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Abstract

Semi-supervised learning (SSL) has become popular in
recent years because it allows the training of a model us-
ing a large amount of unlabeled data. However, one issue
that many SSL methods face is the confirmation bias, which
occurs when the model is overfitted to the small labeled
training dataset and produces overconfident, incorrect pre-
dictions. To address this issue, we propose SequenceMatch,
an efficient SSL method that utilizes multiple data augmen-
tations. The key element of SequenceMatch is the inclusion
of a medium augmentation for unlabeled data. By taking
advantage of different augmentations and the consistency
constraints between each pair of augmented examples, Se-
quenceMatch helps reduce the divergence between the pre-
diction distribution of the model for weakly and strongly aug-
mented examples. In addition, SequenceMatch defines two
different consistency constraints for high and low-confidence
predictions. As a result, SequenceMatch is more data-
efficient than ReMixMatch, and more time-efficient than both
ReMixMatch (×4) and CoMatch (×2) while having higher
accuracy. Despite its simplicity, SequenceMatch consistently
outperforms prior methods on standard benchmarks, such as
CIFAR-10/100, SVHN, and STL-10. It also surpasses prior
state-of-the-art methods by a large margin on large-scale
datasets such as ImageNet, with a 38.46% error rate. Code
is available at https://github.com/beandkay/SequenceMatch.

1. Introduction

Deep Neural Networks (DNNs) have made significant
strides in recent years, achieving an extraordinary perfor-
mance on many tasks such as image recognition [12], speech
recognition [1], and natural language processing [37]. The
state-of-the-art performance of DNNs is achieved through
supervised learning, which requires labeled data. The empir-
ical observation shows that training DNNs on larger labeled

datasets produces a better performance [13, 14, 20, 29, 30].
However, the labeled data is limited in quantity and signifi-
cantly costly due to the hand-labeling process which must
be done by experts.

An impressive approach for training models with a large
amount of unlabeled data is semi-supervised learning (SSL).
In recent years, SSL has received much attention due to
its advantages in leveraging a large amount of unlabeled
data. Since the unlabeled data can be obtained easily without
the need for human labor, using SSL results in comparable
performance to the supervised learning methods but with a
lower cost. This success has led to the development of many
SSL methods [3, 4, 16, 17, 40, 43].
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Figure 1. Example scheme where the prediction distribution of
weakly and strongly augmented examples have high KL divergence.
This high divergence happens when the model suffers from the
confirmation bias issue.

There are two popular SSL methods which are pseudo-
labeling [17] (also called self-training [32, 43]) and consis-
tency regularization [2, 16, 35]. While the pseudo-labeling-
based approaches use model predictions as labels to train
the unlabeled data, the consistency-regularization-based ap-
proaches use loss functions such as mean squared error
(MSE) or Kullback-Leibler divergence (KL divergence) to
minimize the difference between the prediction distribution
of different augmented inputs. However, they are still en-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

96



Unlabeled

Model

Model
Strong augmentation 

x K

C
onsistency loss

Weak augmentation

ReMixMatch SequenceMatch

KL div

KL div

Unlabeled

Model

Model
Strong augmentation

Pseudo-label

Supervised loss

Highest class

Model

Weak augmentation

Medium
KL divUnlabeled

Model

Model
Strong augmentation

Pseudo-label

Supervised loss

Highest class

Model

Weak augmentation

Strong

C
ontrastive 

loss

CoMatchRepeat K times

Figure 2. Differences between SequenceMatch versus ReMixMatch and CoMatch methods for multi augmentations.

countering the confirmation bias issue because of the small
labeled training dataset. Hence, during training, when a con-
firmation bias issue occurs, the performance stops improving
and could become worse.

