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Abstract

Fake videos represent an important misinformation threat.
While existing forensic networks have demonstrated strong
performance on image forgeries, recent results reported on
the Adobe VideoSham dataset show that these networks fail
to identify fake content in videos. In response, we propose
VideoFACT - a new network that is able to detect and local-
ize a wide variety of video forgeries and manipulations. To
overcome challenges that existing networks face when ana-
lyzing videos, our network utilizes both forensic embeddings
to capture traces left by manipulation, context embeddings
to control for variation in forensic traces introduced by video
coding, and a deep self-attention mechanism to estimate the
quality and relative importance of local forensic embeddings.
We create several new video forgery datasets and use these,
along with publicly available data, to experimentally evalu-
ate our network’s performance. These results show that our
proposed network is able to identify a diverse set of video
forgeries, including those not encountered during training.
Furthermore, we show that our network can be fine-tuned to
achieve even stronger performance on challenging AI-based
manipulations. (Code is available at: https://github.
com/ductai199x/videofact-wacv-2024)

1. Introduction
Detecting fake and manipulated content in videos is crit-

ical in the fight against misinformation, online fraud, and
many other threats. Traditional editing software enables
users to convincingly add, remove, and alter virtually any
object in a video. Furthermore, recent advances in AI-based
video editing have caused dramatic advancements in how
videos can be falsified. For example, AI-based video inpaint-
ing makes it possible to seamlessly remove an object from a
video and replace it with a visually convincing background.

To combat forgeries, researchers have developed a wide
variety of general purpose forgery detection and localization
techniques. These networks operate by directly learning to
detect several known forgery types [1, 2, 7, 29, 45, 46, 73, 76,
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Figure 1. Sample video forgery localization results obtained using our proposed
VideoFACT network on videos modified by deepfaking (Top), splicing in an object
(Middle), and removing an object with inpainting (Bottom).

77, 81], or by searching for localized anomalies in forensic
traces [12, 16, 31, 49, 72]. This research has focused nearly
exclusively on images.

Most existing video-specific forensic techniques are
aimed at detecting manipulations such as frame deletion or
addition [22, 23, 60, 61, 70], speed manipulation [26], source
camera model identification [25, 48], etc. [51, 64] Other re-
search makes specific assumptions about the video’s content
and forgery type, e.g. detecting deepfake videos of a human
speaker’s face [24, 28, 30, 32, 43, 68, 74, 78], authenticating
video with a still background [58], etc. Currently, there are
no deep learning approaches designed to detect general con-
tent forgeries in modern video [58]. This research is further
limited by the lack public datasets of general video forgeries.
To the best of our knowledge, the first such dataset is Adobe’s
VideoSham dataset, which was published in 2023 [52] .

Suprisingly, VideoSham’s benchmarking results have re-
vealed that existing general forgery detection and localiza-
tion networks all fail when applied to video [52]. This find-
ing, which is further reinforced by results presented in this
paper, can be attributed to the effects of video compres-
sion. Modern video codecs, such as H.264, utilize different
coding parameters and compression strengths for different
macroblocks within a single frame [56]. This introduces
local variations into the forensic traces in a frame. Forensic
networks misinterpret these variations as anomalous traces,
causing them to false alarm. Furthermore, stronger coding in
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some frame regions reduces the quality of local traces, which
can cause forensic networks to make incorrect decisions.

In this paper, we propose a new general video forensic net-
work that is able to detect and localize a wide variety of fake
content in video. We name our network VideoFACT: Video
Forensics using Attention, Context, and Traces. To overcome
the negative effects of video coding, our network contains
several critical and novel components. We learn generic
forensic feature embeddings for video that can capture traces
left by a variety of manipulations. We observe that local
video coding parameters are dependent upon contextual in-
formation, including scene content and several other factors.
We exploit this by introducing the concept of context em-
beddings to forensics. Our network uses these embeddings
to control for local variation in forensic traces introduced
by video coding. We also observe that to correctly identify
anomalous forensic traces left by forgery, it is better to ana-
lyze local forensic embeddings with respect to one another
rather than independently. Our network does this by utilizing
a deep self-attention mechanism to estimate the quality and
relative importance of local forensic embeddings.

The main contributions of our paper are as follows:
(1) We propose a new forensic network that is able to

perform general purpose forgery detection and localization
on video. We overcome the negative effects of video coding
by introducing novel network components, including: con-
text embeddings to control for variation in forensic traces,
and a deep self-attention mechanism to estimate the quality
and relative importance of forensic embeddings. We show
that our network can detect a wide variety of manipulations,
including those that it was not explicitly trained on.

(2) We develop multiple new video forgery datasets, com-
posed of both standard video manipulations such as splicing,
and advanced manipulations such as AI-based inpainting.
Currently, there are no general video forgery datasets made
for network training, and only VideoSham for benchmarking.
Our datasets can be used to both train and benchmark video
forensic algorithms, thus helping to enable further research.

