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Abstract

We propose a discrete latent distribution for Generative
Adversarial Networks (GANs). Instead of drawing latent
vectors from a continuous prior, we sample from a finite set
of learnable latents. However, a direct parametrization of
such a distribution leads to an intractable linear increase in
memory in order to ensure sufficient sample diversity. We ad-
dress this key issue by taking inspiration from the encoding
of information in biological organisms. Instead of learning
a separate latent vector for each sample, we split the latent
space into a set of genes. For each gene, we train a small
bank of gene variants. Thus, by independently sampling a
variant for each gene and combining them into the final
latent vector, our approach can represent a vast number
of unique latent samples from a compact set of learnable
parameters. Interestingly, our gene-inspired latent encod-
ing allows for new and intuitive approaches to latent-space
exploration, enabling conditional sampling from our uncon-
ditionally trained model. Moreover, our approach preserves
state-of-the-art photo-realism while achieving better disen-
tanglement than the widely-used StyleMapping network.

1. Introduction

Generative adversarial networks (GANs) have seen
tremendous progress since the seminal work by Goodfellow
et. al [8]. GANs have been successfully applied to a plethora
of tasks, including conditional generation from semantic
categories [2, 36, 37], images [5, 40], text [28, 31, 45], and
semantic layouts [24,26,35,52]. Compared to their early pre-
decessors, recent GANs [3, 16, 25, 34] are significantly more
capable of realistic and diverse generation of images, with a
vast number of works aimed at designing better architectures,
training objectives and training strategies [9, 14, 15, 17, 21].

The core GAN formulation, however, remained largely
the same: a generator transforms a latent code sampled
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Figure 1. We propose StyleGenes: a biologically inspired discrete
latent distribution for GANs. Our Genome (a) is an ordered set of
smaller codebooks, we call genes. Each gene contains a collection
of embeddings, its variants. For each gene, we select a variant
and concatenate them to produce our latent code. We train for and
perform unconditional image synthesis (b) by randomly sampling
a variant for each gene. Analyzing our discrete Genome let us
associate genes with specific attributes. We leverage this infor-
mation to conditionally generate from our unconditionally trained
model, without retraining the network or training any additional
modules (c). Although our latent distribution is discrete, the learned
style space offers emergent continuous properties, ensuring smooth
interpolation between samples (d).
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from a continuous distribution to a realistic-looking im-
age. Initially, the latent code was sampled by a uniform dis-
tribution [8]. Quickly, however, the community converged to
using a Gaussian prior [10, 41]. An important change came
subsequently when Karras et al [17] altered the standard
design of the generator network. The sampled noise is no
longer given to the network as the initial input, but akin to
a conditional [26] or a style transfer [12] generator, it was
used to manipulate the intermediate feature maps after the
convolutions. Nevertheless, the Gaussian input is mapped to
an intermediate latent style space through a multi-layer per-
ceptron. The motivation was that this learned space does not
have to adhere to a sampling density of a fixed distribution
and can be disentangled.

Interpretation and manipulation of the GANs input space,
or the latent style space, has been a subject of extensive
research [13,19,39,42,46]. These works usually train a sepa-
rate model to make sense of the latent vector space: training a
conditional normalizing flow [1] or a classifier [23] to enable
conditional sampling. For generated sample manipulation,
they train one vector per transformation [13], discover style
channels via gradient computation [42] or apply clustering
to hidden layers [6]. The use of these intricate techniques
and the importance of the downstream task they are trying to
tackle, raise the question on whether we can design a latent
space that would permit a straightforward analysis.

In this work, we take a different approach to continuous
sampling and modulate the generator with latent codes sam-
pled from a discrete prior distribution. We set the different
outcomes of this distribution to be learnable embeddings,
which induces the benefit of direct optimization of the sam-
ples. A standard approach to designing such a discrete dis-
tribution of embeddings would require a memory bank of
all the latent vectors. However, the advantage of an image
synthesis network, is that it can generate countless novel
samples. This is not feasible with such a formulation.