Based on the finding from [5] that we could utilize KL
divergence with multiple augmentations to increase model
invariance and generalization, we propose a simple SSL
pipeline, SequenceMatch. The idea of using multiple data
augmentations for SSL is not new since it has been intro-
duced by [3] and [18]. ReMixMatch [3] uses a technique
called Augmentation Anchoring (AA). AA anchors a weak
augmentation then makes K strong augmentations and en-
courages each output to be close to the anchoring predic-
tion. Similarly, CoMatch [18] generates two strongly aug-
mented versions for each unlabeled sample to construct the
embedding graph. However, we argue that using multiple
strong augmentations can result in disparate predictions, and
thus may not be a meaningful target. Particularly, ReMix-
Match [3] found that using stronger augmentations in Mix-
Match resulted in high divergence, and the training would not
converge if we replace the weak with strong augmentation,
resulting in very poor performance. SequenceMatch also
uses multiple data augmentations but in a different manner.
Specifically, we introduce a medium augmentation, then min-
imize the KL divergence between prediction distributions
for each pair of inputs, thus minimizing the discrepancy
between the representation of weak and strong augmented
predictions. Therefore, by minimizing these divergences, we
assume that the learned representation of the strong augmen-
tation would align with the one from the weak augmentation
by using medium augmentation as an anchor. The medium
augmentation also works like a Teacher Assistant (TA) to
distill the knowledge, similar to a TA in [23]. As a result,
SequenceMatch encourages the similarity of the network
outputs to produce more reliable pseudo-labels for unlabeled
data during training, reduces overconfident pseudo-labels,
and optimizes data utilization for the unlabeled dataset.

The benefit of SequenceMatch is found in all datasets. For
instance, on the STL-10 dataset, SequenceMatch achieves
15.45%, and 5.56% error rates when the label amount is 40,
and 1000, respectively. Moreover, SequenceMatch shows
its superiority on imbalanced datasets such as SVHN and
ImageNet. On the SVHN dataset, SequenceMatch achieves

1.96%, 1.89%, and 1.79% error rate when the label amount
is 40, 250, and 1000, respectively. For ImageNet, Sequence-
Match achieves 38.46% error rate, surpassing FlexMatch
of 41.85%, FixMatch of 43.66%, CoMatch of 42.17%, and
FreeMatch of 40.57%. In addition, SequenceMatch achieves
high performance even though it does not introduce as many
augmentations as ReMixMatch and does not need to store
the embedded graph like CoMatch. To sum up, this paper
makes the following contributions:

• We propose SequenceMatch, a SSL training pipeline
that helps reduce the divergence between the predic-
tion distributions of different augmented versions of
the same input. Therefore, SequenceMatch helps re-
duce the overconfident predictions and the distribution
discrepancy between weakly and strongly augmented
predictions.

• SequenceMatch leverages the whole unlabeled dataset,
including high-confidence and low-confidence predic-
tions, thus optimizing the data utilization.

• We verify our hypothesis that reducing the confirma-
tion bias issue of the trained model and reducing the
divergence between the prediction distributions would
yield better results. Hence, SequenceMatch signifi-
cantly achieves state-of-the-art results on many datasets
with different numbers of labels.

2. Analysis of high-confidence and low-
confidence pseudo-label

Following [26], to investigate the role of predictions with
low confidence during training, we separately train FixMatch
using “hard” and “soft” pseudo-labels. The “hard” pseudo-
label training refers to the traditional FixMatch method that
utilizes high-confidence predictions. On the other hand,
“soft” pseudo-label training involves training the model
solely on low-confidence predictions. In particular, we select
low-confidence predictions from weakly-augmented exam-
ples as the pseudo-label, instead of the usual high-confidence
predictions. These predictions are then sharpened using a
temperature of T = 0.5. Following this, we calculate the KL
divergence with the predictions from strongly-augmented
examples.
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Table 1. Comparison of error rates between high-confidence and
low-confidence predictions using FixMatch on CIFAR-10 with
splits of 40, 250, and 1000 labels

DATASET HIGH-CONFIDENCE LOW-CONFIDENCE

CIFAR-10-40 7.47 28.88
CIFAR-10-250 4.86 8.07
CIFAR-10-4000 4.21 8.04

The experimental results presented in Table 1 indicate that
training the model solely with low-confidence predictions
can yield performance that is competitive with that achieved
using high-confidence predictions on the CIFAR-10 dataset.

This suggests that the traditional method of setting a high
threshold and discarding a significant portion of unlabeled
data during training is not the most efficient approach, as it
fails to fully utilize the unlabeled data.

Therefore, in this study, we propose a different approach.
Instead of relying solely on high-confidence predictions, we
combine the advantages of both high-confidence and low-
confidence predictions.