(3) We provide an extensive set of experiments to evaluate
both our proposed network and state-of-the-art forensic net-
works. We show that VideoFACT achieves the best reported
video forgery detection and localization performance, while
existing approaches fail due to video coding effects. Further-
more, we show that our network can be fine-tuned to achieve
even stronger performance on AI-based manipulations. We
perform an ablation study showing the importance of each
component of VideoFACT.

2. Background and Related Work
Image and Video Forensics. Researchers have devel-

oped multiple forensic algorithms to fight against fake con-
tent in images and videos. Early image forensic algorithms
utilized hand-crafted mathematical models of editing oper-

ations like JPEG compression [21, 33, 36, 53, 63], resam-
pling [37, 55], median filtering [9, 38], contrast enhance-
ment [8, 41], etc. As image editing became more sophis-
ticated, machine learning and deep learning were used to
create stronger detection algorithms [?,7,10,45,46,69,73,81].
However, these techniques typically encounter difficulties
when detecting new manipulations outside of their respective
training dataset [67].

Similarly, existing deep-learning based algorithms built
for videos can only detect or localize specific types of falsi-
fied content. A recent survey suggested that there exists no
algorithm that can detect general video forgeries [58]. De-
spite the fact that an extensive body of works have dedicated
to detecting splicing [11, 34, 35], inpainting [71, 75, 82], and
deepfakes [30, 43, 59, 74, 78–80], these algorithms cannot be
used on forgeries that they are not trained for because: 1)
They have inherent input restrictions (e.g. deepfake detec-
tion algorithms need to process a cropped out face), and 2)
Their designs are purposefully made for a particular manip-
ulation type (e.g. inpainting localization techniques extract
specifically inpainting traces). Therefore, to fulfill the urgent
need for a general video forgery detector, we propose a new
anomaly-based detection network which can analyze a wide
variety of manipulations.

Anomaly-based Detection Methods. Recently, re-
searchers are able to train general image forgery detectors
by looking for anomalous traces in the residual domain of
images. Notably, Forensic Similarity Graph [49], EXIF-
Net [31], and Noiseprint [16] do this by divided the full-size
image into small patches, then compute patch-wise differ-
ence of forensic features and cluster patches into real and
fake groups. ManTraNet [72] computes the anomaly score
by measuring the consistencies of the features within a kernel.
MVSS-Net [12] scores the consistencies of the features in an
analysis window with a multi-resolution approach. Inspired
by the anomaly detection concept, our method works by: 1)
Extracting not only forensic, but also context traces to ac-
count for inconsistent compression effects in modern video,
and 2) Using a deep self-attention mechanism to weight and
discover the manipulated region with anomalous traces.

3. Effect of Video Coding on Forensic Traces
Although state-of-the-art forensic networks are able to

correctly identify fake content in images, these networks all
fail when used to analyze video. This surprising behavior is
due to effects that video coding has on forensic traces.

One important effect is that video coding introduces local-
ized variations into the forensic traces within a frame. This is
because modern video codecs, such as H.264, do not use the
same coding parameters or compression strength for every
macroblock in a frame [56]. Instead, these vary depending
on several factors, including the content of a macroblock,
the bit budget, the level of prediction error, etc. Because
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Figure 2. Example from the Carvalho Dataset [17] illustrating the influence of video
compression on forensic embeddings. The distribution of pairwise forensic embedding
distances across real and manipulated content as well as localization results are shown
both before and after H.264 compression. We can see that video compression makes
manipulated regions become indistinguishable for anomaly-based forgery detection
networks like Noiseprint and FSG.

compression is well-known to significantly alter forensic
traces [3,38,55], this causes traces in some authentic regions
to differ significantly from those in others. These traces will
then appear anomalous to forensic algorithms, which will
cause them to false alarm.

Another important effect is that video coding reduces
the quality of forensic traces in some regions. This is be-
cause some macroblocks are subjected to stronger compres-
sion, which is well-known to reduce the quality of forensic
traces [33, 44, 62, 63]. Existing forensic networks weight all
local features equally and do not account for local variations
in quality. As a result, low-quality local forensic traces can
cause forensic algorithms to make incorrect decision.

We can see the effects of video compression in Fig. 2.
This figure shows the distribution of pairwise differences
between forensic embeddings in authentic and falsified re-
gions obtained using Noiseprint [16] and FSG [49] on the
widely benchmarked Carvalho dataset [17]. The top row
shows these distributions before H.264 compression, while
the bottom row shows them after compression. We observe
that video coding alters these distributions such that manipu-
lated regions become indistinguishable from authentic ones.
In our experiments below, this adverse effect is proven to be
detrimental for existing anomaly-based forensic networks.

4. Proposed Approach
An overview of VideoFACT’s architecture is shown in

Fig. 3. VideoFACT is designed to overcome challenges
posed by video compression, and to accurately detect and lo-
calize a variety of fake content in video. To accomplish this,
our network includes several important and novel aspects.