To tackle this key issue, we introduce a compact repre-
sentation of a discrete distribution capable of generating an
exponentially large number of distinct samples. We draw
inspiration from how the blueprint of a complex living organ-
ism, the DNA, can represent the great amount of diversity
found in nature. Only four letters, the nucleotides, form the
words, the genes, that tell the story of our biology. A virtually
endless degree of variation can be obtained by combining
different variants of these genes. Accordingly, we design
our latent genome. We break the latent code into smaller
parts, the genes. Each gene is sampled from a smaller set
of gene variants. These combine into the final latent vector,
analogous to the chromosome in organisms.

We introduce StyleGenes: an ordered collection of gene
variants that are learned in conjunction with the generator,
and can generate a great diversity of realistic-looking images.
The nature of our latent space offers a straightforward way to

interpret the associations between the discrete samples and
the synthesized images. These associations can be exploited
to enable downstream tasks, such as conditional generation.

Our contributions are summarized as follows.
• We introduce a compact parameterization of a discrete

latent distribution for GANs, inspired by the encoding
of information in biological organisms.

• Our discrete latent space formulation permits a natural
and straightforward analysis of the association of genes
to semantic image attributes.

• We use a pretrained classifier to integrate class-
conditioning after training. Our analysis allows us to
conditionally sample from the unconditionally trained
model without the need to retrain, or train additional
modules.

• The learned discrete latent space is more disentangled
than the widely-used StyleGAN’s W space.

• We show that despite the discrete latent distribution,
the resulting style space obtains continuous properties,
important for e.g. realistic interpolation and propose a
method to project real images in our codebook.

We perform experiments on a variety of widely-used im-
age generation datasets and two established GAN baselines.
Our approach obtains visual results on par with the base-
line continuous case, while benefiting from the intuitive
gene-based approach to conditional generation manipulation
offered by our StyleGenes representation. Furthermore, our
approach eliminates the need of a Style Mapping network,
as it can be trained using few parameters while being faster
and yielding a more disentangled latent space.

2. Related Work
Latent Code Quantization: VQ-VAE [38] is one of the first
studies to exploit discrete representations for image genera-
tion. VQ-VAE is designed to prevent the posterior collapse
in VAE framework when the latent representations are paired
with a powerful decoder [38]. Instead of a continuous latent
space, VQ-VAE represents the latent space as a spatial grid
of quantized local latent codes, which are sampled from a
discrete set of learned vectors in an auto-regressive manner.
VQ-VAE2 [30] is an improved version of VQ-VAE, which
is capable of generating images of higher diversity and reso-
lution by using a hierarchical multi-scale latent maps. The
idea of VQ-VAE later on was extended to a GAN framework
by changing the reconstruction loss and adding an adver-
sarial one [7]. Moreover, a transformer is used to learn the
auto-regressive priors for sampling the discrete local latent
vector. Building on the previous approaches, RQ-VAE [20]
proposes a residual feature quantization framework, which
enables their model to work with smaller number of repre-
sentation vectors. Feature quantization has also been used
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in the discriminator of GANs to increase the stability of the
adversarial training [51]. This study bears similarities to the
above works in formulating the latent space as a composi-
tion of discrete feature vectors. However, different to prior
studies, we investigate discrete sampling of the latent code in
the unsupervised GAN framework [18], without employing
any encoder or self-supervised objective. These approaches
deploy an auto-encoder based approach, that produce local
discrete codes and need auto-regressive sampling to draw
new samples. Our codebook is not trained through vector
quantization, but rather through the adversarial game; it pro-
vides a global description of the image to be generated and
thus does not require auto-regressive sampling.

Latent code as a composition of smaller parts: Info-
GAN [4] aimed at bringing more interpretability and disen-
tanglement to the latent codes of GANs by maximizing the
mutual information between parts of the latent code and the
corresponding generated images. Inspired by the formation
of DNA from genes, DNA-GAN [43] and ELEGANT [44]
also proposed dividing the latent code into smaller attribute-
relevant and attribute-irrelevant parts, which are then super-
vised using attribute annotations to create attribute disen-
tanglement in GANs. Similar to these studies, or method
divides the style vectors into smaller codes. Additionally, the
style codes in our method consist of smaller codes. However,
different to InfoGAN, our method only uses a discrete set
of codes to form the latent style codes. Note, we do not
explicitly train our method for disentanglement and feature
transfer but only for unconditional image synthesis.