3. Background

We give a brief introduction to unsupervised data aug-
mentation (UDA) [42] and FixMatch [38], which are mostly
related to our work. Let B be the batch size of labeled data,
µ be the ratio of unlabeled data to labeled data, and pm rep-
resent the output probability of the model. Aw and As are
weakly and strongly augmentation functions, respectively.
The unsupervised loss term in UDA is formulated as:

1

µB

µB∑
b=1

1 (max (qb) ≥ τ)H (qs, pm (y | As (ub))) , (1)

where τ is the constant pre-defined threshold, qs =
exp (qb/T)∑
k exp (qk/T) is the sharpen predictions by temperature T,

qb = pm (y | Aw (ub)) is the logit of label y for input
Aw (ub). Unlike UDA, FixMatch leverages this consistency
regularization with strong augmentation to achieve a com-
petitive performance. The unsupervised loss term becomes:

1

µB

µB∑
b=1

1 (max (qb) ≥ τ)H (q̂b, pm (y | As (ub))) , (2)

where q̂b = argmax (qb) is the pseudo-label of qb. Fol-
lowing FixMatch, FlexMatch uses the same loss term with
a dynamic threshold τt for each class, thus improving the
per-class sampling rate and making the model learn equally.

FixMatch shows that using a high-confidence threshold
with ”hard” labels can eliminate the noise pseudo-labels,

thus enhancing the performance of the whole SSL frame-
work. In addition, FixMatch also claims that using the high-
confidence threshold with the ”soft” pseudo-labels does not
show a significant difference in performance.

4. SequenceMatch
We propose SequenceMatch, a simple SSL pipeline that

aims at balancing the prediction distribution of unlabeled
data. The distinction with FixMatch is that we consider both
”hard” and ”soft” pseudo-labels. The main novelty comes
from the additional medium augmentations for unlabeled
data. With the additional mediumly augmented examples,
SequenceMatch helps reduce the divergence between the pre-
diction distributions of the weakly and strongly augmented
data.

The intuition is to make the prediction distribution of
weakly, mediumly, and strongly augmented examples simi-
lar to each other while maintaining the correct pseudo-labels,
thus reducing the overfitting of the model on labeled data and
reducing the confirmation bias issue. The medium augmen-
tation is made up of weak augmentation, a transformation
chosen at random from the list of strong augmentation trans-
formations, and cutout [10]. This makes the mediumly aug-
mented samples look different from the weakly augmented
ones, but not as distorted as the strongly augmented ones
because the induced distortions could severely change the
image structures, and thus the transformed images cannot
maintain the identity of the original instances. We visualize
the differences of three kinds of augmentation in Appendix
??.

4.1. SequenceMatch Pipeline

In this section, we present the pipeline of SequenceMatch
method as shown in Figure 3. First, similar to other SSL
methods, we train the model on the labeled data. Then, for
the unlabeled data, instead of using only weakly and strongly
augmented examples, we create three versions of augmented
input: weakly, mediumly, and strongly augmented exam-
ples. Finally, for each pair of the prediction distribution
such as weak-medium, medium-strong, and weak-strong, a
Kullback-Leibler divergence loss function is used to measure
the divergence of each pair. The KL divergence losses will
be optimized during the training process to minimize the
divergence.

4.2. Loss Function

The loss function for SequenceMatch consists of two dif-
ferent loss terms. One is the supervised loss, which is a
standard cross-entropy loss (LCE

s ) for the labeled data. The
other one is the unsupervised loss, including the Kullback-
Leibler divergence (LKL) between the prediction distribu-
tions and the standard cross-entropy loss (LCE

u ) for strongly
augmented data with pseudo-labels.
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Figure 3. SequenceMatch pipeline. Unlike other SSL methods that
use only two types of augmented versions for unlabeled data, we
propose a ”mediumly augmented” version for unlabeled data. The
blue and green arrows indicate high-confidence and low-confidence
predictions, respectively. In addition, we measure the Kullback-
Leibler divergence losses between the weakly, mediumly, and
strongly augmented versions of the same input, then we minimize
them during training.

