
Defending Object Detection Models against Image Distortions

Mark Ofori-Oduro Maria Amer
Department of Electrical and Computer Engineering, Concordia University, Montréal, Canada

Abstract

Image distortions pose a significant challenge to object
detection. To address this issue, our paper introduces a
novel data augmentation method that generates new sam-
ples resembling the original training images. The new sam-
ple exhibits randomly altered pixels based on a pixel dis-
tribution obtained from multiple image distortions using
kernel density estimation (KDE). The main steps of our
method, GSES, are generating distorted versions of each
pixel of an original training image, selecting a set of pix-
els in each version, and then, for each selected pixel, esti-
mating its distribution using KDE and then sampling one
pixel from this distribution. By employing this approach,
the new samples possess distorted pixels while maintain-
ing a certain degree of similarity to the original image.
This degree of similarity is essential to balance the accu-
racy of object detection models under distorted and clean
images. Our approach improves the accuracy of different
object detection models under 15 image distortions, such
as motion blur, fog, and noise. For example, the aver-
age accuracy of YOLOv4 improves by 9.19% and 9.54 %
across all 15 distortions added to the COCO and PAS-
CAL datasets, respectively. Our method surpasses other
defence methods to combat image distortions. Our abla-
tion and stability studies show why our method performs
well. Moreover, we also show that our method can be well
used to improve the accuracy of image classification under
15 distortions and cross-domains. Our code is available at
https://github.com/moforio/GSES/.

1. Introduction
Developing models that can perform well even in the

presence of image distortions is essential to ensure accu-
rate object detection in real-world applications, such as self-
driving, activity recognition, and security [5, 11, 12, 26, 27,
33, 39]. Image distortions include Gaussian noise, impulse
noise, shot noise, jpeg compression, pixelated, elastic trans-
form, motion blur, glass blur, zoom blur, defocus blur, con-
trast, snow, fog, frost, and brightness. Such distortions
cause the accuracy of the object detection model to signif-

icantly decrease (for example, YOLOv4 by 26.55% under
snow using PASCAL).

Simply adding noise (or any other distortion) to the train-
ing images can increase a model’s robustness. However,
as shown in [9, 13, 18], it has two main drawbacks: re-
duced performance on clean images and poor generalisation
to other distortions not used in training. Our experiments
on the PASCAL dataset with object detector YOLOv4 mir-
rored these findings: when trained with 100% clean and
50% distorted samples, ensuring that 15 image distortions
were equally represented, we noticed a boost in average ac-
curacy under the 15 distorted conditions by +10.11% during
validation. However, this was offset by a dip in accuracy for
clean images by -1.32%.

Data augmentation can help improve accuracy under dis-
tortions. However, it needs to be developed carefully to
avoid loss of accuracy under clean samples.

This paper presents a novel data augmentation approach
to generate new samples to improve object detection per-
formance under distortions. In our approach, a pixel of a
clean (original) image is replaced by a value sampled from
a set of 15 estimated distributions, which are estimated us-
ing KDE. Not all pixels are replaced to maintain a certain
similarity to the original samples. We show the superiority
of our approach to related works using different detection
models under 15 image distortions. We also show that our
approach generalises to unknown distortions and to image
classification models.

2. Literature Review

Related works are categorised into three groups: con-
ventional data augmentation methods [2, 4, 16, 36–38], im-
age distortion defence methods [1, 20, 24, 32], and image
enhancer-based defence methods [23, 30, 31]. These meth-
ods can be implemented either during the training process
(online) or before training (offline), with the capability to
operate in the image domain or the network domain, po-
tentially altering the image classification or object detection
model architecture. This section first reviews these related
works, followed by Section 2.4, where we elucidate the dis-
tinctions between our and previously mentioned methods.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

3854

2.1. Conventional data augmentation methods

MixUp [37], CutMix [36], AugMix [16], and RandE
[38] are data augmentation methods designed to enhance
the performance image classification models. MixUp [37]
linearly interpolates between pairs of images and their la-
bels online; CutMix [36] takes this MixUp idea spatially by
cutting and pasting patches between image pairs, adjusting
labels based on the area of the patches online; AugMix [16]
blends multiple diverse augmentations of an image online
and employs a distribution-matching loss to ensure the aug-
mented images align closely with the original data mani-
fold; RandE [38] improves performance by randomly se-
lecting and occluding portions of the image with random
values online.

The state-of-the-art in data augmentation for object de-
tection is epitomized by two methods: Mosaic [4] and Grid-
Mask [2]. Mosaic, introduced by Dadboud et al. [4], inge-
niously combines four images into a mosaic formation on-
line, infusing the training process with diverse images that
enhance model performance; GridMask, proposed by Chen
et al. [2], employs a novel approach of overlaying a grid-
like mask on the input online. This unique technique stim-
ulates spatial diversity and fosters the model’s ability to ex-
tract features from various regions of the input effectively.

