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Abstract

Binary segmentation is the main task underpinning sev-
eral remote sensing applications, which are particularly
interested in identifying and monitoring a specific cate-
gory/object. Although extremely important, such a task has
several challenges, including huge intra-class variance for
the background and data imbalance. Furthermore, most
works tackling this task partially or completely ignore one
or both of these challenges and their developments. In
this paper, we propose a novel method to perform imbal-
anced binary segmentation of remote sensing images based
on deep networks, prototypes, and contrastive loss. The
proposed approach allows the model to focus on learning
the foreground class while alleviating the class imbalance
problem by allowing it to concentrate on the most difficult
background examples. The results demonstrate that the pro-
posed method outperforms state-of-the-art techniques for
imbalanced binary segmentation of remote sensing images
while taking much less training time.

1. Introduction
In recent years, the rapid development of innovative sen-

sor technologies has opened new opportunities to the re-
mote sensing community, allowing a better understanding
of the Earth’s surface [6]. Towards this, various applica-
tions [8, 38, 52] are interested in identifying a specific cate-
gory/object (such as cars, water surface, etc) in the images
in order to better study and monitor particular events re-
lated to those. Such applications usually model this prob-
lem as a binary segmentation task in which the main goal
is to classify each pixel of an image into one of two seman-

tic categories, usually referenced as foreground/positive and
background/negative [3, 12].

Despite being extremely important, such a task has sev-
eral challenges. One is due to the fact that the back-
ground class is not clearly defined, being actually composed
of samples of distinct semantic properties/categories, such
as forests, cities, roads, etc, thus having a huge variance.
Moreover, this also leads to another important challenge:
class imbalance [23]. This is because the negative class usu-
ally has a lot (thousands, millions, or even billions) more
samples than the foreground class, thus increasing the bias
and, consequently, making learning difficult.

Most works proposed to tackle imbalanced remote sens-
ing segmentation [17, 32, 35] are based on learning good
representations for both classes, thus allowing the models to
distinguish between them (using, for example, some learned
decision boundary). The main problem is that this model-
ing makes learning extremely difficult, as techniques would
need to capture most patterns of the negative class in order
to distinguish it from the positive one, a complex process
given the high diversity of this class. Furthermore, most ap-
proaches do not take into account that only the hard back-
ground samples are valuable for optimization and that, be-
cause of the visual dissimilarity, these are generally much
less than the easy ones.

Motivated by this, in this paper, we propose a novel
method to perform imbalanced binary segmentation of
remote sensing images based on deep networks, proto-
types [44], and contrastive loss [16, 46]. Specifically, the
deep network extracts features that are used to learn pro-
totypes [44] only for the positive class (instead of having
prototypes for each label), allowing the model to focus on
learning a good representation for this class. Such a model
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Figure 1. Training pipeline of the proposed approach. A fully convolutional backbone learns the patterns and extracts features for all pixels
of the input image. Foreground samples (in green) are then used to learn its prototype (green star) while being pulled close together to
it by a novel contrastive loss. Meanwhile, hard negative instances close to the prototype are pushed apart by this proposed cost function.
Observe that, although only one positive prototype is represented in this image (for simplification purposes), the network can be trained
using multiple positive prototypes depending on the problem.

is trained using a novel contrastive loss, which aims to pull
positive samples closer to the prototypes whereas pushing
background data apart. This new paradigm (Figure 1) al-
lows, during training, the model to focus on the most diffi-
cult negative samples defined based on their distance to the
prototypes, thus alleviating the impact of the class imbal-
ance issue. In practice, we can summarize the main contri-
butions of this paper as follows: (i) a novel approach that
performs imbalanced binary semantic segmentation by fo-
cusing on the positive class, thus easing the network learn-
ing process, (ii) an intrinsic system that alleviates the imbal-
anced data issue, really common in those scenarios, during
the learning process, and (iii) a new high-resolution remote
sensing dataset for river segmentation that takes the unbal-
anced data issue to an extreme scenario.

2. Related Work
We divided the related work into two parts: the first

part presents the main works proposed for imbalanced seg-
mentation of remote sensing images, while the second part
presents the methods most similar to the proposed one, i.e.,
that combine prototypical and contrastive learning.