For an L-class classification problem, let X =
{(xb, yb) : b ∈ (1, . . . , B)} be a batch of B labeled exam-
ples, where xb is the training examples and yb is one-hot
labels. Let U = {ub : b ∈ (1, . . . , µB)} be a batch of µB
unlabeled examples where µ is a hyperparameter that de-
termines the relative sizes of X and U . Let pm(y|x) is the
predicted class distribution of the model for input x, H(p, q)
denotes the ”hard” label cross entropy between two prob-
ability distributions p and q. The loss function for SSL is
defined as:

LSSL = LCE
s + λuLu, (3)

where λu represents the constant weight for the loss of un-
labeled data. The term LCE

s refers to the standard cross
entropy loss applied to weakly augmented labeled data:

LCE
s =

1

B

B∑
b=1

H(yb, pm (y | Aw (xb))) (4)

Then, let Aw, Am, As be the weakly, mediumly, and
strongly augmentations for unlabeled data. Lu is defined
as a total of the standard cross-entropy loss (LCE

u ) and the
Kullback-Leibler divergence loss (LKL). LCE

u has two parts:
first is the cross-entropy loss between pseudo-labels and the
strongly augmented predictions; second is the cross-entropy
loss between sharpen predictions of weakly and strongly
augmented samples. LKL is the KL divergence of the predic-
tion distribution between each pair of augmented examples
Aw −Am, Aw −As, Am −As:

Lu = LCE
u + Lw−m

KL + Lm−s
KL + Lw−s

KL (5)

LCE
u =

1

µB

µB∑
b=1

(1 (max (qwb ) ≥ τ)H (q̂b, pm (y | As (ub)))

+ 1 (max (qwb ) < τ)H (qs | pm (y | As (ub))))
(6)

Lw−m
KL =

1

µB

µB∑
b=1

1 (max (qwb ) ≥ τ)DKL (qws | pm (y | Am (ub)))

(7)

Lm−s
KL =

1

µB

µB∑
b=1

1 (max (qmb ) ≥ τ)DKL (qms | pm (y | As (ub)))

(8)

Lw−s
KL =

1

µB

µB∑
b=1

1 (max (qwb ) ≥ τ)DKL (qws | pm (y | As (ub)))

(9)
where q̂b = argmax (qb) is the pseudo-label with qb =
pm (y | Ω (ub)), Ω is the corresponding augmentation func-
tion, qs =

exp (qb/T)∑
k exp (qk/T) is the sharpen predictions, τ is the

fixed threshold for choosing pseudo-labels, DKL denotes
the KL divergence function, and T is the temperature for
sharpening. We use the fixed τ for high-confidence KL loss
to reduce the divergence of overconfident predictions over
three augmentations. Notably, we only enforce the consis-
tency loss for low-confidence on weak-strong predictions
pair since the low-confidence predictions from medium and
strong augmented predictions are unreliable. Compared with
prior methods, the use of unlabeled data by KL loss is more
reasonable, as KL loss will not bring negative supervisory
information due to the wrong predictions but just emphasize
the distribution consistency between the weakly, mediumly,
and strongly augmented images.

5. Experiments

We evaluate SequenceMatch on common datasets:
CIFAR-10/100 [15], SVHN [25], STL-10 [7], and Ima-
geNet [9], and extensively investigate the performance un-
der various labeled data amounts. We mainly compare our
proposed method with fully SSL methods without using
self-supervised pre-trained weights such as UDA [42], Fix-
Match [38], FlexMatch [46], FreeMatch [41], etc, since they
all include a pre-defined threshold, and they are currently the
state-of-the-art in the field. To gain a deeper understanding
of the results from Semi-Supervised Learning (SSL) meth-
ods, we have also conducted a fully-supervised experiment
for each dataset. We implement our proposed method and
evaluate all methods using USB framework1.

To ensure a fair comparison, we maintain consistent hy-
perparameters across the UDA, FixMatch, and FlexMatch
methods. All experiments employ standard stochastic gradi-
ent descent (SGD) with a momentum of 0.9 as the optimizer,
as suggested by [28, 39]. Across all datasets, we initiate
with a learning rate of 0.03, coupled with a cosine anneal-

1https://github.com/microsoft/Semi-supervised-learning/
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Table 2. Error rates on CIFAR-10/100, SVHN, and STL-10 datasets on 5 different folds.