2.2. Image distortion defences methods

Image distortion defence methods utilize various
methodologies, including data augmentation [3, 20, 24, 25]
and detection model modification [1, 32]. Network modi-
fications have been proposed as effective strategies for im-
proving model performance against specific image distor-
tions. Borkar and Karam [1] proposed DeepCorrect, a cor-
rection network to improve classification models against
image noise and blur, while Sun et al. [32] proposed a fea-
ture quantization method for defence against image noise,
blur, and compression in image classification and object de-
tection models. The SmoothMix data augmentation tech-
nique [20], proposed by Lee et al., enhances the robust-
ness of image classification models by augmenting their
training images with new samples generated by blending
two images online; Michaelis et al. [24] show that apply-
ing the style transfer (superpose a style of an image on an-
other image [8]) offline as a data augmentation technique
(termed Stylize) can improve the robustness of object de-
tection models (such as Mask R-CNN [15] and RetinaNet
[22]) on their provided benchmark of 15 image distortions;
Det-AdvProp [3] generates additional data by dynamically
generating augmented images online by adding a weighted
signed gradient derived from the classification and location
loss functions; In [25], the authors propose an algorithm to
generate distorted images using artificial immune systems;
it was evaluated only for Gaussian noise. Compared to the
model modification approach, the augmentation-based de-

fence approach has a significant advantage because it can
be easily extended to many models.

2.3. Image enhancer-based defence methods

Image enhancers URIE [30], DeepN [23], and OWAN
[31] propose front-end CNN models to enhance or denoise
corrupted images before being fed into classification or ob-
ject detection models. Overall, these defence methods con-
tribute to developing robust models.

2.4. Distinguishing our method from existing

Different from the enhancers URIE [30], DeepN [23],
and OWAN [31], our method does not focus on enhanc-
ing or denoising distorted inputs. Our approach has been
validated under 15 distortions and clean samples on ob-
ject detection and image classification models, unlike the
defence methods MixUp [37], CutMix [36], AugMix [16],
RandE [38], SmoothMix [20], and DeepCorrect [1], which
are primarily employed in image classification and , except
SmoothMix, not evaluated under distortions.

As witnessed in RandE [38], Mosaic [4], and Stylize
[24], data augmentation methods often encounter problems
with overfitting, leading to decreased generalization. They
also struggle to maintain a balance in class distributions and
preserve label integrity, as shown in MixUp [37], CutMix
[36], SmoothMix [20], and Mosaic [4]. Such challenges of-
ten result in a reduction in overall model performance. Our
approach is designed to mitigate these challenges.

Our method retains some of the original pixels in the
newly generated image rather than completely transform-
ing the style, as seen in Stylize [24], or distorting all pixels,
as in Det-AdvProp [3]. This distortion mode reduces over-
fitting, enabling our method to provide consistent results
across small and large datasets, unlike Stylize [24]. Addi-
tionally, our method does not require supplementary CNN
models or data, an advantage over the Stylize method [24].

Unlike in MixUp [37], CutMix [36], and SmoothMix
[20], which require new labels for distorted images, our
method utilizes original image labels to generate corre-
sponding distorted images. Moreover, our method only
generates a single new sample from an original, avoiding
the class imbalance that may arise when merging two orig-
inal images randomly, as in MixUp [37], CutMix [36], and
SmoothMix [20]. Importantly, our method leaves the archi-
tecture of the CNN model untouched, unlike the approach
in DeepCorrect [1] and [32].

3. Proposed method
3.1. Overview of our method

Fig. 1 overviews our proposed method to generate new
samples resembling the original training images. We ran-
domly select a pixel location for a given image x and change

3855

that pixel based on a pixel distribution obtained from mul-
tiple pixel distortions using kernel density estimation. We
repeat this not for all input image pixels but for a selected
set. By employing this approach, the generated new sam-
ple possesses distorted pixels while maintaining a certain
degree of similarity to the clean image x.

Figure 1. A simplified overview of our method (best viewed by
zooming).

To ensure that our method maintains a balance between
object detection performance under clean and distorted im-
ages, we generate new samples for a subset of the origi-
nal training images and maintain a certain level of simi-
larity between these new and their corresponding original
images. Overall, our data augmentation approach can be
divided into 3 main steps as detailed in the next 3 subsec-
tions and Algorithm 1: 1) Data pre-processing, where we
randomly select a portion of the original images to use for
generating new samples; 2) New sample generation, where
we generate the new samples by creating distorted versions
of the selected original images while maintaining the de-
sired level of similarity; 3) Data augmentation, where we
use these generated new samples to augment the original
images for training.

The effectiveness of our method comes from two main
aspects: 1) randomly, at the pixel level, balancing the sim-
ilarity of the new and the original samples (i.e., the use of
τ in Algorithm 1) and 2) diversity (that is, we use D = 15
distortions for pixel distribution estimation and pixel sam-
pling in Algorithm 1). A detection model trained with our
data augmentation learns, hence, more robust features from
clean and diversely distorted pixels. We show in the result
Section 4.1 how decreasing similarity (larger τ) causes ac-
curacy loss under clean samples and does not significantly
improve the accuracy under distortion. We also show that
pixel diversity helps the detection model to generalize to
unknown distortions (Section 4.5) and that decreasing di-
versity decreases accuracy under distortions (Section 4.7).