We utilize forensic feature embeddings specifically de-
signed to capture traces in video. These embeddings are
generic so as to detect a wide variety of manipulations.

We introduce the novel use of context embeddings to
control for variation in forensic traces caused by video cod-
ing. These context embeddings capture relevant information,
such as scene content, texture, lighting conditions, etc. in or-
der to approximate local variations in compression strength.
They are used to condition forensic embeddings and build a

better forensic model of a local region, so that our network
can accurately distinguish between authentic content and
anomalies caused by forgery.

Additionally, we use a novel deep self-attention mecha-
nism to estimate the quality and relative importance of local
embeddings. This mechanism de-emphasizes embeddings
from regions with low-quality traces, such as those strongly
effected by compression. Similarly, it emphasizes embed-
dings from regions of high importance, such as those with
high-quality traces or potentially anomalous traces. While
other works use attention to weight the relative importance
of different forensic feature subsets within an embedding,
we use self-attention, which captures how relevant forensic
embeddings are with respect to one another.

4.1. Low-Level Feature Extraction

VideoFACT consists of two low-level feature extractors
working in tandem: the Forensic Feature Extractor (FFE)
and the Context Feature Extractor (CFE). Our method first
divides a frame into non-overlapping analysis blocks of size
128×128 pixels, then passes each analysis block bk through
both extractors to produce a forensic feature embedding fk
and a context feature embedding ck.

Forensic Feature Embeddings. We use Bayar and
Stamm’s forensic network g(·) with learned high-pass fil-
ters [4] to produce dedicated forensic feature embeddings.
Importantly, g is first pre-trained with a cross-entropy loss
to discriminate between a video’s source camera using a
separate camera model identification dataset [27]. After pre-
training, the final classification layer is discarded. This pre-
training approach has been shown to be important for learn-
ing transferrable forensic embeddings [15, 16, 31, 47, 49, 50].
We note that this branch is fixed during Training Stage 1, but
is allowed to evolve during subsequent fine-tuning stages.

Context Feature Embeddings. The context feature ex-
tractor h(·) produces embeddings c that approximate local
variations in compression strength and contextualize their
forensic counterparts. To extract context information, we im-
plement h using an Xception [13] network backbone that is
modified to use only a single middle flow module, followed
by a 1× 1 layer to reduce the feature embedding dimension.
Importantly, h is not trained until after g’s pre-training is
complete, so that the resulting context embeddings can pro-
vide conditional information about the distribution of fk’s.
Denote θ as other layers in the network, this is equivalent to:

min
h,θ

LT (h, g, θ; b1, ..., bk, ..., bN ) (1)

where LT is VideoFACT’s total loss defined in (6).
Joint Feature Extraction. After obtaining both embed-

dings, we produce the joint feature embeddings x by con-
catenating f and c, i.e.,

xk = concat(fk, ck) (2)
This process is repeated for every analysis block in the video
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Figure 3. Overview of our proposed VideoFACT network for video forgery detection and localization. Our network extracts both forensic feature embeddings (FFE) and context
feature embeddings (CFE) from local analysis blocks. These embeddings are concatenated, then weighted by attention maps produced by a Deep Self-Attention Module (DSAM).
The attention-refined joint feature embeddings are passed to two different subnetworks that produce frame-level detection decisions and pixel-level forgery masks.

Figure 4. Example showing the effect of our attention module. The attention map
produced for this frame gives large weights (shown in red) to regions with high quality
forensic information - i.e. it has sufficient texture, illumination, no blurring, etc.
Regions with low-quality forensic information are given small weight (shown in blue).

frame to produce N arrays of joint feature embedding with
a dimension of 768.

4.2. Deep Self-Attention Module
The sequence of joint embeddings is passed to the Deep

Self-Attention Module (DSAM), which is designed to pro-
duce a series of L = 5 different spatial attention maps that
estimate the quality and relative importance of local embed-
dings. A vector of 1-D learnable positional embeddings is
added to the joint embeddings before being passed through
twelve Transformer encoder blocks stacked on top of one
another. The output of these blocks is passed to an “Attention
Squeeze” layer that consists of L, 1× 1 convolutional ker-
nels. This “squeezes” down the high dimensional output to a
series of L different M ×N spatial attention maps ml. Each
entry of the L maps ml is the network’s attention score for
the corresponding joint feature embedding at that position.

Fig. 4 shows an example of a spatial attention map pro-
duced by our DSAM, as well as the corresponding the un-
altered video frame. We can see that VideoFACT attends
to regions containing high-quality forensic traces, i.e. re-
gions with lower compression strength, sufficient texture
and illumination, etc. By contrast, regions known to con-
tain low-quality forensic information such as the sky are
de-emphasized. Often, these regions will cause false alarms
because their low-quality forensic traces will appear anoma-
lous with respect to other high-quality forensic regions.

4.3. Attention-Informed Feature Refinement
This module enables the network to attend to feature

embeddings that contain higher-quality forensic information.
This is achieved by using L attention maps, produced by
DSAM, to weight the low-level joint feature embeddings.