Analyzing the style space: Steering the latent space of
GANs is of high interest for many applications of image edit-
ing and conditional generation [13, 39, 46]. Previous studies’
focus has primarily been on analyzing the style space, as
it is more well-behaved and disentangled compared to the
traditional latent space in prior GAN models. One goal of
this style space analysis is to discover meaningful directions
in the style space for semantic editing of images [13, 42].
Moreover, [19] uses style space to explaining and interpret
the decisions made by attribute classifiers. The style space
has also provided the opportunity for paired data genera-
tion using only a few annotations [50]. Recent methods
utilize unconditionally pretrained models for conditional
generation [1, 23]. These approaches, train a conditional
normalizing flow [1] or a classifier [23] in the latent space
to enable conditional sampling.In this study, we do not need
to train one vector per transformation [13], compute any
gradients [42] or apply clustering to hidden layers [6]. In
contrast, we treat the network as a black box and, without
extra training, only harness the benefits of its discrete input
to enable conditional generation.

3. Method
In the present widely-established [14, 18] image gener-

ation paradigm, a latent vector sampled from a continuous
multi-variate prior distribution [8] is transformed through a
generator network in order to achieve the final image. In this
work, we aim to offer a different approach, by starting from
a discrete distribution. We propose to sample a set of smaller
latent codes from a codebook, consisting of a collection of
embeddings that are trained through the adversarial learning.

However, composing the codebook as a collection of final
latent vectors leads to an intractable memory cost, as we
require the generation of at least millions of unique examples.
We therefore take inspiration of how biological organisms
encode information as a sequence of discrete entities, called
genes. Analogous to genes, we partition our latent vector
and codebook into a sequence of positions. At each position,
we independently sample from the set of embedding variants
contained in the codebook, as illustrated in Figure 1-a. Even
with a very compact codebook, our discrete latent sampling
allows for countless combinations due to the combinatorial
formulation.

3.1. Generator with continuous prior

In the classic unsupervised image synthesis literature, the
generator is a function that transforms the input noise to the
image domain as,

I = G(zc)θG , zc
iid∼ pz , zc ∈ Rd (1)

where zc is sampled from a prior distribution pz , and θ are
the generator’s weights. Early works [8, 29] sample zc from
a uniform distribution. Subsequent works [10, 41] sample
from a standard Gaussian distribution. Since the introduction
of StyleGAN [17] and the models based on it, an additional
model element is deployed: a Multi-Layer Perceptron. The
weights of this mapping network, are learned in tandem with
the generator’s through the adversarial objective. It is used
as a push-forward operator to transform the Gaussian input
distribution to an intermediate latent space W.

w = Mapping(zc, θ) , zc
iid∼ N(0, I) (2)

We propose an alternative method for learning a disentangled
latent space W, presented next.

3.2. A scalable codebook of learned latent codes

We aim to learn a discrete latent distribution. To this end,
we first introduce a codebook of n learnable embeddings.
Before training, the embeddings are initialized using a stan-
dard Gaussian distribution. Through adversarial learning the
embeddings are optimized, and therefore capable of repre-
senting flexible and complex style distributions. While such
a formulation permits learning a set of latent codes that can
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generate realistic outputs, it has a fundamental flaw. The
number of distinct samples we can generate scales linearly
with the number of embeddings. For a latent code of length
d = 512, we would need to learn over 35 million parameters
only to be able to generate 70, 000 distinct images (the size
of the FFHQ dataset [17]).

Inspired by how DNA encodes information in a discrete
and compositional manner, we instead let the latent code be
composed of an ordered set of positions, analogous to genes.
At each position we independently and uniformly sample
one of its embedding variants from the codebook. Then we
concatenate this sequence of sampled variants into the latent
code, which is used as input to the generator,

Vk = [vk1
1 , vk2

2 , ..., v
kng
ng ] , ki ∈ {1, 2, . . . , nv} (3)

Here, vji denotes the variant j of position i. The vector k
of uniformly sampled indices ki selects the variant vki

i for
each position i. The dimensionality of k is the number of
positions s, ng , in our codebook. The number of variants for
each position is denoted nv . The final image is achieved by
decoding our style vector with the generator network G,

Izd = G(Vk; θ) . (4)

