiple training sites to extract a domain-invariant

1Consider a scenario where patients are triaged based on risk factors
correlated with diagnosis Y and imaging parameters Z. E1 and E3 can
correspond to different triaging systems.
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Figure 1. Data generation at different sites with the same stable generative distribution P (X|Y,Z). Red edges are unstable (i.e. generative
mechanisms vary with sites) while black edges are stable. X , Y , Z are input, target, and confounding variables respectively. Most methods
assume strong spurious correlation in training data (E1) which vanishes in test data (E2). However, that is not the only possibility. Others
include: weak spurious correlation (E3), label-shift (E4), or causal correlation (E5 and E6). Gray nodes are hidden/unobserved.

representation, which is assumed to be transportable to any
site. IRM learns to predict Y using some representation
Φ of X that is a function of the causal parents (PA) of Y .
More precisely, IRM learns functions f and Φ such that
Ŷ := argmaxY P (Y |PA(Y )):=f(g(PA(Y ))):=f(Φ(X)).
By assuming that P (Y |PA(Y )) is stable (domain-
invariant), IRM is also stable and it will perform well in
all sites. However, IRM is not formulated for anti-causal
learning problems (Y is an ancestor of input X) because
Φ(X) cannot be some function of PA(Y ). Consequently,
using IRM in anti-causal problems (very common in com-
puter vision [32]) can result in bad OOD performance [2],
especially in the presence of label-shift [43]. Besides, IRM
and its variants rely on training data from multiple sites,
which may be possible to obtain.

We propose an approach for anti-causal learning named
Robust learning via Conditional Prevalence-Adjustment, or
CoPA for short. CoPA learns a stable predictor [35] of Y
that leverages the stable edges and an estimate of the con-
ditional prevalence P (Y |Z,E) in each site E. By adjust-
ing for the effect of unstable correlations through the con-
ditional prevalence estimate, CoPA can learn to generalize
to OOD samples. Crucially, the conditional prevalence es-
timate at each site, including test sites, can be readily ob-
tained from a set of (Y,Z) samples without any need for
labeled samples of X . This estimation is helped by the
fact that confounding variables Z are routinely recorded in
healthcare (Z are visible/observed). CoPA has several ad-
vantages over baselines.

• Since the conditional prevalence estimate absorbs the

effect of label-shift, CoPA is less susceptible to this
change which is quite common in healthcare data
(e.g. disease prevalence can vary between hospitals).

• CoPA can deal with not only spurious correlations
(Figure 1, E1 to E4) but also changing causal corre-
lations (Figure 1, E5 and E6) because the prevalence-
adjustment procedure of CoPA does not assume any
specific causal ordering between Y and Z.

• CoPA can work even if there is a single training site, a
scenario sometime overlooked by existing methods.

Our experiments on synthetic and real data show CoPA out-
performing competitive baselines and demonstrates good
OOD generalization.

2. Related Work
In OOD settings where data is assumed to be available

from multiple sites and the sites are known, there are sev-
eral frameworks with different assumptions [11]. Domain
adaptation assumes access to test sites’ unlabeled data [25].
Transfer learning assumes access to some labeled data from
test sites [44]. Domain generalization assumes no infor-
mation of test sites is available [4, 27]. Our setup assumes
access to some statistics of class labels from the test sites,
thereby most resembling domain generalization.

Domain-invariant representation learning [20,24,38,45]
aims to learn an invariant representation across multiple do-
mains to achieve better OOD generalization. One could ap-
ply domain-invariant representation learning via adversarial
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learning [10,21] for domain generalization. However, these
methods may fail in the presence of label-shift [4, 37, 45].