2.1. Imbalanced Segmentation

Some authors address the class imbalance issue by em-
ploying specific cost functions, such as weighted cross-
entropy [20, 40], Focal loss [5, 10], Dice loss [54], or by
combining distinct losses, including weighted cross-entropy
and Lovász [17, 47], Focal and Tversky [14], cross-entropy
and Tversky [32], dual cross entropy [29] and the Fo-
cal [18], Dice and cross-entropy [2, 51], and so on. In gen-
eral, the main idea of these methods is to give more weight
to hard examples.

Other authors handled this problem by proposing new
and specific techniques. Ma et al. [35] combined fea-

tures describing the whole image and the foreground ob-
jects using a dual-branch network. To deal with imbalanced
data, they adapted the online hard example mining strategy
(OHEM) [43] to dynamically select the relevant examples.
In [12], the authors employed a novel strategy of combining
tiles of multiple different images/classes (similar to exist-
ing image mixing data augmentation [36]) that deals with
imbalanced data by replicating the minority class more of-
ten. Li et al. [28] proposed a point-wise propagation module
that balances the learning by selecting the most salient back-
ground samples. Zheng et al. [53] developed a foreground-
aware relation network that deals with imbalanced data via
a relation-based and optimization-based modeling, that fo-
cuses on the hard examples of background during training.
In general, such approaches seek to learn good representa-
tions for all classes, dealing with the class imbalance issue
by proposing some technique to mine hard samples.

In contrast with aforementioned techniques, our ap-
proach focuses on learning features only for the foreground
class, i.e., the approach does not focus on capturing patterns
for the negative data, but on making them as different as
possible from the positive ones. Furthermore, the proposed
approach deals with the class imbalance issue by using an
intrinsic system of selecting the most difficult background
examples, a process that alleviates training time.

2.2. Prototypical Contrastive Learning

Prototypical learning [44, 48] seeks to associate each
class to a representation, or prototype, and classify the ob-
servations according to the nearest prototype. On the other
hand, contrastive learning tries to learn a space in which
samples of the same class are close to each other, while in-
stances of other classes are far apart.

Although such paradigms have been successfully em-
ployed separately for distinct tasks, such as few-shot [9,39],
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domain adaptation [15], self-supervised learning [27], and
segmentation [13, 22], relatively few works combine proto-
typical and contrastive learning. Precisely, only Yang and
Ma [49] and Liu et al. [31] combined prototypical learning
with contrastive learning to improve remote sensing image
segmentation. Both works propose the use of prototypes for
all classes and only use contrastive learning to optimize the
embedding space, seeking to enhance intra-class compact-
ness and inter-class separability, but without taking class
imbalance into account. Unlike these methods, the pro-
posed technique learns prototypes only for the foreground
class while employing contrastive learning to optimize the
representation space and deal with imbalanced data.

3. Methodology
In this section, we present the proposed method for im-

balanced remote sensing image segmentation and provide
all technical details.

3.1. Overview

The pipeline of the proposed method is presented in Fig-
ure 1. As introduced, the main idea of the approach is to
have prototypes only for the foreground, pulling samples of
this class closer to the prototypes while pushing background
data apart through contrastive learning. Overall, this pro-
cess alleviates the training, as the model does not need to
focus on capturing patterns for the background class, which
has a huge intra-class variance, but on making samples of
this class different as possible from the positive one. Fur-
thermore, in order to deal with imbalanced data, the pro-
posed model is able to select the most difficult background
samples just using their distance to the foreground proto-
types, without having to resort to any other mining tech-
nique that would impact the training.

3.2. Training

During the training, an image X is used as input for a
deep learning-based backbone, responsible for learning a
function fθ (with learnable parameters θ) that maps each
input pixel i of X into a N -dimensional representation
Z ∈ RN . The ℓ2-normalized feature representations ∥Z∥2
of the foreground instances are then pulled closer to the
nearest learnable prototype P∗, whereas background data
representations are pushed apart from all foreground proto-
types at the same time, a process accomplished by optimiz-
ing the network with this novel contrastive loss function:

L =
∑
i

Yi D(∥fθ(Xi)∥2, P∗)2+

C∑
j

(1− Yi) {max(0,m−D(∥fθ(Xi)∥2, Pj))}2
(1)

where Y is the label (i.e., 0 for pixels of the negative class
and 1 for those of the positive label), C is the number of pos-
itive prototypes, Pj ∈ RN ∀ j ∈ C is a prototype, m > 0 is
a margin, and D is a function that measures the distances
between the normalized pixel representation ∥Z∥2 and a
prototype Pj .