We visualize the process in Figure 1-a. Note that all
embedding variants have the same length, such that vji ∈
Rdg , where dg = d/ng and d is the total number of elements
in the resulting latent code Vk. This formulation permits the
increase of distinct samples nimg we can generate to,

nimg = nng
v . (5)

For example, using a latent dimension of d = 512 with
ng = 64 genes and nv = 256 variants, we can generate
approximately 1.34 × 10154 different samples; more than
the estimated number of atoms in the observable universe.
On the other hand, the non-compositional discrete approach
using the same codebook size can only generate 256 distinct
samples. In fact, by keeping d = 512 constant, the number
of trainable parameters remains independent of the number
of positions ng, while allowing an exponential increase in
the number of distinct samples according to Equation 5.

Note that our Genome is trained from scratch together
with the synthesis network, guided only by the adversarial
loss (See Figure 1).

3.3. Attribute-based sampling and analysis

A key feature of our discrete latent formulation, is that it
provides for a simple and effective method for analysis and
guided sampling. In this section, we introduce an approach
to attribute-based analysis and conditional sampling, by ag-
gregating statistics of how a set of image-specific attributes
relate to individual elements in the codebook.

Let {a1, . . . , aL} denote the attributes that are used to
describe an image, for the specific dataset on which our
generator is trained. Each attribute al can take a finite set
of values. For instance, in case of a face dataset, an at-
tribute can describe the existence of glasses, beard, lipstick,
or the hair color. In order to perform conditional image
generation given a specified set of attributes, we need to
estimate the conditional latent distribution p(k|a1, . . . , aL).
We assume the positions to be conditionally independent
p(k|a1, . . . , aL) =

∏
i p(ki|a1, . . . , aL). We then obtain,

p(ki|a1, . . . , aL) =
p(a1, . . . , aL|ki)p(ki)∑
ki
p(a1, . . . , aL|ki)p(ki)

=∏
l p(al|ki)∑

ki

∏
l p(al|ki)

(6)

The first equality is the application of Bayes’ rule. In the
second equality, we use that p(ki) = 1

nv
is uniform and

assume the attributes to be conditionally independent given
the variant ki. The latter assumption is motivated by the high
degree of disentanglement that we observe across variants
and positions. Further, note that this conditional indepen-
dence assumptions by no means imply that the generated
attributes themselves are independent. In fact, as observed
in our experiments, our approach captures the strong corre-
lations that exist between certain attributes, such as ‘male’
and ‘beard’ (see our genome analysis and Figure 2).

Equation 6 shows that the conditional distribution of the
latents are fully given by the marginal attribute distribution
for a given embedding variant p(al|ki). We aggregate statis-
tics over the generated image samples to estimate the latter:

p(al|ki = j) =
∑
k

p(al|G(Vk))p(k|ki = j) ≈∑
k∈S:ki=j p(al|G(Vk))∑

k∈S:ki=j 1

(7)

Here, p(al|G(Vk)) is the attribute distribution of the gen-
erated image G(Vk), which we estimate with a pre-trained
image classifier. In the first equality, we marginalize over
all possible latent vectors k. However, as this is intractable,
we approximate the expectation value through Monte-Carlo
sampling. Specifically, we pre-generate a set of images
{G(Vk) : k ∈ S}, where the latents in S are sampled from
p(k). We can efficiently re-use the same set of images, gen-
erated from S, when computing Equation 7 for all variants
ki and attributes l.

To further increase the likelihood of sampling codebook
entries with high probability of the conditioned attribute
class, we scale the estimated statistics with a temperature
parameter p(al|ki)

1
T when employed in Equation 6. This

serves to increase the class consistency of the conditional
sampling in our experiments.
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A: Unsupervised Image Generation
FID ↓ Time/latent ↓

FFHQ AFHQ Met/s Church Beds
StyleGAN2

StyleMapping 5.3 5.62 20.48 8.13 51.61 0.483 ms
StyleGenes 5.11 5.99 21.00 6.86 17.84 0.170 ms

ProjectedGANs(FastGAN)
Cont. Prior 5.08 4.02 15.38 3.05 3.15 0.015 ms
StyleGenes 4.19 3.66 15.24 3.08 2.96 0.076 ms