IRM [4] is another approach to domain generalization
which learns invariant causal predictors [27] using data
from multiple sites. However, IRM may fail when (1) there
are too few training sites [29], (2) the number of samples
per site is too low [15], or (3) when test sites are very
different from training sites [29]. Follow-up work such
as Risk Extrapolation (REx) [18] have been proposed to
tackle more extreme shifts between training and test sites.
Yet, the requirement for multiple training sites still remains.
Other notable methods for domain generalization include
CORAL [36] and DRO [31]. Unfortunately, few can con-
sistently beat ERM in real-world settings [11]. More recent
methods such as IWDANN [37] and LAMDA [19] try to
tackle both domain adaptation and the label-shift problem.
However, they were formulated for only 2 sites (1 source
and 1 target). Construction of realistic benchmarks such
as the WILDS benchmark [17] has been beneficial for do-
main generalization research. However, these benchmarks
currently lack information about potential confounders and
they do not consider label-shift.

3. Proposed Method
CoPA assumes (1) a stable mechanism for generating X

from label Y and confounders Z; (2) the availability of the
conditional prevalence P (Y |Z,E) at each site E; and (3)
the observability of confounders Z at training and test sites.
Since confounders are routinely collected in healthcare, the
second and third assumptions usually hold. Nevertheless,
we explore how to relax these assumptions in Section 5.

3.1. Conditional Prevalence Adjustment Across
Sites

Since P (X|Y, Z) is assumed to be stable (i.e. invari-
ant across sites), X ⊥⊥ E|Y, Z. For brevity, we denote
P (·|·, E=e) as P (·|·, e). For any two sites ei and ej :

P (X|Y,Z, ei) = P (X|Y, Z) = P (X|Y,Z, ej) (1)

= P (Y |X,Z, ei)
P (X|Z, ei)
P (Y |Z, ei)

, (2)

where (2) follows from Bayes’ rule. From (1) and (2):

P (Y |X,Z, ej) =
P (Y |Z, ej)
P (Y |Z, ei)

P (X|Z, ei)
P (X|Z, ej)

P (Y |X,Z, ei)

(3)

Using (3), the maximum-likelihood estimator of Y given
input X and Z at site ej can be expressed as

Ŷej = argmax
Y

P (Y |X,Z, ej)

= argmax
Y

P (Y |Z, ej)
P (Y |X,Z, ei)

P (Y |Z, ei)
. (4)
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Figure 2. A predictor of Y using input X and Z leverages unstable
edges (left). A predictor of Y using X , Z, and P (Y |Z,E) as input
only uses stable edges, hence it is a stable predictor (right). Dotted
edges: statistical relations used in predictors. Black edges: stable,
red edges: unstable. White nodes: visible, gray nodes: hidden.

Let R(X,Z) be the ratio P (Y |X,Z,E)/P (Y |Z,E).
Equation (4) implies that R(X,Z) is invariant across sites
and all the site-specific instability can be absorbed by the
conditional prevalence P (Y |Z, ej).

This suggests a new domain adaptation strategy. Let
fθ(X,Z) denote an estimator, with parameters θ, which
models the ratio R(X,Z). One can adapt the predictor
to the new site by adjusting for the new site prevalence
P (Y |Z, ej). Specifically, if the predictor at site ei is:

P (Y |X,Z, ei) = P (Y |Z, ei)fθ(X,Z) (5)

then P (Y |Z, ej)fθ(X,Z) can be used to predict for sam-
ples at an unseen site ej .

3.1.1 Additional Intuition

Figure 2 provides additional intuition for CoPA. Given the
graph (Figure 2, left panel), the statistical relations (links in
causal graph) used by P (Y |X,Z,E) and P (Y |Z,E) are:

• P (Y |X,Z,E): Q→Y , Y→X , Z→X , Y←S→Z

• P (Y |Z,E): Q→Y and Y←S→Z

Specifically, Y→X and Z→X are used to infer Y from X;
Q→Y is used to infer Y from E; and the back-door path
Y←S→Z is used to infer Y from Z. From Equation 4,
P (Y |X,Z, ej) is the product of P (Y |Z, ej) and the ratio
R(X,Z). Furthermore, since P (Y |X,Z, ej) uses 4 links
and P (Y |Z, ej) already accounts for 2 links, R(X,Z) only
needs to account for the remaining 2 links, namely Y→X
and Z→X . Consequently, R(X,Z) is invariant across sites
because Y→X and Z→X are stable (due to the stable gen-
eration assumption).