Observe that: (i) although standard ℓ2 regularization is
used with the proposed loss, it has been omitted from Equa-
tion 1 for simplification and readability purposes, and (ii)
following the insights of [26, 50], the embedding function
fθ and the prototypes P are learned simultaneously. This
differs from most other works [24, 44] in the literature that
learns prototypes separately or defines them as centroids of
the learned representations.

3.3. Testing

During inference, the input data is processed using the
trained backbone and all sample representations ∥Zi∥2 are
then projected onto the learned space (with the prototypes).
Then, examples with a distance to any prototype smaller
than the margin (D(∥Zi∥2, Pj) < m) are classified as fore-
ground whereas samples with a distance to all prototypes
greater than the margin are considered as background.

3.4. Dealing with Imbalanced Data

As introduced, a common challenge related to binary
segmentation is class imbalance. This is mainly due to
the fact that the negative class aggregates samples from
many different semantic categories, thus generally having
far more samples than the positive class, which is composed
of instances of just one (relevant) category. Such highly im-
balanced scenarios make most machine learning models bi-
ased towards the majority class that, in severe cases, may
completely ignore the minority category [23]. Moreover,
highly imbalanced data is considered a particularly relevant
issue for deep neural networks, because it directly impacts
the gradients causing the model to get stuck in a slow con-
vergence mode [4, 23].

However, although composed of a myriad of samples,
only the hard part of the background examples is valuable
for optimization. Moreover, given the clear difference in vi-
sual properties between most negative samples and the pos-
itive class, the hard background examples are usually much
less than the easy ones. Seeking to take advantage of this,
the proposed method intrinsically deals with the class im-
balance issue by optimizing the model using only the most
relevant (or hard/similar) negative samples. In practical
terms, this is performed by training the model employing
only the background instances with a distance to a proto-
type smaller than the margin (D(fθ(Xi), Pj) < m, where
Xi belongs to the negative category), as can be seen in Equa-
tion 1. This intrinsic system allows the proposed model to
deal with imbalanced data without having to resort to any
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Dataset Sets #Pixels %

Foreground Background Foreground Background

Vaihingen
Training 491,636 44,742,258 1.09 98.91

Validation 174,982 9,475,136 1.81 98.19
Testing 279,069 22,924,725 1.20 98.80

River
Training 358,203 190,787,097 0.19 99.81

Validation 247,653 191,055,145 0.13 99.87
Testing 175,552 191,288,546 0.10 99.90

Table 1. Number of pixels per class for the tested datasets.

other mining technique, further easing the training process.
Although this process may help alleviate this relevant

problem, class imbalance issues can still persist depend-
ing on the dataset. Even though we did not observe that
in the performed experiments (probably due to the afore-
mentioned dissimilarity between most negative instances
and the positive class), the proposed technique can be easily
adapted to further tackle the class imbalance problem by se-
lecting a specific amount of background samples based on
their distance to the prototypes (or randomly), thus better
balancing the classes.

4. Experiments
We evaluate the efficiency of our method in this section

by carrying out a systematic evaluation using two datasets.

4.1. Datasets

To better evaluate the effectiveness of the proposed
method, we carried out experiments using two high-
resolution RGB remote sensing datasets with distinct prop-
erties: Vaihingen [1] and River. While the former dataset is
considered one of the most important in the remote sensing
domain, the latter is being proposed in this work and takes
the imbalance issue to a new level. The pixel distribution of
both datasets can be seen in Table 1.
Vaihingen. This publicly available dataset [1] is com-
posed of a total of 16 image tiles (with an average size of
2494×2064 pixels), that are densely classified into six pos-
sible labels: impervious surfaces, buildings, low vegetation,
tree, car, clutter/background. Each image is composed of
near-infrared, red, and green channels (in this order) and
has a spatial resolution of 0.9 meter. In order to simulate an
imbalanced binary scenario with this dataset, we considered
the rarest class, i.e., car, as the foreground and all remaining
others as background, as presented in Figure 2.