The joint feature embedding xk at the kth spatial location is
weighted by the corresponding kth entry in the lth attention
map. This process is repeated for all L spatial attention
maps. Then the resulting features are element-wise summed
to produce the attention-refined features y, such that:

yk =
∑L

ℓ=1
xkmk,l (3)

4.4. Detection and Localization

VideoFACT produces two outputs: a frame-level detec-
tion score and a pixel-level localization mask. The local-
ization mask is disregarded if the detection score indicates
no forged content exists. Our network separately analyzes
the attention-refined feature embeddings using two different
subnetworks for localization and detection.

Detection Network. The detection network p(·) consists
of two 1× 1 Conv + ReLU layers for dimension reduction
with 200, and 2 kernels, respectively, followed by a fully
connected and a softmax layer to output two neurons, one
corresponds to pristine and the other corresponds to being
falsified. The detection loss for this subnetwork is the cross-
entropy loss between the label and the predicted output:

LD = −
∑2

n=1
wnlog(pn) (4)

where pn is the output of p(·) and the wn is the one-hot
vector indicate whether the video is manipulated.

Localization Network. The localization network q(·)
is composed of four 1 × 1 Convolutional layers with 192,
96, 12, and 1 kernel, respectively. We use ReLU activation
except in the last layer, which uses sigmoid activation to
output the block-wise probability of being manipulated.

The localization loss is built on top of this subnetwork
which we define as

LL =−
∑
k

[( ∑
i,j∈Pk

Mi,j

|Pk|

)
log(qk)

+
(
1−

∑
i,j∈Pk

Mi,j

|Pk|

)
log(1− qk)

]
(5)

where qk is the prediction of q(·) for the corresponding
block bk. Because a block could contain a partial of manipu-
lated region, Pk is the set of pixel coordinates that belong to
block k, and M is the ground-truth binary mask.

Localization Mask Generation. During inference, we
achieve the pixel-level predicted mask from the block-wise
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prediction. We first threshold the block-level prediction prob-
abilities. Typically, there are two peaks in this histogram of
block-level probabilities, one due to unaltered blocks and
the other due to manipulated blocks. The threshold is chosen
as the location of the first minima to the right of the first
histogram peak (i.e. the one induced by unaltered blocks).
After thresholding, we use the flood-fill morphological algo-
rithm to remove holes from the localization mask. A final
pixel-level mask is produced by scaling the block-level mask
to the full video frame size using bilinear interpolation.

Total Loss. To train VideoFACT, we define the total loss
as a linear combination of the detection & localization losses:

LT = αLD + (1− α)LL (6)
where α ∈ (0, 1) is the weight to balance the frame-level
detection loss and the block-level localization loss.

4.5. Multi-Stage Training Protocol

Our proposed network training protocol consists of five
stages. In the first three stages, the training datasets consist
of videos falsified with manipulations that are successively
more difficult to detect. This enables the network to pro-
gressively learn better features by refining those learned in
the previous stage. In Stage 1, we use the Video Camera
Model Splicing dataset (VCMS), which contains spliced
content from other videos. In Stages 2 and 3, we train the
network with the Video Perceptually Visible Manipulation
dataset (VPVM) and Video Perceptually Invisible Manipu-
lation datasets (VPIM), respectively. As described in Sec-
tion 5, these videos contains basic manipulations with dif-
ferent strengths. In Stage 4, we fine-tune the network using
all three previous datasets simultaneously (VCMS, VPVM
and VPIM). In Stage 5, we further fine-tune the model by
incorporating three auxiliary datasets made from images in
the Camera Model Identification Database [4, 5] to diver-
sify our content distribution. These datasets are made using
the same process used to create the three video datasets, re-
sulting in one dataset with spliced content (ICMS), visible
manipulations (IPVM), and invisible manipulations (IPIM).

5. Video Forgery Datasets
Currently, there are no publicly available datasets of ma-

nipulated video large enough to train general content forgery
detection and localization networks. Similarly, there are al-
most no datasets suitable to evaluate such networks, with the
notable exception of the Adobe VideoSham dataset, which
was released in 2023 [52]. To address this issue, we created
a series of new video manipulation datasets for training and
evaluating our network. These are divided into two subsets.
Set A contains videos modified using standard manipula-
tions, e.g. splicing and local editing, etc. Set B contains
“In-the-Wild” videos made using sophisticated editing opera-
tions such as inpainting, deepfakes, etc. All datasets will be
made publicly available upon publication of this paper.

Stage Dataset Opti-
mizer Epochs Initial

Lr
Decay
rate

Decay
step

1 A SGD 6 1.0e−4 0.75 2
2 B SGD 6 8.5e−5 0.85 2
3 C SGD 23 8.5e−5 0.85 2
4 A, B, C SGD 10 8.5e−5 0.85 2
5 A, B, C, D, E, F SGD 9 5.0e−5 0.85 2

Table 1. Training parameters for different training stages of our model. We denote:
A=VCMS, B=VPVM, C=VPIM, D=ICMS, E=IPVM, F=IPIM.