3.2. Data pre-processing

Let the training dataset {xi, yi}Mi=1 consist of M train-
ing images, where each input image xi is associated with a
corresponding label yi. We denote these images as Ag. We
aim to create distorted versions of xi, collectively denoted

Algorithm 1: Proposed new sample generation by
distribution estimation and sampling.

Input: Original images Ag = {xi, yi}Mi=1, D
distortions types, augmentation ratio p,
affinity threshold τ

Output: new samples Ab
1 Number of Ab: N = p ·M ;
2 Number of Abd: T = N/D ;
3 Ab←− Select N images randomly from Ag ;
4 for distortion d = 1 to D do
5 Ab←− Randomly shuffle Ab;
6 Select T images from Ab to get

Abd = {xi, yi}d·Ti=((d−1)·T)+1 ;
7 for each image xi ∈ Abd do
8 {x̃i}S ←− Mutate: generate S distorted

versions of xi;
9 K ←− Select a fraction τ of pixels from xi,

uniformly at random ;
10 for each pixel k in K do
11 X̃ ←− Copy the distorted pixels at

position k from all images in {x̃i}S ;
12 EX̃ ←− Estimate the distribution of X̃

using KDE ;
13 x̃new ←− Sample one pixel uniformly at

random from pixel distribution EX̃ ;
14 xi ←− Mutate xi by replacing the value

at k with x̃new ;
15 end
16 end
17 end

as Ab, to train object detection models and consequently
enhance their accuracy under various image distortions.

In the data pre-processing step, as outlined in Algorithm
1 lines 1 to 6, we randomly select N from the input M im-
ages {xi, yi}Mi=1 to get {xi, yi}Ni=1 Ab, where N=p ·M and
0 < p ≤ 1 is an augmentation ratio p, a hyper-parameter
of our method (see Algorithm 1 input). Before this ran-
dom selection, it is always important to check the class dis-
tribution of the training images Ag. When dealing with a
skewed class distribution, one should select images class-
awarely to prevent class imbalance in the final training set.
To consider various distortions, we select d different dis-
tortion types, and hence we divide these Ab into D groups
Abd. Each Abd for a distortion type d contains T = N/D
images (see Algorithm 1 line 6). Given d = 1 to D, when
d = 1, i is from 1 to T , when d = 2, i is from T + 1 to 2T
and so on. And since the datasets we use (PASCAL [6], and
COCO [21]) have uniformly distributed classes, we can do
the aforementioned division randomly.

3856

3.3. New sample generation

To generate new samples, Algorithm 1 selects an image,
estimates its distribution, and mutates an image. We aim to
mutate (change) selected pixels of an image xi with the de-
sired distortion. We perform the image mutation using two
steps: 1) distortion of the original images using image pro-
cessing tasks taking distortion D into account; 2) mutation
(changing) of selected pixels by sampling from the distorted
pixel distribution.

In the first mutation step, given an image xi and a dis-
tortion type D (e.g., Gaussian noise, jpeg compression, and
snow), we generate S distorted images {x̃i}S using image
processing tasks filtering, clipping, scaling, and shuffling
taking D into account. The image processing tasks cause
all pixels to be mutated in the distorted image x̃i, resulting
in not only distortion D but also other changes (see [24] for
details). Note that for each of the input T images selected
for a distorted type (see Algorithm 1 line 6), we generate S
distorted images, where S = 100 (see Algorithm 1 line 8);
higher S unnecessarily increases computations.

In the second mutation step, we focus on how many pix-
els and not how much the pixels are changed. In each image
xi, we mutate only a fraction τ of its pixels to keep a level
of similarity with its clean version. We uniformly select K
pixels (see Algorithm 1 line 9), where K = τ · pixels{xi}
of the pixels we want to mutate from xi uniformly.

Our method requires the hyper-parameter τ , while the
distortion types D are fixed to 15. For example, if τ = 0.75,
75% of the pixels of xi are selected for mutation by estimat-
ing and sampling from the distortion type under considera-
tion. We consider D = 15 distortion types, i.e., Gaussian
noise, impulse noise, shot noise, jpeg compression, pixe-
lated, elastic transform, motion blur, glass blur, zoom blur,
defocus blur, contrast, snow, fog, frost, and brightness. τ
controls how many pixels are mutated and how many are
left unchanged (clean). Thus, it compromises clean and
distorted pixels, improving object detection under distorted
images without deterioration on clean images. During train-
ing, the object detection model learns a mixture of ”dis-
torted” and ”clean” features.

To effectively mutate pixels in xi, we need to estimate
distortion distributions. We can achieve this in two main
ways, namely parametric and non-parametric approaches.
We opt for the standard non-parametric approach of kernel
density estimation (KDE) because it makes no assumptions
about the distributions of the distortion, allowing us to apply
it to different distortion types. KDE has been adapted for
different applications in computer vision, such as for spatio-
temporal background modelling [29].