B: Ablation Study on StyleGenome
FID ↓ FFHQ AFHQ Metfaces

Genome # Genes # Genes # Genes
#Variants 64 8 2 64 8 2 64 8 2

256 5.87 5.34 24.72 6.45 12.43 18.64 22.56 38.76 42.60
512 5.53 5.64 12.34 5.99 7.24 13.77 21.54 27.20 37.71
1024 5.71 5.20 6.2 6.11 10.33 10.47 21.99 25.05 32.08
2048 5.22 5.11 5.30 6.31 6.37 7.31 21.39 21.00 30.93

Table 1. A: Evaluation of our discrete sampling approach, StyleGenes, by substituting the StyleGAN2’s StyleMapping network or FastGAN’s
Gaussian sampling for ProjectedGAN. We achieve similar or better FID to the continuous case. B: Ablation on different configurations
of the genome and our baseline. Increasing the number of the embeddings in our codebook, the # Variants, increases the performance by
increasing the number of parameters we are using. We can also lower the FID by breaking the latent code into more genes of smaller lengths.
This increases the number of unique codes we can sample from our genome without increasing the memory/parameters.

Predicting Attribute Presence from Latent Codes
Method male young bald gray-hair h-makeup mustache no-beard w-earrings w-lipstick mean
StyleMapping 49.74% 63.43% 96.02% 92.49% 87.71% 95.37% 79.06% 84.73% 69.30% 79.76%
StyleGenes 86.71% 82.90% 97.01% 93.68% 92.09% 95.82% 91.53% 86.40% 85.89% 90.23%

Table 2. We measure disentanglement by our ability to predict an attribute’s presence in a generated image from its latent code. StyleGenes’
codes are much easier to associate to attributes than the StyleMapping’s ones.

Comparison with Vector Quantization approaches - FFHQ - FID ↓
VQ-GAN ViT-VQGAN Ours /w StyleGAN2 Ours /w ProjectedGAN

9.6 5.3 5.11 4.19

Table 3. VQ-methods are quantized and not self-learned (different
losses, encoder). They learn local descriptors spatially aligned in a
grid and require multiple different codes for semantically rich and
diverse images. Contrary, we use a single global code, avoiding
a parameter explosion with our Genome. We don’t require an
autoregressive sampler (e.g. transformer), and thus are faster.

4. Experiments

Implementation Our method, StyleGenes, is written in
Pytorch [27]. We incorporate our sampling approach into
two baseline models: (1) StyleGAN2 [18] as provided in the
StyleGAN3 [16] codebase and ProjectedGANs [33] using
the FastGAN [21] generator. For all datasets, we train all our
models and baselines unconditionally using 4 GPUs follow-
ing the default configuration as described in each project’s
code repository [16,33]. For small dataset Metfaces [15] and
AFHQ [5] we use adaptive discriminator augmentation [15].
For our StyleGAN2 experiments, we train until the discrim-
inator has seen 10 million images of resolution 256× 256.
For ProjectedGAN, we train for their reported number of
iterations to reach state-of-the-art results, rounded up to the
next million: 8M images for FFHQ [17] and 2M images for
the other datasets.

Datasets We investigate the performance of our network
using the Fréchet Inception Distance (FID) [11], on widely
used datasets for unsupervised image generation:
FFHQ [17], is a collection of 70,000 face images scraped
from flickr.com. The images were centered around the eyes
and the mouth of the individual, offering strong position pri-
ors. The people depicted in the images come from a diverse
background, age and poses.
MetFaces [15] is a dataset of image crops from art pieces

of the Metropolitan Museum of Art Collection. Similarly
to FFHQ the crops are centered around human faces. The
dataset contain 1336 images in total. The images are under
CC0 license by the Metropolitan Museum of Art. AFHQ [5]
is a collection of 15.000 images of animal faces divided
equally into three categories: cat, dog and wildlife. How-
ever, in this work we do not use the labels for conditional
generation.
LSUN Church & Bedroom [47]. We are using two sub-
sets of the LSUN dataset Church and Bedroom, where they
contain diverse outdoor and indoor scenes respectively. We
use the full LSUN Church dataset of 126,227 images and a
subset of the bedroom scenes comprised of 121,000 images.