Since the ratio is invariant, the instability of
P (Y |X,Z, ei) is captured in the term P (Y |Z, ei).
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Input:
Dtrain : {xe

k, y
e
k, z

e
k}, P̂ (Y |Z, e),∀e ∈ {e1, .., et}

Dtest : {xe
k, z

e
k}, P̂ (Y |Z, e),∀e ∈ {et+1, .., eN}

Output: {ŷek},∀e ∈ {et+1, .., eN}
1. Initialize neural network fθ(X,Z);
2. while not converged do

forall xe
k, y

e
k, z

e
k in Dtrain do

ŷek = P̂ (Y |zek, e)⊙ fθ(x
e
k, z

e
k);

L = LEnt(y
e
k, ŷ

e
k);

Back-propagate L and update fθ
end

end
3. forall xe

k, z
e
k in Dtest do

ŷek = P̂ (Y |zek, e)⊙ fθ(x
e
k, z

e
k)

end

Algorithm 1: CoPA. LEnt : cross-entropy loss

Thus, when P (Y |Z, ei) is known, this effectively shields
the prediction of Y from site instability (shown in Figure 2,
right panel). Hence, one can construct a predictor of Y
from X , Z, and P (Y |X,Z, ei) that is domain-invariant. As
the instability captured in P (Y |Z, ei) includes the label-
shift effect on Y due to Q and S, prevalence-adjustment
makes CoPA robust to label-shift. Furthermore, since the
above argument for prevalence-adjustment can be adapted
to cases where the link between Y and Z is causal (Y
causes Z or Z causes Y ) instead of spurious, without loss
of generality, CoPA can be applied to other sites (e.g. E5
and E6 in Figure 1) even when the exact causal relation
between Y and Z is not known.

3.2. The CoPA Algorithm

In CoPA, we implement a model fθ(X,Z) that cap-
tures the invariant ratio R(X,Z). In each site ei, the site-
specific conditional distribution of Y is obtained by multi-
plying the output of fθ(X,Z) with the site-specific preva-
lence P (Y |Z, ei). This output is then compared against the
ground-truth to calculate the gradients for model training.
We use cross-entropy as the loss function.

Algorithm 1 summarizes the steps in CoPA. Step 1 ini-
tializes the neural network, fθ(X,Z), which is shown in
Figure 3. Step 2 trains fθ(X,Z) using gradient descent un-
til convergence. Model selection is performed according to
validation criteria discussed in Section 4.3. Step 3 uses the
network to predict the labels of samples at new sites.

When Z is a categorical variable, the smoothed empirical
normalized counts can be used as the conditional prevalence
estimates P̂ (Y |Z,E) (see Section 4.2 for more details).
When Z is a continuous variable or multi-dimensional, the
empirical conditional prevalence estimate can be obtained
by multiple training auxiliary models, one for each site E,

Figure 3. Model architecture of CoPA.

to predict the probability of Y given Z.

3.3. Network Architecture

Figure 3 shows the general architecture of the
CoPA model which uses X , Z, and P̂ (Y |Z,E) to pre-
dict Y . First, the representation of X is computed us-
ing the backbone network. This representation of X is
then combined with Z via concatenation (late fusion) and
the concatenated vector is fed through a linear layer. The
output of this linear layer is the domain-invariant ratio
fθ(X,Z) := R(X,Z). Since this ratio is non-negative,
the activation after the linear layer must be appropri-
ately chosen. In practice, we found that taking the soft-
max of the last layer worked well. The output fθ(X,Z)
is then element-wise multiplied with the prevalence esti-
mate, P̂ (Y |Z,E), to produce the conditional distribution
P̂ (Y |X,Z,E). The predicted label is the most likely class
(argmax) of P̂ (Y |X,Z,E).

4. Experiments

We conducted experiments using both synthetic (Sec-
tion 4.4) and real data (Section 4.5). Examples of the syn-
thetic and real data are shown in Appendix C. We experi-
ment on the following scenarios to accurately reflect those
that may arise in reality:

1. Multiple vs single training site(s). First, while models
trained on data from multiple sites may achieve better
OOD performance, sometimes only data from a sin-
gle site (e.g., hospital) might be available. Hence, it is
important that methods can perform well in the single
training site setup.