DATASET CIFAR-10 CIFAR-100 SVHN STL-10

# LABEL 40 250 4000 400 2500 10000 40 250 1000 40 1000

Π MODEL [31] 74.34±1.76 46.24±1.29 13.13±0.59 86.96±0.80 58.80±0.66 36.65±0.00 67.48±0.95 13.30±1.12 7.16±0.11 74.31±0.85 32.78±0.40

PSEUDO LABEL [17] 74.61±0.26 46.49±2.20 15.08±0.19 87.45±0.85 57.74±0.28 36.55±0.24 64.61±5.60 15.59±0.95 9.40±0.32 74.68±0.99 32.64±0.71

VAT [24] 74.66±2.12 41.03±1.79 10.51±0.12 85.20±1.40 46.84±0.79 32.14±0.19 74.75±3.38 4.33±0.12 4.11±0.20 74.74±0.38 37.95±1.12

MEANTEACHER [40] 70.09±1.60 37.46±3.30 8.10±0.21 81.11±1.44 45.17±1.06 31.75±0.23 36.09±3.98 3.45±0.03 3.27±0.05 71.72±1.45 33.90±1.37

MIXMATCH [4] 36.19±6.48 13.63±0.59 6.66±0.26 67.59±0.66 39.76±0.48 27.78±0.29 30.60±8.39 4.56±0.32 3.69±0.37 54.93±0.96 21.70±0.68

REMIXMATCH [3] 9.88±1.03 6.30±0.05 4.84±0.01 42.75±1.05 26.03±0.35 20.02±0.27 24.04±9.13 6.36±0.22 5.16±0.31 32.12±6.24 6.74±0.14

UDA [42] 10.62±3.75 5.16±0.06 4.29±0.07 46.39±1.59 27.73±0.21 22.49±0.23 5.12±4.27 1.92±0.05 1.89±0.01 37.42±8.44 6.64±0.17

FIXMATCH [38] 7.47±0.28 4.86±0.05 4.21±0.08 46.42±0.82 28.03±0.16 22.20±0.12 3.81±1.18 2.02±0.02 1.96±0.03 35.97±4.14 6.25±0.33

DASH [44] 8.93±3.11 5.16±0.23 4.36±0.11 44.82±0.96 27.15±0.22 21.88±0.07 2.19±0.18 2.04±0.02 1.97±0.01 34.52±4.30 6.39±0.56

MPL [27] 6.62±0.91 5.76±0.24 4.55±0.04 46.26±1.84 27.71±0.19 21.74±0.09 9.33±8.02 2.29±0.04 2.28±0.02 35.76±4.83 6.66±0.00

FLEXMATCH [46] 4.97±0.06 4.98±0.09 4.19±0.01 39.94±1.62 26.49±0.20 21.90±0.15 8.19±3.20 6.59±2.29 6.72±0.30 29.15±4.16 5.77±0.18

FREEMATCH [41] 4.90±0.04 4.88±0.18 4.10±0.02 37.98±0.42 26.47±0.20 21.68±0.03 1.97±0.02 1.97±0.01 1.96±0.03 15.56±0.55 5.63±0.15

SEQUENCEMATCH 4.80±0.01 4.75±0.05 4.15±0.01 37.86±1.07 25.99±0.22 20.10±0.04 1.96±0.23 1.89±0.31 1.79±0.02 15.45±1.40 5.56±0.35

FULLY-SUPERVISED 4.62±0.05 19.30±0.09 2.13±0.02 NONE

ing learning rate scheduler [19], for a total of 220 training
iterations. We also implement an exponential moving aver-
age with a momentum of 0.999. The batch size for labeled
data is set at 64, except for ImageNet. For CIFAR-10/100,
SVHN, and STL-10, we set µ to 7, while for ImageNet, it
is set to 1. In the case of UDA, τ is set to 0.8, whereas for
FixMatch, FlexMatch, and SequenceMatch, it is set to 0.95.
These configurations follow the original papers [38, 42, 46].
The medium and strong augmentation in our experiments is
RandAugment [8] with a different number of augmentations
(1 for medium augmentation and 3 for strong augmentation;
we study the choices for medium augmentation and visualize
the differences in the Appendix). We use ResNet-50 [15]
for the ImageNet dataset and Wide-ResNet (WRN) [45] for
other datasets.

5.1. CIFAR-10/100, STL-10, SVHN

We evaluate the best error rate of each method by averag-
ing results from five runs with distinct random seeds. The
classification error rates on CIFAR-10/100, STL-10, and
SVHN datasets are recorded in Table 2.