4.1. Unconditional Generation

In Table 1-A we see the performance of established base-
lines [18, 33] using StyleGenes. We compare with the con-
tinuous approach by training our baselines [15, 33] with the
same hyperparameters and number of images. Our proposed
discrete method produces similar results with StyleGAN’s
StyleMapping approach, and improves ProjectedGAN when
it replaces Gaussian sampling. Note, that StyleGAN2 failed
to converge in our Beds experiments.

In our ablation study (Table 1-B), we analyze the effect
of the different Genome configurations to the perceptual
performance of the network, while keeping the size of the
resulting latent vector fixed at d = 512.

Increasing the number of different variants for each gene
increases the number of parameters: nv ∗ d. Doing so yields
better FID scores.

Note that every experiment that is in the same row in
Table 1-B is using the same number of parameters. When
we change the number of genes ng , we also change the size
of each sub-vector/variant vki

i , such as ng ∗ len(viki) = d.
Thus, by increasing the number of genes we do not increase
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Figure 2. Which genes affect which attribute? The polar plot shows which genes affect which CelebA attributes the most. Each color
represents a different attribute. The labels indicate the gene that exhibits the highest variability in this attribute. Most attributes are affected
only by a handful of genes. We observe that specific genes affect pertinent attributes. For instance, genes 66 and 38 affect gender and hair
color, while gene 85 the mouth-related features. We show how randomly changing a specific gene’s variants produces different alterations to
the images on the right. Changing the variants of genes 0 and 14, which do not exhibit importance for any attribute, leads to minute changes.
Most genes fall into this category.

the memory footprint, but the number of different images
the genome can represent is also increasing, per Equation 5.
This also leads to a decrease of FID. In Table 1-right we
can observe that for all three datasets, for the smallest gene
length, going from variants’ number of 2048 to 256 leads to
a minor deterioration of performance. However, the memory
footprint of the genome is decreased 8-fold.

To summarize, we observe that we can increase the per-
formance of our network by either increase its parameters
by increasing the number of variants, or by dividing it up to
more genes without an increase of memory.

Additionally, in Table 3 we provide a comparison with
methods that are using vector quantization [7, 48].

4.2. Analyzing the Codebook

In this section we exploit the discrete nature of our ap-
proach to analyze the association of the latent codes and
their corresponding attributes. We show how our method
improves disentanglement and how to harness our analy-
sis to use our unconditionally trained model for conditional
generation. Lastly, we show how to do interpolation and
projection in our setting.

Associating variants with attributes As described in
Section 3 we run a Monte Carlo experiment to estimate

the probability p(al|ki = j) of the variant j at position i
resulting to the attribute al in the output image. We randomly
sample 500, 000 gene sequences from our FFHQ model and
generate their corresponding images. We pass each of these
images through 40 pretrained CelebA classifiers [22]. We
used the weights provided by the original StyleGAN [17]
repository, and the code provided by StyleSpace [42] to
extract the logits for every image. For instance, let i = 15
and j = 217, and al be a facial attribute, such as black
hair. We estimate p(blackhair|k15 = 217) by averaging
the outputs of the black hair classifier for all style codes
containing variant 217 in their 17th position. We repeat the
process for each variant and attribute to get the marginal
attribute distribution for a given genome variant.

Which genes are responsible for each attribute? We
want to test if, like its biological inspiration, our genome has
specific genes that control the expression of certain attributes,
such as hair color. We would like to measure the impact that
changing a gene has to a certain trait of the output image.
We hypothesize that if a gene controls an attribute, it will
exhibit high variance in its expected values and have extreme
values towards both ends. We quantify a gene’s importance
by calculating the mean absolute standard score for each
gene position: the absolute distance in terms of standard
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Class: Smiling

Rest of attributes 

sampled based on

FFHQ pairwise 

frequencies 

Class: Smiling

Rest of attributes 

sampled randomly 

Conditional Stylegan2Conditional Generation with StyleGenes

male eye-bags h-cheek/s smiling big-nose open-mouth young w-lipstick attractive eyeglasses
Method Sampling Avg. yes no yes no yes no yes no yes no yes no yes no yes no yes no yes no

Classification accuracy (%) ↑
baseline random 74.54 93.32 54.24 70.62 87.66 32.78 96.46 35.20 97.76 59.02 85.74 83.24 93.16 91.44 51.34 44.50 88.52 29.46 98.82 97.92 99.54
baseline freq 91.24 94.24 92.18 86.86 87.74 91.06 89.04 93.50 91.66 86.42 87.50 95.90 94.30 91.80 82.26 87.98 95.50 85.74 93.50 97.72 99.82