For KDE, for a selected pixel location k in xi, we form
the distorted vector X̃ . Recall x̃ is a distorted version
xi and there are S such images for each xi; we form
X̃ = [x̃i

1, x̃i
2, ..., x̃i

S]⊤ for pixel location k. In KDE,

we make use of Gaussian kernels to estimate the distribu-
tion X̃ . More specifically, for each pixel location, X̃ is ex-
pressed as a linear combination of equal-width Gaussians
centred around each point X̃ , where the width (or standard
deviation) of the Gaussians is a hyper-parameter. As KDE
is a general non-parametric method, we may utilize differ-
ent kernels, including uniform or triangular kernels. How-
ever, we limit ourselves to the Gaussian kernel because this
fits a mixture of Gaussians (a universal density approxima-
tor [10]) to the pixel distribution. Once the estimation of X̃
is obtained and denoted as EX̃ , we sample one pixel value
from EX̃ to get x̃new and use x̃new to mutate xi by replac-
ing pixel value of xi at index k. For example, in Fig. 2,
we show four new samples generated by mutating pixels
with new pixel values sampled from an estimated distribu-
tion of Gaussian noise (top-left), Gaussian blur (top-right),
jpeg compression (bottom-left), and snow (bottom-right).

Figure 2. Examples of generated new samples. The model esti-
mates and samples from the distribution of Gaussian noise (top-
left), motion blur (top-right), jpeg compression (bottom-left), and
snow (bottom-right).

3.4. Data augmentation

In the data augmentation step, we augment the new sam-
ples Ab to the original training images Ag to train object
detection models. Before the training, we shuffle the Ab
and Ag to prevent bias to either of them.

4. Outcome of experiments and analysis
We benchmark our augmentation-based defence tech-

nique against three categories: 1) augmentation-based de-
fence methods, 2) image-enhancer-based defence methods,
and 3) conventional augmentation techniques. Further, we
demonstrate our method’s performance under unknown dis-
tortions and its applicability to image classification and au-

3857

tonomous driving.
In the subsequent tables of results, entries highlighted in

red represent the top performance, while those in blue indi-
cate the second best. The notation +() represents the gain,
signifying the performance difference of an object detector
with and without a defence method.

4.1. Configuration for experiments
We measure the accuracy of object detection using the

mean average precision (mAP) calculated based on the in-
tersection over union (IoU) of the ground truth and esti-
mated bounding box (BB) of the object. When evaluating
the PASCAL dataset [21], we follow standard practice and
set the IoU to 0.5 for all reported mAP s. For the COCO
dataset, unless stated otherwise, the mAP is an average of
10 IoU thresholds ranging from 0.50 to 0.95. We evalu-
ate performance under corruption using ”mean performance
under corruption” (mPC) defined in [24] as

mPC =
1

Na

Na∑
a=1

1

Nb

Nb∑
b=1

mAPa,b, (1)

where Na is the total number of corruptions (a), Nb is the
severity (b) level for each corruption type, and mAPa,b is
mAP for a at a specific b. We also use ”relative perfor-
mance under corruption” (rPC) [24] defined as

rPC =
mPC

mAPorg
, (2)

where mAPorg is the mAP under original images.
For Algorithm 1 (line 4), we set D = 15, i.e., we esti-

mate the distribution from 15 distortions: Gaussian noise,
impulse noise, shot noise, jpeg compression, pixelated,
elastic transform, motion blur, glass blur, zoom blur, defo-
cus blur, contrast, snow, fog, frost, and brightness. Unless
indicated for all result tables, we use five different severity
levels (1 to 5) for each distortion.

We apply our method to two datasets, the PASCAL
dataset [6] and the COCO dataset [21]. For the PASCAL
dataset, following standard practice, we utilize the com-
bined training and validation sets of 2007 and 2012 as our
training data and the test set of 2007 as our validation data.
As for the COCO dataset, we use the training and valida-
tion sets of 2017 as our training and validation data, respec-
tively. In our experiments, we matched the ground truth
label of a clean image to its corresponding new sample. To
demonstrate the effectiveness of the proposed data augmen-
tation, we trained YOLOv4 (CSPDarknet-53, one-stage de-
tector) [34] and Faster RCNN (ResNet-101, two-stage de-
tector) [28] models with and without our data augmentation.

The hyper-parameters of our method are the augmenta-
tion ratio p and the affinity threshold τ , which are set to
0.50 and 0.75, respectively, for all object detection models.
As summarized in Table 1, these values provide the best
compromise for accuracy under clean and distorted images
using the PASCAL dataset on YOLOv4.

p = 1

τ 0.65 0.75 0.85
mAPorg 83.04 83.00 82.86
mPC 62.82 64.66 65.50

τ = 0.75

p 0.25 0.50 1.00
mAPorg 83.58 83.32 83.00
mPC 60.39 62.02 64.66

Table 1. PASCAL and YOLOv4: Tuning the hyper-parameters (p
and τ) of our method.