For the CIFAR-10 and SVHN datasets, we use Wide-
ResNet-28-2 [45] as a backbone model, Wide-ResNet-28-8
for the CIFAR-100 dataset, and Wide-ResNet-37-2 for the
STL-10 dataset. As shown in Table 2, the proposed method
outperforms all other methods on most datasets with vary-
ing numbers of labels. According to FlexMatch study [46],
FlexMatch performs less favorably on imbalanced datasets
such as SVHN. SequenceMatch, on the other hand, not only
achieves high performance across all datasets but also per-
forms well on the SVHN dataset. This shows that our pro-
posed method has the effect of reducing overfitting, which
usually appears when training on a small and imbalanced
dataset.

Precision, Recall, F1 Score and AUC results on CIFAR-10

To comprehensively evaluate the performance of all methods
in a classification setting, we further report the precision,
recall, F1-score, and AUC (area under curve) results on the
CIFAR-10 dataset. As shown in Table 3, we see that in
addition to the reduced error rates, SequenceMatch also has
the best performance in precision, recall, F1 score, and AUC.
These metrics, together with error rates (or accuracy), show
the strong performance of our proposed method.

STL-10 Confusion Matrix

The confusion matrix of FixMatch, FlexMatch, and Se-
quenceMatch on the STL-10 dataset with a 40-label split
is visualized in Figure 4. Compared with FlexMatch, Se-
quenceMatch improves the performance for classes 2, 4, and
6. In addition, FixMatch is overfitted for class number 1,
and it failed to recognize class number 3 and 7.
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Figure 4. Confusion matrix of FixMatch, FlexMatch, and Sequence-
Match features on STL-10 dataset with 40-label.

Convergence Speed

Our proposed SequenceMatch outperforms FlexMatch when
the number of labels is limited. We visualize a validation
loss and a top-1 accuracy of both FlexMatch and Sequence-
Match on the CIFAR-10 dataset with 40 labels within the
first 200k iterations. As we can see in Figure 5, Sequence-
Match achieves over 80% of accuracy within the first 25k
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Table 3. Precision, recall, F1-score and AUC results on CIFAR-10.

LABEL AMOUNT 40 LABELS 4000 LABELS

CRITERIA PRECISION RECALL F1 SCORE AUC PRECISION RECALL F1 SCORE AUC

FIXMATCH 0.9333 0.9290 0.9278 0.9910 0.9571 0.9571 0.9569 0.9984

FLEXMATCH 0.9506 0.9507 0.9506 0.9975 0.9580 0.9581 0.9580 0.9984

FREEMATCH 0.9510 0.9512 0.9510 - 0.9568 0.9568 0.9567 -

SEQUENCEMATCH 0.9519 0.9521 0.9519 0.9976 0.9590 0.9591 0.9590 0.9986

iterations when FlexMatch nearly hits 80%. After 200k itera-
tions, SequenceMatch achieves up to 94.28% accuracy while
FlexMatch can only achieve 93.72% of accuracy. Moreover,
the loss of our proposed SequenceMatch also decreases as
fast and smoothly as FlexMatch, even though we add extra
augmented data.
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Figure 5. Convergence analysis vs FlexMatch. (a) and (b) depict
the loss and top-1 accuracy on CIFAR-10 with 40 labels. ”SM” and
”FM” denote SequenceMatch and FlexMatch, respectively.

Class-wise accuracy on CIFAR-10 40-label

0 1 2 3 4 5 6 7 8 9
Class index

0
20
40
60
80

100

Cl
as

s-
wi

se
 a

cc
ur

ac
y 

(%
) Training phase class-wise accuracy

FixMatch FlexMatch SequenceMatch

0 1 2 3 4 5 6 7 8 9
Class index

0
20
40
60
80

100

Cl
as

s-
wi

se
 a

cc
ur

ac
y 

(%
) Evaluation phase class-wise accuracy

FixMatch FlexMatch SequenceMatch

Figure 6. Class-wise accuracy comparison on CIFAR-10 40-label
split at the best iteration of FixMatch, FlexMatch and Sequence-
Match.

We report a detailed comparison for class-wise accuracy
in Table 4. Our proposed SequenceMatch not only retains
a high accuracy in easy-to-learn classes but also improves

the accuracy of hard-to-learn classes. The final class-wise
accuracy of SequenceMatch is balanced between classes,
including hard-to-learn classes (e.g. class 2, 3). Especially
for the evaluation phase, the performance of hard-to-learn
classes surpasses FixMatch by a large margin.