5.1. Set A: Standard Video Manipulations Datasets

We made three datasets by applying different sets of stan-
dard manipulations to videos from the Video-ACID [27]
dataset. All three datasets were made using a common proce-
dure. First, we created binary ground-truth masks specifying
the tamper regions for each video. These tamper regions cor-
respond to multiple randomly chosen shapes with random
sizes, orientations, and placements within a frame. Fake
videos were created by choosing a mask, then manipulating
content within the tamper region. Original videos were re-
tained to form the set of authentic videos. All video frames
of both sets were re-encoded as H.264 videos using FFm-
peg [66] with 30 FPS and constant rate factor of 23.

Each dataset in Set A corresponds to a different manipu-
lation type. The Video Camera Model Splicing (VCMS)
dataset contains videos with content spliced in from other
videos. The Video Perceptually Visible Manipulation
(VPVM) dataset contains content modified using common
editing operations, e.g. contrast enhancement, smoothing,
sharpening, blurring, etc. applied with strengths that can be
visually detected. The Video Perceptually Invisible Ma-
nipulation (VPIM) dataset was made in a similar fashion
to VPVM, but with much smaller manipulation strengths
to create challenging forgeries. For each dataset, we made
3200 videos (96000 frames) for training, 520 videos (15600
frames) for validation, 280 videos (8400 frames) for testing.

5.2. Set B: In-the-Wild Manipulated Datasets

We use both publicly available datasets and datasets cre-
ated by us to evaluate our network. These datasets contain
advanced, challenging video forgeries with scene content
that significantly differs from our training datasets.

Public Datasets. We evaluate on three publicly avail-
able datasets: VideoSham [52], DeepfakeDetectionDataset
(DFD) [19], and FaceForensics++ (FF++) [57]. VideoSham
contains high-quality videos manipulated by professional
editors using multiple techniques. Because this work focuses
exclusively on identifying fake content, we excluded videos
with audio track or temporal manipulations. Both DFD and
FF++ are popular deepfake benchmarking datasets that con-
tain original videos and videos which were deepfaked using
different algorithms (Face2Face [65], FaceSwap [39], etc.).

Datasets Created By Us. We also created three ad-
ditional datasets to evaluate our proposed approach more
comprehensively, including: E2FGVI Inpainted Videos,
FuseFormer Inpainted Videos, and DeepFaceLab Deepfake
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Method VCMS VPVM VPIM
Det.
mAP

Det.
ACC

Loc.
MCC

Loc.
F1

Det.
mAP

Det.
ACC

Loc.
MCC

Loc.
F1

Det.
mAP

Det.
ACC

Loc.
MCC

Loc.
F1

FSG [49] 0.445 0.497 0.001 0.064 0.431 0.480 0.004 0.067 0.485 0.494 0.011 0.065
EXIFnet [31] 0.610 0.502 0.208 0.230 0.568 0.501 0.213 0.236 0.509 0.500 0.026 0.124
Noiseprint [16] 0.521 0.500 0.041 0.030 0.495 0.500 0.012 0.013 0.511 0.500 0.010 0.010
ManTra-Net [72] 0.451 0.500 0.079 0.114 0.526 0.500 0.110 0.145 0.513 0.500 0.025 0.064
MVSS-Net [12] 0.883 0.602 0.545 0.557 0.644 0.529 0.267 0.279 0.482 0.492 0.018 0.042
E.ViT [14] 0.491 0.500 N/A N/A 0.507 0.507 N/A N/A 0.503 0.504 N/A N/A
CCE.ViT [14] 0.472 0.461 N/A N/A 0.503 0.500 N/A N/A 0.509 0.507 N/A N/A
CNN Ensemble [6] 0.506 0.521 N/A N/A 0.495 0.493 N/A N/A 0.486 0.487 N/A N/A
VideoFACT 0.995 0.987 0.530 0.526 0.980 0.950 0.676 0.697 0.869 0.797 0.515 0.547

Table 2. Frame-level detection and pixel-level localization performance on Set A Standard Video Manipulations datasets - VCMS, VPVM, VPIM.

Method E2FGVI Inpainted Videos FuseFormer Inpainted Videos VideoSham [52] DeepFaceLab Deepfake Videos DFD [19] FF++ [57]
Det.
mAP