2. Different causal relations between Y and Z. In some
cases, the causal relations between the target Y and
the confounding variable Z are not clearly understood.
Thus, methods which can work regardless of the nature
of the relationship between Y and Z are desirable.

2744



4.1. Baselines

We compared CoPA against Empirical Risk Minimiza-
tion 2 (ERM) and four strong baselines for robust learning:
IRM [4], DANN [10], CORAL [36], and DRO [31], and
IWDANN [37]. IWDANN (Importance-Weighted DANN)
was originally formulated for 2 sites but we extended IW-
DANN to the multi-site setup by following the authors’ sug-
gestion of having one set of importance weights for each
pair of sites. CORAL, DANN, and IWDANN have ad-
ditional access to unlabeled data from validation and test
sets. For experiments with multiple training sites, we cycle
through the sites between batches. IRM is excluded in ex-
periments with a single training site as it needs data from
multiple sites. For each method, results from 5 different
runs using different random seeds were averaged. Standard
errors over these runs are indicated with error bars in the
figures. Given the unbalanced label distributions, F1-score
instead of accuracy is used to evaluate performance.

4.2. Estimating Empirical Prevalence

When both Y and Z are categorical variables, the em-
pirical prevalence P̂ (Y |Z, ei) can be calculated directly by
counting. This is the case for synthetic data. Our simulation
created a separate set of (Y, Z) labels in each site. Let Li

be the set of (Y,Z) pairs used for prevalence estimation for
site ei. The empirical prevalence P̂ (Y = y|Z = z, ei) is

simply the ratio
∑

(Y,Z)∈Li
I[Y=y;Z=z]∑

(Y,Z)∈Li
I[Z=z] , where I is the indi-

cator function. For real data, there are multiple confounders
Z and some of them may be continuous. Instead of count-
ing, the empirical prevalence estimate can be obtained by
training auxiliary models, one for each site ei, to predict the
probability of Y given input Z. Since the real datasets used
in this paper do not include separate sets of (Y, Z) samples,
we have to use the same data for training/testing and preva-
lence estimation. To avoid label leakage from prevalence
estimation, the (Y, Z) samples for a site is split into two
halves and the fitted model using data from one half is used
to estimate P̂ (Y |Z, ei) for samples from the other half.

4.3. Validation

For all approaches, the best models during training are
selected for evaluation on the OOD test data. Model se-
lection could try to (1) minimize in-domain validation er-
ror or (2) minimize the model’s instability to distribution
shifts [41]. We measure the latter using validation error on
data from an unseen site (termed external validation). We
measure the former on held-out validation data from train-
ing sites (termed internal validation). The number of sam-
ples used to estimate internal and external validation error
are kept equal. The results presented in Section 4 are based

2ERM is the standard approach used in machine learning where one
ignores the sites and minimizes the average loss over the training data.

Setup Train Val. Test

Multiple (10k, 0.9), (10k, 0.7) (0.5k, 0.5) (1k, 0.3)
Single (20k, 0.9) (0.5k, 0.5) (1k, 0.3)

Table 1. Training, validation (external), and test data in two dif-
ferent setups. Each pair of numbers, (N, β), represents a site with
N data samples generated using coefficient β.

on external validation. Evaluation results using internal val-
idation are included in Appendix A.

4.4. Synthetic Data Experiments

4.4.1 Data

The Y and Z labels of the synthetic data were generated
according to Equation 6-12. There are 3 different setups
corresponding to 3 different causal relations between Y and
Z. Unif(0, 1) denotes a uniform random variable on (0, 1),
and Norm(µ, σ2) is a Gaussian with mean µ and variance
σ2. The value of α is set at 0.3. β is a site-specific coef-
ficient within the range (0, 1). Larger β corresponds to a
stronger correlation between Y and Z. As β varies, the Y
label distribution also shifts. Y and Z are binary variables.