The class-wise accuracy from the training phase, as
shown in Figure 6, also indicates that SequenceMatch can
help reduce the confirmation bias issue. It can be seen that
the training phase accuracy of SequenceMatch is not only
higher than FixMatch and FlexMatch but also balanced be-
tween classes. SequenceMatch prevents the trained model
from overfitting toward easy-to-learn classes.

Figure 7 shows the accuracy of the pseudo-label during
training on the CIFAR-10 40-label split. We can see that
SequenceMatch mitigates the overfitting and overconfidence
issues, therefore achieving a higher pseudo-label accuracy.
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Figure 7. Pseudo-label accuracy on CIFAR-10-40.
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(b) Data utilization ratio

Figure 8. Unlabeled data utilization and mask ratio on CIFAR-100
dataset with 400-label split.

Data utilization and mask ratio

We present the unlabeled data utilization and mask ratio of
FixMatch, FlexMatch, and SequenceMatch on the CIFAR-
100 dataset with a 400-label split in Figure 8a, 8b. Sequence-
Match significantly reduces the mask-out data ratio and is
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Table 4. Class-wise accuracy comparison on CIFAR-10 40-label split.

CLASS NUMBER 0 1 2 3 4 5 6 7 8 9

FIXMATCH 0.964 0.982 0.697 0.852 0.974 0.890 0.987 0.970 0.982 0.981
FLEXMATCH 0.967 0.980 0.921 0.866 0.957 0.883 0.988 0.975 0.982 0.968
FREEMATCH 0.962 0.984 0.923 0.874 0.963 0.894 0.979 0.977 0.980 0.976
SEQUENCEMATCH 0.977 0.984 0.922 0.890 0.966 0.889 0.981 0.974 0.985 0.980

stable throughout the training process. It also can be seen
that the mask ratio of SequenceMatch fluctuates less than
that of FixMatch and FlexMatch. Furthermore, the data uti-
lization ratio of SequenceMatch surpasses that of FixMatch
and FlexMatch by a large margin.

5.2. ImageNet

We further evaluate SequenceMatch on the ImageNet [9]
dataset to verify the performance on the large and complex
dataset. We compare the proposed SequenceMatch with
FixMatch, FlexMatch, CoMatch, and SimMatch. All of the
models are trained on 100k of the training data as labeled.
The rest of the data is treated as unlabeled data. Furthermore,
because the ImageNet dataset is large and complex, we set
the τ threshold to 0.7 to improve the capture of samples with
the correct pseudo-label. The batch size is set to 128 and the
weight decay is set to 0.0003.

Table 5. Error rate results on ImageNet.

METHOD
TOP-1 TOP-5 TOP-1 TOP-5

100K 10%

FIXMATCH [38] 43.66 21.80 28.50 10.90
FLEXMATCH [46] 41.85 19.48 - -
COMATCH [18] 42.17 19.64 26.30 8.60
SIMMATCH [47] - - 25.60 8.40
FREEMATCH [41] 40.57 18.77 - -
SEQUENCEMATCH 38.46 17.38 25.20 8.10

As reported in Table 5, SequenceMatch outperforms Flex-
Match with 38.46% and 17.38% for top-1 and top-5 error
rates, respectively. The top-1 error rate result is 3.39% lower
than FlexMatch and 5.20% lower than FixMatch. This re-
sult strongly indicates that when the task is complicated
and the dataset is imbalanced (in the ImageNet dataset, the
number of images per class ranges between 732 and 1300),
our proposed SequenceMatch can help boost the perfor-
mance. We also compare SequenceMatch with CoMatch
and SimMatch using their source code on 10% labeled data.
SequenceMatch outperforms FixMatch with and without
using self-supervised pre-trained weights. Compared with
CoMatch and SimMatch, SequenceMatch achieves higher
performance while having a fewer number of parameters.
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Figure 9. Accuracy comparison of Figure 9a: FixMatch vs Se-
quenceMatch and Figure 9b: Flexmatch vs SequenceMatch for first
150k iterations on SVHN dataset with 40-label and 1000-label
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Figure 10. Accuracy and loss comparison of Fixmatch, FlexMatch,
and SequenceMatch on Imagenet dataset.