Det.
ACC

Loc.
MCC

Loc.
F1

Det.
mAP

Det.
ACC

Loc.
MCC

Loc.
F1

Det.
mAP

Det.
ACC

Loc.
MCC

Loc.
F1

Det.
mAP

Det.
ACC

Loc.
MCC

Loc.
F1

Det.
mAP

Det.
ACC

Loc.
MCC

Loc.
F1

Det.
mAP

Det.
ACC

Loc.
MCC

Loc.
F1

FSG [49] 0.386 0.452 0.208 0.302 0.351 0.484 0.241 0.290 0.596 0.538 0.162 0.246 0.450 0.515 0.204 0.137 0.449 0.325 0.097 0.043 0.509 0.519 0.144 0.113
EXIFnet [31] 0.635 0.501 0.160 0.244 0.506 0.507 0.146 0.225 0.584 0.555 0.148 0.246 0.447 0.492 0.180 0.133 0.489 0.258 0.095 0.051 0.487 0.519 0.141 0.073
Noiseprint [16] 0.601 0.500 0.091 0.232 0.471 0.500 0.001 0.200 0.422 0.447 0.034 0.206 0.591 0.500 0.010 0.062 0.489 0.252 0.000 0.021 0.486 0.518 0.000 0.066
ManTra-Net [72] 0.499 0.500 0.009 0.055 0.613 0.500 0.031 0.204 0.551 0.553 0.009 0.058 0.450 0.500 0.004 0.042 0.476 0.253 0.017 0.025 0.504 0.514 0.070 0.091
MVSS-Net [12] 0.341 0.435 0.058 0.227 0.230 0.359 0.029 0.206 0.595 0.449 0.142 0.096 0.464 0.498 0.199 0.189 0.513 0.532 0.152 0.108 0.499 0.487 0.133 0.164

VideoFACT 0.782 0.687 0.225 0.309 0.652 0.527 0.118 0.237 0.691 0.656 0.193 0.312 0.666 0.648 0.415 0.410 0.468 0.444 0.081 0.077 0.529 0.519 0.160 0.167
VideoFACT-FT 0.908 0.820 0.411 0.445 0.948 0.846 0.361 0.411 N/A N/A N/A N/A 0.988 0.922 0.745 0.732 0.937 0.804 0.536 0.490 0.916 0.837 0.661 0.645
E.ViT [14] 0.557 0.528 N/A N/A 0.535 0.509 N/A N/A 0.497 0.499 N/A N/A 0.896 0.805 N/A N/A 0.811 0.737 N/A N/A 0.764 0.676 N/A N/A
CCE.ViT [14] 0.564 0.550 N/A N/A 0.653 0.586 N/A N/A 0.489 0.493 N/A N/A 0.962 0.837 N/A N/A 0.816 0.761 N/A N/A 0.796 0.719 N/A N/A
CNN Ensemble [6] 0.595 0.556 N/A N/A 0.579 0.543 N/A N/A 0.551 0.552 N/A N/A 0.936 0.857 N/A N/A 0.829 0.745 N/A N/A 0.713 0.672 N/A N/A

Table 3. Frame-level detection and pixel-level localization performance on Set B’s “In-the-Wild” datasets - E2FGVI Inpainted Videos, FuseFormer Inpainted Videos, VideoSham [52],
DeepFaceLab DF Videos, DFD [19], and FF++ [57]. Note that E.ViT [14], CCE.ViT [14] and CNN Ensemble [6] are trained on 100% of the deepfake training data, which represent
75% of the total data from both FF++ [57] and DFDC [18] datasets. Meanwhile, VideoFACT-FT denotes a version of VideoFACT finetuned using only 10% of each relevant dataset.

Videos. The two inpainting datasets were made by using
SOTA AI-aided video inpainting algorithms, E2FGVI [40]
and FuseFormer [42], to remove objects specified by segmen-
tation masks from videos in the Densely Annotated Video
Segmentation (DAVIS) dataset [54]. Each datasets have au-
thentic and manipulated subsets with each contain of 6208
frames from 90 videos. Additionally, The DeepFaceLab
Deepfake Videos dataset was made by applying DeepFace-
Lab [20] - a popular, high quality deepfake algorithm - on
a set of publicly available videos of celebrities downloaded
from YouTube. This dataset consists of authentic and manip-
ulated subsets with each having 300 frames from 10 videos.

6. Experiments

Training Implementation. We implemented our net-
work using PyTorch and trained it using an NVIDIA RTX
3090. The network input resolution is 1080× 1920 pixels.
We first pre-trained the FFE on the Video-ACID dataset us-
ing the Stochastic Gradient Descent (SGD) with an initial
learning rate of 1.0e−3, momentum of 0.95, and an exponen-
tial decay-rate of 0.5 for every 2 epochs. After pretraining
the FFE, we trained VideoFACT following the five stages
described in Section 4.5 with different training parameters
shown in Table 1. Throughout the stages, we set α = 0.4.

Evaluation Datasets. We evaluated the frame-level per-
formance of our proposed network and competing networks
on the nine datasets described in Section 5.

Evaluation Metrics. For frame-level manipulation de-
tection, we report the mean average precision (mAP) for
each dataset. Also, we provide the average accuracy (ACC)
per datasets using a unified threshold of 0.5 to reflect real-
world’s performance. For forgery localization (i.e. pixel-
level manipulation detection) we use F1 and MCC scores to
evaluate the correlation between the ground-truth and pre-
dicted masks, which are binarized with a threshold of 0.5.