4.2. Validation outcomes

For the comparison of distortion defence methods, we
compare our method with the data augmentation methods,
Stylize [24] and SmoothMix (SMix) [20], and with image
enhancement methods URIE [30], OWAN [31], and DeepN
[23]. (We do not compare to Det-AdvProb [3] and [32] be-
cause the code for training is not publicly available). As
seen in Table 2 for the PASCAL dataset, our method is
the best to provide a balance between performance under
clean and distorted images among all related works. Among
the data augmentation methods, it outperforms (+9.54%
and +5.77%) the second-best method Stylize (+7.96% and
5.57%) in both YOLOv4 and Faster RCNN under distorted
images, respectively. Under clean images, our method does
not result in any deterioration, which is significant in data
augmentation methods [19]. For the image enhancers, as
demonstrated in Table 2, only URIE showed improvement
under distortions, while OWAN failed to provide any im-
provement. The OWAN model did not undergo training on
the 15 distortions tested, unlike the URIE model. DeepN
only improved (4.96%) under noise (Gaussian, impulse, and
shot) but resulted in significant deterioration in other distor-
tion, hence overall negative (-10.47%) impact on accuracy.

Model mAPorg mPC rPC

YOLOv4 83.31 52.48 0.6299
+ Our 83.32 (+0.01) 62.02 (+9.54) 0.7444

+ Stylize 83.90 (+0.59) 60.44 (+7.96) 0.7254
+ SMix 83.65 (+0.34) 53.04 (+0.56) 0.6367
+ URIE - 58.05 (+5.57) 0.6968
+ DeepN - 41.45 (-11.02) 0.4976
+ OWAN - 40.10 (-12.38) 0.4813

Faster RCNN 79.25 54.63 0.6893
+ Our 79.30 (+0.05) 60.40 (+5.77) 0.7621

+ Stylize 78.52 (-0.73) 60.20 (+5.57) 0.7596
+ SMix 79.65 (+0.40) 54.82 (+0.20) 0.6918
+ URIE - 60.08 (+5.45) 0.7581
+ DeepN - 44.72 (-9.91) 0.5643
+ OWAN - 41.72 (-12.91) 0.5264

Table 2. PASCAL validation set for YOLOv4 and Faster RCNN:
Comparison of our method with image distortion defence and im-
age enhancer methods.

We evaluate the performance of our method against con-
ventional data augmentation methods: MixUp [37], Cut-
Mix [36], AugMix [16], RandE [38], and Mosaic [4] using

3858

YOLOv4 under the 15 distortions on the PASCAL valida-
tion dataset. As shown in Table 3, while all methods im-
prove accuracy (mAPorg) under clean images, our method
significantly outperforms these conventional augmentation
methods under the 15 distortions.

Model mAPorg mPC rPC

YOLOv4* 82.77 50.45 0.6095
+ Our 83.22 (+0.45) 60.82 (+10.37) 0.7348

+ MixUp 82.90 (+0.13) 50.76 (+0.31) 0.6133
+ CutMix 83.31 (+0.54) 52.48 (+2.03) 0.6340
+ AugMix 81.27 (-1.50) 51.55 (+1.10) 0.6228
+ RandE 83.43 (+0.66) 49.91 (-0.54) 0.6030
+ Mosaic 83.61 (+0.84) 51.05 (+0.60) 0.6168

Table 3. YOLOv4 and PASCAL validation set: Comparison of our
method with conventional data augmentation methods. YOLOv4*
is YOLOv4 without its baseline augmentation CutMix.

For the COCO validation dataset, we compare our
method with related augmentation-based and enhancer-
based defence methods, which showed promising results for
PASCAL in Table 2. As for the detection model, we only
use YOLOv4 because it has a better accuracy under clean
samples than Faster RCNN and is also more prone to distor-
tions as shown by their mAPorg and mPC under PASCAL.
As shown in Table 4, our method significantly outperforms
Stylize under clean and distorted images. URIE also im-
proves, but to a lesser extent, than our method.

Model mAPorg mPC rPC

YOLOv4 40.67 23.6134 0.5806
+ Our 40.81 (+0.14) 32.81 (+9.19) 0.8067

+ Stylize 38.95 (-1.73) 26.59 (+2.97) 0.6537
+ URIE - 24.52 (+0.91) 0.6029

Table 4. COCO validation set and YOLOv4: Comparison of our
method with Stylize and URIE.

4.3. Test outcomes

We conducted a performance evaluation of our method,
Stylize, and URIE on the COCO test dataset using
YOLOv4. Due to the limitations imposed on submitting
results to the COCO server, we assessed performance un-
der four distortions with severity 3, representing main types:
noise, blur, artefacts, and weather conditions. Specifically,
we selected impulse noise, zoom blur, jpeg compression,
and snow as representative distortions that are known to
have a significant impact on YOLOv4 for each distortion
type, respectively. In Table 5, it is evident that our method
(+6.95) outperforms URIE (+4.90) and Stylize (+4.03),
showcasing its superiority in handling these distortions.