Ours temp-1.0 71.01 74.26 74.22 66.28 85.14 69.82 75.28 75.70 74.72 71.96 69.40 76.58 71.98 0.38 65.24 63.88 81.16 71.50 96.72 68.76 87.34
Ours temp-0.8 77.48 79.84 80.92 69.80 71.98 74.36 78.40 79.96 78.98 76.26 74.12 81.54 77.90 80.20 70.42 70.02 84.42 67.78 84.18 79.06 89.36
Ours temp-0.5 88.02 90.58 88.36 80.76 83.28 86.26 88.00 90.46 90.84 86.66 85.20 91.38 88.36 87.12 85.40 85.84 89.58 84.00 89.54 96.10 92.70
Ours temp-0.3 95.77 98.30 96.48 91.00 93.10 96.26 96.80 97.82 97.90 96.00 95.36 98.14 93.64 89.62 97.48 95.40 96.14 94.56 95.42 99.38 96.52

FID ↓
baseline random 33.33 30.05 41.48 29.39 36.21 40.18 30.44 35.21 28.12 33.76 32.95 36.61 29.17 28.69 40.07 46.13 34.04 33.90 30.76 19.43 30.00
baseline freq 10.96 10.11 10.24 10.48 11.04 10.72 11.65 10.91 11.66 10.08 10.45 10.95 11.45 11.26 10.29 10.70 10.32 15.40 10.43 10.00 11.08

Ours temp-1.0 11.08 11.11 11.24 9.98 11.81 9.63 9.78 9.96 9.69 10.88 9.60 9.94 9.30 16.86 9.42 11.99 9.59 11.20 17.86 12.16 9.53
Ours temp-0.8 10.11 11.04 10.85 9.88 10.04 9.60 9.75 9.67 9.81 10.72 9.49 9.89 9.50 10.17 9.77 11.43 9.73 10.39 9.70 11.15 9.66
Ours temp-0.5 12.36 14.41 13.17 11.86 11.37 10.24 10.67 10.46 11.64 13.59 13.06 10.28 10.52 11.83 14.73 16.31 11.18 15.91 10.73 15.34 9.92
Ours temp-0.3 28.42 30.92 28.53 19.43 17.50 14.97 14.35 14.24 79.46 23.46 28.90 12.99 14.40 86.22 32.29 38.63 18.33 36.92 15.27 29.86 11.86

Table 4. Conditional Generation We train our method unconditionally, by sampling uniformly the variants for each gene position. With our
analysis we can conditionally sample the variants to generate a desired attribute, without retraining our unconditional model. We can control
a FID-accuracy trade-off using the temperature. Lower values decrease variability but increase accuracy. In contrast to our method, the
conditional StyleGAN baseline is limited to the attributes it was trained with. For inference they need to provide values for every attribute,
and thus, to generate an image with a specific attribute, we sample the rest randomly or use the real dataset’s conditional frequencies.

deviations that the gene variants have on average with the
codebook’s mean expected value for the particular attribute:
sil = Σj

|p(al|ki=j)−µp(al|ki)
|

σp(al|ki)
.

In Figure 2 we see the score for a gene in a specific posi-
tion. The genes are placed circularly around the plot. Each
color represents one of the 40 attributes. Most genes do not
significantly affect any of the attributes, instead controlling
local image details. For each attribute, only a handful of
genes have high standard scores. On the right side of Fig-
ure 2, we see how changing the variants of specific genes
alters the output image. We sample a gene sequence and start
substituting the variant of one gene at random. Manipulating
the genes that exhibit high scores in the polar plot, such as
genes 66, 85, and 38, leads to visible changes in the image.
However, most genes do not exhibit large scores for any
of the attributes. Changing these genes’ variants results in
barely noticeable changes.