For this dataset, we followed the protocol proposed
by [37]. Precisely, 9 out of the 16 images were used to
train the proposed model; 2 images (IDs 5 and 7) were used
for validation; and the 5 remaining images (IDs 11, 15, 28,
30, 34) were employed for testing. In general, this protocol
presents a scenario of considerable imbalance given that for
each car sample there are 91 non-car pixels.

(a) Image

(b) Ground-Truth

Figure 2. Some images of the Vaihigen dataset [1] and their re-
spective ground-truths for the car class.

Figure 3. Images of the River dataset and their respective ground-
truths. White areas represent water, while black regions are non-
water. Note that the images of this dataset actually compose an or-
thomosaic that covers a large area in Brazil, including three rivers.

River. This dataset, proposed in this work, is composed of
three high-resolution RGB orthoimages between the states
of São Paulo and Paraná, Brazil. The images, manually an-
notated by experts into water and non-water classes, have an
average size of 13, 358× 14, 322 pixels and 1 meter of spa-
tial resolution, thus totalling more than 500 millions pixels
and more than 500 square kilometers.

For this dataset, each of the images is used separately for
training, validation, and testing, as can be seen in Figure 3.
This protocol takes the imbalance issue to an extreme sce-
nario wherein for each water pixel there are approximately
631 pixels of non-water.

4.2. Implementation Details

The proposed technique employed a fully convolu-
tional [34] DenseNet-121 [19] as backbone, which has been
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pre-trained on the ImageNet dataset. It is important to high-
light that, in order to aggregate more contextual information
and enhance discriminative power, feature representations
from all dense blocks are extracted, upsampled (if neces-
sary), and merged, thus fusing low, mid, and high semantic-
level data. Finally, we employed the squared Euclidean
distance as D for the proposed loss function (Equation 1)
based on an analysis performed by Snell et al. [44], who
concluded that such a distance works better for prototype
learning because it is a regular Bregman divergence.

Additionally, the proposed method1 was implemented
using PyTorch. During training, the proposed approach
used the following hyper-parameters: patch size of 128 ×
128 pixels, 100 epochs, weight decay of 0.005, batch size
equal to 32, Adam [25] as optimizer, learning rate of 0.01,
and step decay of 0.1 every 25 epochs. Finally, all experi-
ments were performed on a machine with an Intel i7 4960X
with 3.6GHz of clock, 64GB of RAM memory, and Ubuntu
operating system version 18.04.3 LTS. Four GeForce GTX
Titan X with 12GB of memory, under an 11.4 CUDA ver-
sion, were employed in this work. Note, however, that each
GPU was used independently and that all models employed
in this work can be trained using only one GPU.

4.3. Baseline Methods

For both dataset, we compare our method with vari-
ous baseline models proposed for imbalanced binary seg-
mentation of remote sensing images, including: (i) Deep-
WaterMap [20], which addresses class imbalance by em-
ploying a weighted cross entropy loss function, (ii) BAS-
Net [5], that handles unbalanced scenarios by using the fo-
cal loss [30], (iii) U-Net++ [17, 47], that tries to handle un-
balanced data by combining the weighted cross-entropy and
Lovász cost functions [21], (iv) DUPnet [32], which tack-
les the class imbalance issue by using a combination of the
cross-entropy and Tversky [41] losses, (v) DFL [18, 55],
that uses a combination of dual cross entropy [29] and the
Focal loss, (vi) UFL [42, 51], which combines the Dice and
cross-entropy losses to address class imbalance. It is impor-
tant to highlight that all baselines used the same backbone
employed in the proposed approach, i.e., a fully convolu-
tional [34] DenseNet-121 [19].

4.4. Evaluation Metrics

Three different metrics, Precision, Recall, and F1 score
(defined in Equation 2), have been selected based on other
related works [32, 47] and used to assess the performance
of the proposed algorithm and baselines. Specifically, Pre-
cision measures the fraction of correct positive outcomes
(i.e., True Positive – TP) out of the total positive predic-

1The code and the proposed River dataset have been made publicly
available at https://github.com/keillernogueira/proto_
contrastive_net_imbalanced.

tions, being a metric more related to the False Positives
(FP). On the other hand, Recall measures the proportion of
correct positive predictions (TP) out of the total actual pos-
itive instances in the dataset, a measure more related to the
False Negatives (FN). Finally, F1 score, is defined as the
harmonic mean of precision and recall.