4.4. Cross-domain analysis

To show if features learnt by a model using our approach
are transferable to unseen object detection datasets, we in-

Model mAPorg mPC rPC

YOLOv4 41.60 23.68 0.5691
+ Our 41.90 (+0.30) 30.63 (+6.95) 0.7363

+ Stylize 38.90 (-1.80) 27.70 (+4.03) 0.6659
+ URIE - 28.58 (+4.90) 0.6869

Table 5. COCO test set: Comparison of our method with Stylize
and URIE.

vestigate the effect of training YOLOv4 on COCO but val-
idating it on PASCAL without fine-tuning. As shown in
Table 6, our method added to YOLOv4 still improves the
accuracy under the clean samples (on average by 0.60%)
and the 15 distortions (on average by 7.94% under severity
level 3). Comparing the cross-dataset (COCO to PASCAL)
and in-dataset (PASCAL to PASCAL) in Table 6, we ob-
serve two things. First, the cross-dataset approach improves
YOLOv4 under distortions by +3.69% in terms of mPC
(56.25 versus 52.56). This could be due to the model using
features (learnt from COCO) which are fundamental to the
detection of objects in PASCAL. These COCO features ap-
pear to be more robust to distortions. Second, YOLOv4 per-
forms lower by -2.61% in terms of mAPorg (80.70) under
cross-datasets compared to in-dataset (83.31). This obser-
vation could be attributed to the difference in the resolution
and object distribution of images in both datasets.

YOLOv4 + Our YOLOV4 + Our
COCO to PASCAL COCO to PASCAL PASCAL to PASCAL PASCAL to PASCAL

clean 80.70 81.30 (+0.60) 83.31 83.50 (+0.19)
Gaussian noise 56.07 74.17 (+18.11) 52.83 72.49 (+19.66)

shot noise 58.54 75.99 (+17.45) 56.36 73.98 (+17.62)
impulse noise 50.96 80.41 (+29.45) 48.48 73.56 (+25.08)
motion blur 48.47 54.09 (+5.62) 37.72 42.62 (+4.90)
zoom blur 42.12 45.90 (+3.78) 37.72 38.23 (+0.51)
glass blur 27.24 38.37 (+11.13) 20.12 25.14 (+5.02)

defocus blur 57.69 63.86 (+6.17) 47.84 51.12 (+3.28)
contrast 77.31 78.47 (+1.16) 73.69 74.08 (+0.39)

jpeg compression 59.17 64.85 (+5.68) 55.76 69.38 (+13.62)
pixelate 32.69 37.88 (+5.20) 31.76 43.94 (+12.18)

elastic transform 50.64 56.49 (+3.22) 53.11 53.96 (0.85)
frost 64.72 67.94 (+1.19) 60.64 59.99 (-0.65)
fog 78.08 79.26 (+3.88) 75.76 76.02 (+0.26)

snow 60.40 64.28 (+1.19) 57.37 56.88 (-0.49)
brightness 79.58 80.77 (+7.94) 79.27 79.70 (+0.43)
mPC 56.25 64.18 (+7.94) 52.56 59.41 (+6.84)
rPC 0.6970 0.7953 0.6309 0.7131 (+0.0822)

Table 6. Cross-dataset: Gain introduced by YOLOv4+Our on
training on COCO and validating on PASCAL. Here, we used
severity level 3. (Results for PASCAL to PASCAL are provided
for comparison.)

We also evaluate the performance of our method trained
on COCO and validated on the autonomous driving datasets
KITTI [7] and BDD100K [35] without fine-tuning. They
include images with real-world distortions. Hence, we do
not add any distortions to them during validation. In Table
7, we report results for the class of objects that overlap with
the COCO dataset. As seen, our method improves YOLOv4
by 1.69% and 1.15%, respectively.

3859

YOLOv4 + Our YOLOv4 + Our
COCO to KITTI COCO to KITTI COCO to BDD100K COCO to BDD100K

Person 47.62 47.90 (+0.28) 45.60 46.24 (+0.64)
bicycle 4.12 9.30 (+5.18) 34.27 34.35 (+0.08)

car 74.70 74.80 +(+0.10) 57.79 58.09 (+0.30)
bus 5.00 5.74 (+0.74) 39.62 41.63 (+2.10)

truck 18.79 20.97 (+2.18) 33.36 34.66 (+1.30)
motorbike - - 32.03 32.65 (+0.62)
traffic light - - 21.63 24.70 (+3.07)
mAPorg 30.05 31.74 (+1.69) 37.76 38.90 (+1.15)

Table 7. Cross-domain: Gain introduced by YOLOv4+Our on
training on COCO and validating on KITTI and BDD100K.

4.5. Generalisation to unknown distortions

Our method and URIE both have prior knowledge of
the 15 image distortions used in the validation phase of
our experiments. This section checks how both methods
perform under unknown distortions, here Gaussian blur,
speckle noise, spatter, and saturate. Like the 15 known dis-
tortions, each of these unknowns is added to the clean im-
age with five severity levels. As shown in Table 8, for the
PASCAL validation set and YOLOv4, our method is effec-
tive and can be generalized for unknown distortions. Also,
we see our method significantly outperforms URIE for the
unknown distortions. We provide the results for Stylize,
which does not have prior knowledge of the distortions, to
show our method outperforms it under these additional dis-
tortions.

Model mAPorg mPC rPC

YOLOv4 83.31 63.13 0.7578
+ Ours 83.32 (+0.01) 68.75 (+5.62) 0.8252
+ URIE - 53.89 (-9.24) 0.6468

+ Stylize 83.90 (+0.59) 67.90 (+4.77) 0.8151

Table 8. PASCAL validation set and YOLOv4: Comparison of our
method with URIE under unknown distortions.