Conditional Generation In the previous steps we ac-
quired the marginal attribute distribution for a given variant.
We use this information to conditionally generate an image
with a desired attribute al. In Table 4 we can see samples pro-

duced by our method. To generate unconditionally we sam-
ple the variant for each gene position uniformly. However,
as described in Section 3 we can now infer the conditional
latent distribution p(k|al) and use it to sample the variants
instead. In Figure 4 we can see the results of our conditional
sampling. Decreasing the temperature t increases the likeli-
hood of the presence of the desired attribute, however, can
also limit the variability of the conditional outputs, as it is
outlined in increased FID scores in Table 4.

To gauge the ability of our method to generate condition-
ally, we train a StyleGAN2 model with pseudo-labels from
the CelebA classifiers. Training conditionally, limits the
model’s generation to a fixed set of attributes. Additionally,
every attribute needs to have a value, 0 or 1, in order to
generate a sample. For our experiment, we sample all other
attributes than the one we aim to generate either randomly
or by using their co-occurrence frequency in FFHQ.

In Table 4, we find we compare similarly to our base-
line. However, we are not limited by a predefined number
of attributes and can be extended to more without training.
Moreover, we can use the temperature value to control the
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Figure 3. Interpolation and Inversion. Our latents are trained in a discrete fashion, but have real values. Thus, it is possible to interpolate
between them. Our network can generate realistic results from codes outside of the genome’s values. Inspired by this feature, we extend
PTI [32] to add real images in our genome.

trade-off between variability and accuracy. Lastly, training
conditionally with a small dataset can lead to poor perfor-
mance and mode collapse [36]. With our method we are con-
ditionally sampling gene variants from our unconditionally
trained model and, thus, we do not face the same problem.

StyleGenome and Disentanglement The Style-
GAN’s [17] motivation to design the StyleMapping Network
to make the sampling density determined by the mapping
and not to be limited to any fixed distribution; they aimed for
the resulting space W to be more disentangled. We explore
how disentangled our StyleGenes are compared to the output
space of StyleMapping. We train a Multi-Layer Perceptron
to predict the presence of an attributed in an image from
its latent code. We randomly sample 50.000 codes from
each of the two representations. Then we extract the fake
images’ attributes using the pretrained CelebA classifiers,
and appropriately prepared the train/val/test subsets. We find
that StyleGenes outperforms the StyleMapping’s accuracy
on every attribute we tested, with a 10% average increase,
as shown in Table 2. In Figure 2, we see that certain genes
affect a group of pertinent attributes. During training,
each variant is sampled independently from the rest. We
hypothesize that this pushes the variants to be semantically
self-contained compared to the StyleMapping approach,
which maps an undivided vector to the W space.

Interpolation. During training we sample the latent
codes from our discrete codebook, but their values lie on
Rd. We want to gauge whether the learned genome com-
prises samples that lie on a smooth surface. We sample two
codes and interpolate between them. In Figure 3 we can see
interpolation results for all three datasets. The transition is
smooth and the subsequent samples are semantically coher-
ent and realistic. By optimizing on discrete samples we are
able to learn a continuous distribution.

Adding real images in the codebook. We extend the
Pivotal Tuning Inversion [32] to project real images into our
codebook in Figure 3. We start by concurrently optimizing a
set of vectors in the underlying continuous space to produce
the images we aim to invert. Then, we find the indices of
the nearest-neighbor variant for each gene in the codebook.
We train both the generator and the codebook to recreate the
images, based only on these indices. We substitute PTI’s
locality regularization with our codebook-perseverance reg-
ularization: we push randomly sampled codes to keep their
syntheses unchanged via an LPIPS [49] loss. We find this
step important to retain the perceptual quality of the genome.

5. Conclusion

In this work we introduce StyleGenes. Inspired by how in-
formation is encoded in the DNA by only four basic building
blocks, we design a discrete sampling approach for GANs.
We define our StyleGenome, an ordered collection of gene
variants. We uniformly sample a variant for each gene to
form a sequence. Its concatenation is the style code used by
the generator to synthesize an image. Our discrete sampling
technique achieves an FID score on par with its continu-
ous counterpart, while enabling an intuitive way to analyze
the latent code. We use pretrained classifiers to aggregate
attribute statistics, enabling attribute-based analysis. Our
analysis enables conditional sampling out of our uncondi-
tionally trained model. Lastly, we show that we can generate
samples between the genome’s discrete elements, indicating
that the samples are on a smooth style surface, and devise an
approach to incorporate real images in our genome.
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