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1− Score =
2× Precision ·Recall

Precision+Recall

(2)

4.5. Results and Discussion

4.5.1 State-of-the-Art Comparison

In Table 2, we report the overall results (on the test set)
and training time of the proposed approach and all em-
ployed baselines. Compared to the state-of-the-art methods,
the proposed approach achieves improvements, in terms of
F1-score, on all experimented datasets. Precisely, for the
Vaihingen dataset, the proposed method obtained 79.07%
of F1-score, with a 4.44% relative gain. As for the River
dataset, our approach yielded 78.78% of F1-score, a rela-
tive gain of 5.43%.

Despite achieving the best results in terms of F1-score,
the proposed approach yielded the second-best result in
terms of both Precision and Recall for the two tested
datasets, being outperformed by other techniques. This
is due to the fact that such methods focus explicitly on
reducing false positives and/or negatives by giving more
weight to such related samples (thus generating more im-
pact on the aforementioned metrics), while the proposed
technique does not optimize the model based on specific
sample weights, dealing with false positives and negatives
equally, thus better balancing the learning (and such met-
rics). As a result, the proposed technique is capable of pro-
ducing outcomes with fewer false positives and false nega-
tives, being more consistent and generating better results in
terms of F1-score. Such an analysis can be better visualized
with the qualitative results presented in Figures 4 and 5.

In addition to the results, it is important to highlight that
our method is very computationally efficient as it takes less
than half the training time when compared to all other com-
peting approaches (potentially, because of the mining pro-
cess that reduces the number of training samples). Over-
all, the obtained results show that the proposed technique
can effectively focus on learning the positive class, showing
better generalization in representation learning and seman-
tic understanding, while efficiently dealing with unbalanced
datasets, taking much less training time.
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(a) Image (b) Mask (c) DeepWaterMap [20] (d) BASNet [5]

(e) U-Net++ [17, 47] (f) DUPnet [32] (g) DFL [18, 55] (h) Ours

Figure 4. The River test image, its respective ground-truth, and the prediction maps generated by the proposed algorithm, as well as the
best baselines. The white areas represent water, while the black regions are non-water.

Dataset Method Training
Time (h) Precision Recall F1-Score

Vaihingen

DeepWaterMap [20] 20.6 77.95 67.44 70.38
BASNet [5] 26.6 68.44 79.96 71.52

U-Net++ [17, 47] 20.8 76.00 68.40 69.98
DUPnet [32] 35.0 68.16 60.34 60.35
DFL [18, 55] 22.3 93.30 68.23 74.63
UFL [42, 51] 33.3 69.36 82.70 73.04

Ours 8.3 78.78 81.04 79.07

River

DeepWaterMap [20] 125.2 52.51 90.05 54.39
BASNet [5] 139.1 63.76 79.66 68.78

U-Net++ [17, 47] 127.0 52.89 92.12 55.10
DUPnet [32] 145.4 54.60 62.01 56.64
DFL [18, 55] 124.0 76.81 70.69 73.35
UFL [42, 51] 143.1 52.41 55.19 54.28

Ours 66.6 69.61 90.74 78.78

Table 2. Obtained results achieved on the test set by the proposed
method and baselines for both unbalanced datasets.

4.5.2 Number of Prototypes

The number of prototypes for the foreground class is a criti-
cal parameter of the proposed algorithm. Motivated by this,
in this Section, we assess the proposed model varying the
number of prototypes in order to define the most suitable
value for each dataset.

Precisely, we vary the number of foreground prototypes
from 1 to 3, evaluating all possibilities using both datasets.

For a fair comparison, we preserve all other parameters as
described in Section 4.2 and use margin m equal to 3 for
all experiments. The experimental results (on the validation
set) are shown in Table 3. From this table, we can observe
that the number of prototypes has an influential effect on the
final outcome for the two tested datasets. Overall, we can
conclude that using only one positive prototype produces
the best results for both datasets. Such an outcome corrob-
orates with other works in the literature which concluded
that using more than one prototype does not bring effective
gains, just increasing the processing time [7,26,44]. Finally,
it is important to highlight that the outcomes of this analysis
have been used for all other experiments in this work.