4.6. Generalisation to image classification

This section highlights the versatility of our method by
extending it to image classification tasks. For this purpose,
we employ SpinalNet [17], a recent classification model,
and evaluate its performance on three well-known clas-
sification datasets: CIFAR-10, CIFAR-100, and Caltech-
101. Similar to the testing conducted on the COCO dataset,
we utilize distorted versions of the respective classifica-
tion datasets, incorporating impulse noise, motion blur, jpeg
compression, and snow with severity level 3. The results
presented in Table 9 demonstrate the efficacy of our ap-
proach in enhancing the accuracy of SpinalNet across all
tested distortions.

4.7. Ablation study

The first ablation study is about the effect of the distor-
tion diversity, that is, the number of distortions D in Algo-

CIFAR-10 CIFAR-100 Caltech-101
SpinalNet + Our SpinalNet + Our SpinalNet + Our

clean 97.50 97.71 86.79 87.24 97.07 97.35
impulse noise 33.55 94.47 11.83 79.44 94.34 95.88
motion blur 42.44 42.44 23.75 67.09 92.39 95.51
jpeg compression 54.80 54.80 26.09 59.67 95.28 96.58
snow 79.85 79.85 48.80 74.49 89.26 92.74

Table 9. CIFAR-10, CIFAR-100, and Caltech-101 test set: Accu-
racy comparison of our method on SpinalNet. Accuracy is the ratio
of correct predictions to total predictions. Here, we used severity
level 3.

rithm 1. We aim to maintain an equilibrium among different
distortions within the total number used to maintain a bal-
anced diversity. For instance, when we tested for 4 distor-
tions, we used one distortion from noise, blur, artefacts, and
weather condition distortion. Table 10 seems to suggest that
increasing the number of distortions enhances performance
in the presence of distortions. However, this increase may
cause the performance under clean to reduce, although not
worse than the base model.

No. of distortions mAPorg mPC

4 83.71(+0.40) 59.41(+6.93))
8 83.87(+0.56) 60.32(+7.84)
12 83.32(+0.01) 61.31 (+8.83)
15 83.32(+0.01) 62.02(+9.54)

Table 10. Effect of the number of distortions used in new sample
generation for YOLOv4 and PASCAL.

The second ablation study concerns model complex-
ity versus accuracy. This relationship can be understood
through the bias-variance trade-off, which considers the to-
tal number of model parameters [14]. For instance, when
analyzing Table 11, it becomes evident that Faster RCNN
achieves the highest accuracy with ResNet-101, which con-
sists of around 44 million parameters, whereas VGG-16,
with 138 million parameters, performs relatively worse.

Model mAPorg mPC

Faster RCNN - + our - + our
w/ ResNet-101 79.25 79.30 54.63 60.40

w/ VGG-16 75.51 75.55 45.89 49.00

Table 11. Effect of the complexity.

For a stability study, we conducted five experiments (i.e.,
we trained and validated each model five times). We used
our method and Stylize (the second-best method) to calcu-
late their mean and standard deviation. As shown in Table
12, YOLOv4 appears to be the most stable under clean im-
ages. However, under distortion, YOLOv4+our appears to
be the most stable. This observation is consistently con-
firmed under mPC and rPC. Using our seems to provide
the best stability under both clean and distorted images.

3860

Model YOLOv4 + our + Stylize

mAPorg 83.39(±0.1559) 83.29(±0.1696) 83.80(±0.1753)
mPC 52.20(±0.4739) 62.28(±0.4469) 61.11(±0.5129)
rPC 0.6259(±0.0058) 0.7476(±0.0054) 0.7328(±0.0065)

Table 12. Stability analysis using mean and standard deviation.

4.8. Computational speed

The new samples from our method were generated on
a PC with 260GB RAM and an Intel Xeon processor with
36 cores, clocked at 2.30 GHz. In Table 13, we present
the average time required to generate a new sample for the
PASCAL and COCO datasets with an affinity threshold of
τ = 0.75, factoring in the estimation and sampling of a
distortion type. Notably, 70% of the time allocated for the
new sample generation is consumed in creating S distorted
images (see Algorithm 1 line 8) during the estimation and
sampling phases (see Algorithm 1 lines 10 to 15). Regard-
ing time consumption, blur distortions (defocus, glass, mo-
tion, and zoom) demand the most time, whereas artefacts
(contrast, elastic transform, pixelation, and jpeg compres-
sion) require the least.

Distortion Average time (s) Distortion Average time (s)

Gaussian noise 2.96 snow 5.16
shot noise 5.16 frost 2.90

impulse noise 2.69 fog 2.82
- - brightness 7.54

defocus blur 3.10 contrast 2.56
glass blur 8.57 elastic transform 7.61

motion blur 4.61 pixelate 1.90
zoom blur 28.21 jpeg compression 1.91

Table 13. Cost of generating a new sample.