Common cause (Figure 1, E1/E2/E3/E4)
S ← Unif(0, 1) (6)

Y ← I
[
βS + (1− β)α > 0.5

]
(7)

Z ← I
[
βS + (1− β)Unif(0, 1) > 0.5

]
(8)

Y causes Z (Figure 1, E5)
Y ← I

[
βUnif(0, 1) + (1− β)α > 0.5

]
(9)

Z ← I
[
βY/2 + (1− β/2)Unif(0, 1) > 0.5

]
(10)

Z causes Y (Figure 1, E6)
Z ← I

[
Unif(0, 1) > 0.5

]
(11)

Y ← I
[
βZ/2 + βUnif(0, 1)/2 + (1− β)α > 0.5

]
(12)

We consider two types of synthetic X: 2-dim and CMNIST.
2-dim: The first type is low-dimensional where the input X
is a 2-dim vector generated from target Y and an auxiliary
variable Z is correlated with Y according to Equations 13-
15. W ∈ R2×2 denotes a randomized mixing matrix that is
the same (stable) across different sites.

C1 ← 0.1I[Y = 1]− 0.1I[Y = 0] + Norm(0, 0.12) (13)

C2 ← 1.0I[Z = 1]− 1.0I[Z = 0] + Norm(0, 0.12) (14)
X ←W × [C1, C2] (15)

CMNIST: The second type is higher-dimensional images
generated using the MNIST dataset [1], CMNIST. Specifi-
cally, the shape of X is controlled by Y while the color is
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(a) 2-dim (b) CMNIST

Figure 4. F1-score at test site, multiple training sites. Y←S→Z
ERMa: input=X, ERMb: input=X,Z, ERMc 3: greyscale input

(a) 2-dim (b) CMNIST

Figure 5. F1-score at test site, multiple training sites. Z causes Y .
ERMa: input=X, ERMb: input=X,Z, ERMc 3: greyscale input

determined by Z (red for Z = 1 and green for Z = 0).
The shape is randomly sampled from digits in {5, 6, 7, 8, 9}
when Y = 1 and from {0, 1, 2, 3, 4} when Y = 0.

For both datasets, multiple sites with different β coeffi-
cients are generated (see Table 1). We considered two ad-
ditional setups: multiple training sites and a single training
site. As there are 2 types of data, 3 causal relations between
Y and Z, and 2 different training setups, there are 12 differ-
ent sets of results in total.

In the CMNIST experiments, we have an additional
baseline, ERMc, which takes greyscale images (X ′) as in-
put and is trained with ERM. Thus, ERMc 3 ignores the
effect of Z and consequently is invariant to the unstable cor-
relation between Y and Z.

4.4.2 Experimental Details

All compared methods used the same backbone network
and were all trained with Adam [16] for 20k steps (conver-
gence was confirmed by visual inspection) and 1e-4 learn-
ing rate. For 2-dim data experiments, the backbone network
was a single fully-connected (FC) layer with output dimen-
sion equal to 10. For CMNIST data experiments, the back-
bone network was a CNN with three convolutional layers,
each followed by 2 × 2 max-pooling and ReLU activation.
The numbers of channels and kernel size of the CNN layers
were 32, 32, 64 and 5 × 5, 3 × 3, 3 × 3 respectively. The
output of the last convolutional layer is then flattened and
fed through a FC layer with output dimension 256.

3Note ERMc has access to privileged information

(a) 2-dim (b) CMNIST

Figure 6. F1-score at test site, a single training site. Y←S→Z
ERMa: input=X, ERMb: input=X,Z, ERMc 3: greyscale input

4.4.3 Results

Figure 4 shows the test site performance when there are
multiple training sites and Y and Z are spuriously corre-
lated. The lower the test site’s β, the weaker the correlation
between Y and Z and the stronger the label-shift. When
β = 0.3, Y and Z are almost uncorrelated. In this setup,
CoPA outperforms all the baselines. Note that there are 3
variants of ERM, each receiving a different input. There
is no consistent difference in performance between ERMa

(only X as input) and ERMb (X and Z as input). In general,
the other baselines do not consistently outperform ERM.
Although IWDANN outperforms DANN because the for-
mer also models label-shift, its performance is always worse
than CoPA. In contrast, CoPA outperforms all baselines, in-
cluding ERMc in Figure 4b. This is because CoPA accounts
for label-shift, while ERMc does not. In addition, ignoring
Z may harm performance in the case when Z is a cause of Y
(Figure 5b). When there is only one training site (Figure 6),
CoPA is still better than baselines.