6.1. Detection and Localization Performance

We compared the performance of VideoFACT to sev-
eral state-of-the-art (SOTA) image forensic networks includ-
ing Forensic Similarity Graphs (FSG) [49], EXIFnet [31],
Noiseprint [16], ManTra-Net [72], and MVSS-Net [12], rep-
resenting a broad spectrum of successful techniques for per-
forming general content forgery detection and localization
in images. Frame-level detection scores are calculated for
Noiseprint and ManTra-Net by computing the average nor-
malized per-pixel detection probability. Additionally, we
benchmarked against three SOTA deepfake detectors: Effi-
cient ViT (E.ViT) [14], Convolutional Cross Efficient ViT
(CCE.ViT) [14], and CNN Ensemble [6]. All three algo-
rithms are trained on 100% of the deepfake training data,
representing 75% of the total data from both the FaceForen-
sics++ [57] and DFDC [18] datasets. Since these only per-
form detection, no localization results are presented.

Set A: Standard Video Manipulations. Table 2 shows
the performance of both our proposed network and com-
peting networks on the three Standard Video Manipula-
tions datasets in Set A. These results show that VideoFACT
achieves the best performance by a large margin on these
datasets. The only exception is for the VCMS dataset, where
MVSS-Net’s localization performance is slightly better than
ours, though still comparable. Except for this case, exist-
ing networks largely do no better than a random guess (i.e.
mAP = 0.5 and MCC = 0). This phenomenon can be
clearly seen in both Table 2 and the qualitative results pre-
sented in Fig 5. These results reinforce similar findings
reported in the VideoSham paper [52], i.e. existing forensic
networks fail when analyzing video forgeries, and deepfake
detectors cannot transfer to forgeries other than deepfakes.

Set B: “In-the-Wild” Datasets. Table 3 shows the per-
formance of both VideoFACT and competing networks on
the six “In-the-Wild” datasets, which contains complex and
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VCMS VPVM VPIM Deepfake Video Inpainted Video VideoSham

Frame

Ground-truth Mask

VideoFACT (Ours)

FSG

EXIFnet

Noiseprint

ManTra-Net

MVSS-Net

Figure 5. This figure shows localization results from our proposed network as well as FSG [49], EXIFnet [31], Noiseprint [16], ManTra-Net [72], and MVSS-Net [12] on six
different datasets, VCMS, VPVM, VPIM, Deepfake Video, Inpainted Video and VideoSham [52]. Our proposed network correctly identifies the manipulated area in videos falsified
using a wide variety of forgery operations. We note that we do not provide localization results for deepfake detectors because these algorithms only perform detection.

challenging forgeries. From these results, we see that Video-
FACT outperforms existing general forgery detectors and lo-
calizers. Additionally, VideoFACT can transfer to advanced
manipulations by finetuning on a small amount of data.

Specifically, on the two Inpainted Videos datasets, Video-
FACT outperforms existing forensic networks and deepfake
detectors by a large margin. For example, we achieved
mAP = 0.782 on E2FGVI and 0.652 on FuseFormer In-
painted Videos. Additionally, we obtain strong performance
and outperform competing networks on VideoSham, which
contains four difficult forgery types. Here, we achieved
mAP = 0.691 for detection and F1 = 0.312 for localiza-
tion. On the three deepfake datasets, we did not outperform
deepfake detectors. This is expected because they leverage
significant problem-specific information, while VideoFACT
does not. Furthermore, the traces left by deepfakes and the
content of these datasets differs significantly from our train-
ing data. However, through finetuning, we will show that
VideoFACT can achieve strong performance on deepfakes.

Next, our experiments show that VideoFACT can transfer
to advanced manipulations by finetuning using only a small
portion of data. Here, VideoFACT-FT denotes a version
of VideoFACT finetuned using only 10% of each relevant
dataset. By finetuning on the Inpainted Videos datasets,
we achieved very strong performance: mAP = 0.908 on
E2FGVI and mAP = 0.948 on FuseFormer. Finetuning

for deepfake detection using DFD and FF++ data, we were
able to achieve strong performance comparable with SOTA
deepfake detectors. Notably, we achieved mAP = 0.937
on DFD, 0.916 on FF++, and 0.988 on our DeepFaceLab
dataset. These results show that by only seeing very little
deepfake data, our network can generalize well to this type
of manipulation, achieving mAPs than dedicated deepfake
detectors whose training dataset was nine times larger than
ours. Here, we report frame-level deepfake detection re-
sults for fair comparison between algorithms. We note that
no finetuning experiments were performed on VideoSham
because it has only an evaluation set and no training set.

6.2. Discussion

From the results presented in Tables 2 and 3, we can see
that existing approaches, which reported strong performance
on image forgeries, largely fail on video. There are multiple
reasons why this may occur.