4.5.3 Margin Analysis

The margin hyperparameter m, introduced in Equation 1,
plays a crucial role in the optimization of the proposed
method, given that if it is set too low, the model might not be
able to learn a meaningful space as classes might have sim-
ilar representations, whereas if it is set too high, the model
might become too conservative, and might not be able to
generalize to unseen data. Due to this, in this Section, we
investigate the effects of different margin values for the cost
function to define the most appropriate for each dataset.

Specifically, we vary the value of the margin from 1 to
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Image Mask [20] [5] [18] [51] Ours

Figure 5. Predictions for the test set of the Vaihingen dataset. White areas represent the car class, while black regions are the background.

5, evaluating all possibilities using both datasets. Again, for
a fair comparison, we preserve all other parameters as de-
scribed in Section 4.2 and use only one prototype for the
foreground class (based on the outcomes of the previous
Section). The experimental results are shown in Table 4.
From this table, we can observe that the margin value dras-
tically affects the final outcome for both datasets. In any

case, we can conclude that, for the Vaihingen dataset, the
best value for the margin parameter is 4, whereas for the
River dataset, the optimal margin is 3. Again, it is impor-
tant to emphasize that the outcomes of this analysis have
been used for all other experiments in this work.
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Dataset Number of
Prototypes Precision Recall F1-Score

Vaihingen
1 75.95 80.92 77.41
2 70.43 79.21 73.35
3 64.76 83.17 69.70

River
1 68.19 88.08 76.56
2 55.71 74.05 63.61
3 55.96 60.17 57.29

Table 3. Results (on the validation set) of the proposed method
trained using different numbers of prototypes for the foreground
class.

Dataset Margin Precision Recall F1-Score

Vaihingen

1 73.04 79.30 76.06
2 74.57 82.26 77.07
3 75.95 80.92 77.41
4 77.21 80.59 78.22
5 75.78 75.76 74.93

River

1 50.27 85.56 46.75
2 54.47 85.90 65.67
3 68.19 88.08 76.56
4 66.38 80.83 71.38
5 63.80 81.15 71.44

Table 4. Results (on the validation set) of the proposed method
trained using distinct values for the margin hyperparameter m of
the proposed loss (Equation 1).

4.5.4 Embedding Space

To better analyze the optimization process of the proposed
method, we include visualizations of the embedding space
generated by the best models for both datasets. Further-
more, to allow for a comparison, we also include visu-
alizations of the spaces generated by some of the best-
performing baselines. To create such visualizations, we ran-
domly selected approximately 6,000 samples of each class
from the validation set of each tested dataset. Then we pro-
jected the related representations into a 2-dimensional space
using t-SNE [45], as shown in Figure 6.

Overall, we can observe that the proposed technique is
able to efficiently group samples of the foreground class
around the prototype, presenting better compactness for
such a class when compared to the baselines, while being
able to effectively push away instances of the negative class.

5. Conclusions
In this paper, we propose a novel approach for extremely

imbalanced binary segmentation of remote sensing images.
The proposed method, trained using a new contrastive loss,
is able to effectively learn a good representation for the fore-
ground class while efficiently dealing with imbalanced data,

(a) DFL [18, 55] (b) DFL [18, 55]

(c) BASNet [5] (d) UFL [42, 51]

(e) Ours (f) Ours

Figure 6. Visualizations of the embedding spaces learned by the
proposed method and some baselines for both datasets. First col-
umn is for the Vaihingen dataset whereas the second one is for
the proposed River dataset. The black star represents the learned
prototype for the foreground class.

showing better generalization in representation learning and
semantic understanding. Experiments were conducted us-
ing two high-resolution remote sensing datasets with very
distinct properties. Results demonstrate the effectiveness
and computational efficiency of the proposed method which
outperforms several state-of-the-art techniques while taking
much less training time. In the future, we plan to better an-
alyze more up-to-date backbones, such as ViT [11] or Swin
Transformers [33], and different reduction strategies for the
loss (for example, mean instead of the sum). We also plan
to investigate the effectiveness of the proposed approach for
different datasets and applications.
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