4.5. Real Data Experiments

4.5.1 ISIC Data

The skin cancer dataset is from the International Skin
Imaging Collaboration (ISIC) archive4. Data from the
archive [6–8,12,30,34,39] are collected by different organi-
zations at different points in time. There are about 70k data
samples in total (see Appendix C for some examples). Each
data sample consists of an input image X , a binary target la-
bel Y (melanoma or not) and confounding variables Z that
is correlated with Y . We consider three Z variables: (1)
Age, (2) Anatomical Site (there are 8 different sites, listed
in Appendix C), and (3) Sex. While Age is arguably a pos-
sible cause of Y [26], Anatomical Site may be spuriously
correlated with Y [22] (Figure 7, left panel). The values of
Age in ISIC are discretized so Age is a categorical variable.
Samples are grouped into sites based on spatio-temporal in-
formation as shown in Table 2. Table 2 also shows that
the marginal prevalence of melanoma, P (Y = 1|E), varies
drastically between sites. Data from NY2 site were used for

4https://www.isic-archive.com
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Site (E) BCN1 BCN2 MA NY1 NY2 NY3 QLD SYD WIE1 WIE2

No. of samples 7063 7311 9251 11108 1814 3186 8449 1884 7818 4374

Marginal prevalence, i.e P (Y=1|E) 0.404 0.024 0.000 0.019 0.146 0.208 0.001 0.071 0.142 0.009

Table 2. Different sites in ISIC. The effect of label-shift (change in P (Y |E)) is very pronounced between sites. Underlined: validation
site, bolded: test sites. BCN: Barcelona, MA: Massachusetts, NY: New York, QLD: Queensland, SYD: Sydney, WIE: Vienna

Site (E) CXR8 CheXpert PadChest

No. of samples 26202 5886 4592

P (Y=1|E) 0.049 0.635 0.082

Table 3. Different sites and corresponding marginal prevalence
(P (Y |E)) in CXR. Underlined: validation site, bolded: test site.

Figure 7. Hypothesized causal graphs. (Left) ISIC (Right) CXR.
Bidirectional arrows indicate uncertainty in causal relationship.

validation while data from NY3 and SYD sites were used for
testing. The remaining sites were used for training.

4.5.2 Chest X-Ray (CXR) Data

The Chest X-Ray data come from 3 datasets: CXR8 [42],
CheXpert [14], and PadChest [5]. Each data sample con-
sists of an input image X , a binary target label Y (hav-
ing pneumonia or not) and confounding variables Z. For
CXR8 and PadChest [5], samples with “No Finding” label
are used as negative target (Y = 0) We again consider three
Z variables: (1) Age, (2) Projection (AP, PA, or LL), and
(3) Sex. Unlike ISIC, Age is a continuous variable. Table 3
shows the training/validation/test sites and their correspond-
ing marginal prevalence, P (Y = 1|E).

4.5.3 Experimental Details

All methods used a pre-trained ResNet50 [13, 40] as the
backbone. ResNet50’s output is then fed through an FC
layer with output dimension 256. Finetuning was done us-
ing Adam [16] for 20k steps with 3e-5 learning rate. The
site-specific prevalences are estimated by fitting a simple
neural networks with 3 hidden layers with 20 hidden units
each and ReLU activation. The multiple variables Z are

Figure 8. F1-score at ISIC test sites, multiple training sites.

Figure 9. F1-score at CXR test site, a single training site

concatenated together when used as input for CoPA. In ISIC
setup, each combination of Z is a group in DRO. In CXR
setup, DRO is omitted since Age in Z is a continuous vari-
able so there are infinitely many groups.