5.3. Imbalance dataset

In Figure 9 and 10, we show the performance of Fix-
Match, FlexMatch, and SequenceMatch on the SVHN and
ImageNet datasets. For instance, our proposed Sequence-
Match results show superiority over FixMatch and Flex-
Match when dealing with imbalanced data problems such as
SVHN and ImageNet datasets. According to Table 2, Table
5, our results are identical to FlexMatch results; however,
FlexMatch fails on the SVHN dataset since CPL may gener-
ate low final thresholds for the tail classes that allow noisy
pseudo-labeled samples to be trusted and learned. Sequence-
Match solves this problem by maintaining the consistency of
the model throughout the training process and mitigating the
overfitting issue. Furthermore, SequenceMatch results on
the ImageNet dataset outperform FixMatch and FlexMatch
without additional modules.

5.4. Calibration of SSL

The study by [6] proposes tackling confirmation bias
from a calibration standpoint. We evaluate the calibration
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Figure 11. Reliability diagrams (top) and confidence histograms (bottom) for ImageNet dataset.

of FixMatch, FlexMatch, and SequenceMatch, which are
trained on the ImageNet dataset with 100k labels 2. Several
standard calibration metrics are employed, including the
Expected Calibration Error (ECE), confidence histogram,
and reliability diagram. As depicted in Figure 11, despite
FlexMatch exhibiting higher accuracy than FixMatch, it has
a larger ECE value of 20.55 compared to FixMatch’s 20.14,
suggesting less accurate probability estimation. Conversely,
SequenceMatch not only achieves superior accuracy but also
a lower ECE value of 18.09. This demonstrates its ability to
mitigate confirmation bias and yield a well-calibrated model.

6. Related Work
Self-training is a concept that has been around for decades

[22, 36]. Self-training (i.e., utilizing a prediction distribu-
tion to generate pseudo-labels for unlabeled data) has been
employed in a variety of areas, including natural language
processing [21], object recognition [33], image classifica-
tion [17,43], domain adaption [48], etc. Pseudo-labeling [17]
is a pioneering SSL method that uses ”hard” artificial labels
converted from model predictions. Pseudo-labeling is of-
ten paired with confidence-based thresholding, a method
that only retains unlabeled samples when the predictions
are highly confident. This approach is commonly used in
various studies [33, 38, 42, 46].

[2] introduced consistency regularization, which was
later popularized [16,35]. Consistency regularization utilizes
unlabeled data by relying on the assumption that the model
should output similar predictions when perturbed versions of
the same image are fed. Data augmentation [11], stochastic
regularization [16, 34], and adversarial perturbations [24]
have all been used to generate random perturbations. It has
recently been demonstrated that applying significant data
augmentation can improve outcomes [42].

FixMatch [38] proposed a combination of both pseudo-
labeling and consistency regularization methods for
SSL. FixMatch’s thresholded pseudo-labeling produces a
sharpening-like effect that encourages the model to deliver

2https://github.com/hollance/reliability-diagrams

high-confidence predictions. FixMatch could be considered
a combination version of UDA and ReMixMatch, in which
two common strategies (pseudo-labeling and consistency
regularization) are integrated while many components are re-
moved (sharpening, training signal annealing from UDA, dis-
tribution alignment, and the rotation loss from ReMixMatch,
etc.). FlexMatch [46] introduces a Curriculum Pseudo La-
beling (CPL) method, which enables conventional SSL to
train with a dynamic threshold for each class. CPL can be
considered a dynamic thresholding approach since it dynam-
ically adjusts the threshold for each class after each iteration,
thus enabling higher performance for each class. FlexMatch
outperforms most state-of-the-art SSL across a wide range
of datasets.

Lately, CoMatch [18] is introduced, which combines two
contrastive representations on unlabeled data. However, Co-
Match is extremely sensitive to hyperparameter settings and
requires a large memory bank during training to store the
embedded features. Recently work of [47] considers the
semantic similarity and instance similarity during training.
It shows that forcing consistency on both the semantic-level
and instance-level can bring an improvement, thus achieving
state-of-the-art benchmarks.

7. Conclusion

In this paper, we introduce SequenceMatch, an SSL
pipeline that sequentially matches predictions to reduce the
divergence between the predicted class distributions for dif-
ferent augmented versions of the same input. Sequence-
Match introduces a medium augmentation for unlabeled data,
which helps reduce the divergence between the prediction
distributions while maintaining the correct pseudo-label. Fur-
thermore, SequenceMatch also helps reduce the overfitting
phenomenon that most SSL methods are facing. Sequence-
Match achieves state-of-the-art performance on a variety of
SSL benchmarks and works well for all datasets.
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