The first reason, as mentioned in Section 3, is the effects
of video compression. Video coding parameters vary for
each macroblock, which induces localized inconsistencies
in forensic traces. Another important reason is the false
alarms effects in authentic regions. An example of this
can be seen in Fig. 6. Here, existing networks produce false
alarms in different ways depending on each network’s design.
One set of existing approaches, such as EXIFnet, FSG, and
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Frame Ground-truth Mask VideoFACT (Ours)

FSG EXIFnet Noiseprint

ManTra-Net MVSS-Net

Figure 6. Example showing scene conditions that typically cause competing ap-
proaches to false alarm. Systems like FSG, EXIFnet, and Noiseprint will mistake
traces in smooth regions such as the sky for anomalous traces due to editing. Net-
works like ManTra-Net and MVSS-Net mistake naturally occurring differences in
noise statistics between foreground and background objects as caused by editing. Our
network is able to use scene context and attention to control for these effects.

Setup Component VideoSham

FFE CFE
Trans-
former

Attn.
maps

Data
comb.

Det.
ACC

Det.
mAP

Loc.
F1

Loc.
MCC

Proposed + + + 3 Add 0.656 0.691 0.258 0.168
No FFE — + + 3 Add 0.610 0.646 0.209 0.118
No CFE + — + 3 Add 0.586 0.635 0.163 0.043
No DSAM + + — — — 0.601 0.626 0.144 0.000
No Transformer + + — 3 Add 0.533 0.538 0.140 0.048
No Attention Squeeze + + + — — 0.622 0.656 0.254 0.120
1 Attention Map + + + 1 Add 0.610 0.655 0.175 0.121
10 Attention Maps + + + 10 Add 0.622 0.676 0.212 0.127
Diff. Feat. Refine + + + 3 Concat 0.614 0.684 0.162 0.091

Table 4. Ablation study of the components in our proposed network and their
performance evaluations.

Noiseprint, identify fake content by searching for anomalous
forensic traces. Hence, they produce false alarms in scene
regions that contain low-quality forensic information such as
the sky. Other approaches, such as ManTra-Net and MVSS-
Net, learn forgery features by analyzing noise residuals and
edge information. These techniques can false alarm when
highly salient foreground objects, like the man on the rock
in Fig. 6, naturally exhibit different statistics, i.e. sharper
edges, from background objects.

How Our Network Overcomes These Effects. Our
use of context embeddings and self-attention enables Vide-
oFACT to be much more resilient to the effects described
above. Furthermore, because the Deep Self-Attention Mod-
ule learns which scene regions contain high quality forensic
information, VideoFACT can rely more heavily on these
regions when making decisions and avoids many of the false
alarm issues faced by other networks. Finally, local con-
text information enables our network to control for local
variations in forensic traces induced by video compression.

Failure Cases and Limitations. We identified several
common failure cases experienced by our network. Our
network often misses falsified regions that are very small,
particularly smaller than our 128× 128 pixels analysis win-
dow. Our network produces poor decisions when both the
manipulated region and background have similar poor illu-
mination. It also has difficulty detecting regions altered by
color swaps. Additionally, our network’s current implemen-
tation is limited to analyzing video resolution of 1080p.

7. Ablation Study

We conducted multiple ablation experiments to validate
the importance of various components in VideoFACT’s ar-
chitecture and record them in Table 4. We trained each of
the network variants using the same settings as the proposed
method and assessed their performance on VideoSham.

The results show that each proposed components improve
the performance of the model. By removing either FFE
or CFE, every metric has a significant reduction. When
removing the entire DSAM, the joint embeddings were fed
directly into the detector and the localizer networks. This
variant still resulted in a substantial performance drop across
the board. The detection metrics suggest that this network
only does slightly better than random guess.

We also measure the importance of the Transformer and
Attention Squeeze in the DSAM. We first replace the Trans-
former encoders with six fully connected layers with ReLU
as the activation function. In this scenario, the model per-
forms at a level close to random guess. Therefore, this ce-
ments the necessity of the Transformer for our network. Be-
sides, we also try removing Attention Squeeze and connect
the output of the Transformer encoders directly to the detec-
tor and localizer. We see that this variant under-performs in
both detection and localization. Finally, we try using 1, 3
(proposed) and 10 attention maps. Results show that using 3
attention maps yields the best performance.

For Feature Refinement approaches, we also try concate-
nating all three sets of weighted spatially contextualized
forensic embeddings, instead of proposed approach. Results
show that both detection and localization performance drop
significantly. Therefore, the proposed method is optimal.

8. Conclusion

In this paper, we propose a new network, VideoFACT, to
detect and localize a broad range of video forgeries and ma-
nipulations. Our network does this by utilizing both forensic
embeddings to capture traces left by manipulation, context
embeddings to control for variation in forensic traces caused
by video coding, and a deep self-attention mechanism to esti-
mate the local quality and relevance of forensic embeddings.
We create several new video forgery datasets, which we used
along with the Adobe VideoSham dataset to experimentally
evaluate our network’s performance. Our results show that
our proposed network is able to identify a diverse set of video
forgeries, including those not encountered during training.
Furthermore, our results show that existing image forensic
networks largely fail to identify fake content in video.
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