4.5.4 Results

For ISIC experiment, CoPA outperforms baseline methods
at both NY3 and SYD test sites (Figure 8). This also shows
the flexibility of CoPA, which can be applied to both sites
with high prevalence, e.g. NY3, and sites with low preva-
lence, e.g. SYD. For CXR experiment, CoPA also outper-
forms the baselines (Figure 9), demonstrating CoPA’s abil-
ity to work when only a single training site is available.

5. Ablation

CoPA assumes the availability of the conditional preva-
lence P (Y |Z,E) at each site E; and the observability of
confounders Z at training and test sites. We examine how
CoPA’s performance varies with less accurate prevalence
estimates (former) and how CoPA can be used when con-
founders Z are not observed at test sites (latter).
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(a) 2-dim

(b) CMNIST

Figure 10. Ablation on synthetic data. Test F1-score. Y←S→Z

Figure 11. Ablation on ISIC data. Test F1-score.

Figure 12. Ablation on CXR data. Test F1-score.

5.1. Ablated Variants

We analyzed how sensitive CoPA is to the accuracy of
P̂ (Y |Z, ei). For synthetic data experiments, while keep-
ing training unchanged, we varied Li, the number of (Y,Z)

pairs used to estimate P̂ (Y |Z, ei), at test sites. The lower Li

is, the less accurate P̂ (Y |Z, ei). Beside Li=103 (denoted

as CoPA), we tested Li ∈ {105, 104, 102, 10} (denoted
as CoPA5,CoPA4,CoPA2,CoPA1 respectively). We also
tested: (1) the marginal prevalence P̂ (Y |ei) (i.e. CoPA∥)
and (2) the uniform prevalence (i.e. CoPA†). These es-
timates are even less accurate but are easier to obtain.
P̂ (Y |ei) can replace P̂ (Y |Z, ei) with no loss in perfor-
mance if Y ⊥⊥ Z|E = ei.

When Z is unknown, one can predict using the
approximation P (Y |X, ei)=

∑
Z P (Y |X,Z, ei) and us-

ing P̂ (Y |ei) instead of P̂ (Y |Z, ei). While this vari-
ant (i.e. CoPA∥∗) unrealistically assumes a uniform
P (Z|X, ei), Ŷ may be correct despite the wrong probabil-
ity estimate. For high-dimensional Z, the summation is in-
tractable so we implement a Monte Carlo strategy by sum-
ming over 10 random values of Z.

5.2. Ablation Results

Figure 10 shows that the more accurate P̂ (Y |Z, ei)
is, the higher CoPA’s F1-score is in general. Using the
uniform prevalence (CoPA†) is generally bad while using
the marginal prevalence (CoPA∥) can be acceptable when
Y and Z are uncorrelated (β = 0.3). Figure 11 SYD
also shows P̂ (Y |ei) can be an acceptable substitute for
P̂ (Y |Z, ei). Besides, it seems that CoPA∥∗ occasionally
outperforms ERM.

6. Discussion

In this work, we propose CoPA: an approach for domain-
invariant representation learning for anti-causal problems
by adjusting for the effect of unstable correlations through
the conditional prevalence estimate. By learning a stable
predictor of Y that leverages the stable edges and an es-
timate of the prevalence in each site, CoPA can work re-
gardless of (1) the number of training sites available, (2) the
presence or absence of label-shift, and (3) a variable rela-
tionship between Y and confounding Z variable(s) (spuri-
ous or causal). Our core insight is that in many applications
it can be possible to infer the prevalence in each site, in-
cluding the test site(s), as one only needs a set of (Y, Z)
samples. Crucially, we assume Z’s are observed, but no la-
beled X’s are necessary for the test site. Our experiments
on synthetic datasets and two real medical imaging datasets
show CoPA can outperform competitive baselines. In par-
ticular, our ablation study demonstrates that CoPA can still
be useful even if our prevalence estimate is naive or sub-
optimal.

A core weakness of CoPA is that it assumes that con-
founding variable(s) Z are observed, which is often the case
in healthcare settings but might not be true in other applica-
tions. Although, our ablation results show tolerable perfor-
mance when Z is not observed, more rigorous treatment of
this case is warranted.
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