5. Conclusion
This paper proposed a data augmentation method to cre-

ate variations of the original training clean images by ran-
domly replacing pixels with new values sampled from an es-
timated distribution while maintaining a level of similarity
to the clean images. To estimate the distribution, we use ker-
nel density estimation (KDE), and we use a diverse 15 set of
distortions for this, i.e., Gaussian noise, impulse noise, shot
noise, jpeg compression, pixelated, elastic transform, mo-
tion blur, glass blur, zoom blur, defocus blur, contrast, snow,
fog, frost, and brightness. We showed that the proposed
method outperforms related conventional data augmenta-
tion methods, image distortion defence methods, and image
enhancer-based defence methods; our method is more con-
sistent across different CNN object detection architectures
(YOLOv4 and Faster RCNN) and datasets (PASCAL and
COCO). Furthermore, unlike conventional data augmenta-
tion methods, our method enhances the accuracy of CNN
models in the presence of distortions and clean images. Our
method generalises to unknown distortions different from

the 15 distortions used in KDE and can be applied to image
classification using the SpinalNet model on the CIFAR-10,
CIFAR-100, and Caltech-101 datasets.

A. Distortion-centric evaluation
To show which of the 15 distortions significantly impact

the robustness of YOLOv4 on the PASCAL and COCO
validation datasets, we compared the two datasets using
an IOU = 0.5 to calculate mAPorg and mPC. As
seen in Table 14, YOLOv4 is most vulnerable to blur
distortions (such as glass, zoom, motion, and defocus)
and noise (impulse, Gaussian, and shot) and more re-
silient to weather-related distortions like brightness, fog,
frost, and snow. As shown in Table 15, our method
improves the model’s performance under all 15 distor-
tions. However, it has the most significant impact on
noise (by an average of +18.77%), compression (by an av-
erage of 9.35%), and blur (by an average of +6.76 %).

PASCAL (mAPorg = 83.31) COCO (mAPorg = 62.1)

Distortion mPC Distortion mPC
glass blur 34.36 (-48.95) zoom blur 18.43 (-43.64)
zoom blur 38.09 (-45.22) glass blur 27.19 (-34.88)
pixelate 38.90 (-44.41) impulse noise 29.25 (-32.82)

motion blur 41.09 (-42.22) motion blur 31.75 (-30.32)
impulse noise 42.15 (-41.16) pixelate 33.26 (-28.81)
Gaussian noise 48.44 (-34.87) Gaussian noise 34.80 (-27.27)

defocus blur 48.57 (-34.74) shot noise 35.48 (-26.59)
jpeg compression 49.96 (-33.35) snow 36.05 (-26.02)

shot noise 51.25 (-32.06) defocus blur 36.72 (-25.35)
elastic transform 53.03 (-30.28) jpeg compression 37.16 (-24.91)

snow 56.76 (-26.55) elastic transform 39.42 (-22.65)
frost 63.11 (-20.20) frost 44.57 (-17.50)

contrast 66.92 (-16.39) contrast 48.70 (-13.37)
fog 75.54 (-7.77) fog 56.43 (-5.64)

brightness 78.98 (-4.33) brightness 59.29 (-2.78)

Table 14. Susceptibility of YOLOv4 to distortions arranged from
most to least using PASCAL and COCO validation set.

YOLOv4 Our
mAPorg = 62.1 mAPorg = 62.1

Distortion mPC: YOLOv4 mPC: YOLOv4+Our
impulse noise 29.25 53.85 (+24.60)

pixelate 33.26 53.11 (+19.85)
Gaussian noise 34.80 50.73 (+15.93)

shot noise 35.48 51.25 (+15.77)
glass blur 27.19 41.04 (+13.85)

jpeg compression 37.16 50.32 (+13.16)
snow 36.05 41.08 (+5.03)

defocus blur 36.72 41.41 (+4.68)
zoom blur 18.43 22.69 (+4.26)

motion blur 31.75 35.98 (+4.23)
elastic transform 39.42 43.03 (+3.61)

frost 44.57 46.62 (+2.05)
contrast 48.70 49.48 (+0.79)

fog 56.43 56.97 (+0.54)
brightness 59.29 59.56 (+0.27)

Table 15. Gain introduced by YOLOv4+Our on type of distortion
arranged from most to least using COCO.

3861

References
[1] Tejas S Borkar and Lina J Karam. DeepCorrect: Correcting

DNN Models against Image Distortions. IEEE Trans. Image
Process., 28:6022–6034, 2019. 1, 2

[2] Pengguang Chen, Shu Liu, Hengshuang Zhao, and Ji-
aya Jia. Gridmask data augmentation. arXiv preprint
arXiv:2001.04086, 2020. 1, 2

[3] Xiangning Chen et al. Robust and Accurate Object Detection
via Adversarial Learning. In Proc. IEEE Conf. Computer
Vision Pattern Recognition, pages 16622–16631, 2021. 2, 5

[4] Fardad Dadboud, Patel, et al. Single-stage UAV detection
and classification with YOLOv5: Mosaic data augmenta-
tion and panet. In 2021 17th IEEE International Conference
on Advanced Video and Signal Based Surveillance (AVSS),
pages 1–8. IEEE, 2021. 1, 2, 5

[5] Samuel Dodge and Lina Karam. Understanding how Im-
age Quality affects Deep Neural Networks. In International
conference on Quality of Multimedia Experience (QoMEX),
pages 1–6. IEEE, 2016. 1

[6] Mark Everingham et al. The PASCAL Visual Object Classes
(VOC) challenge. IJCV, 88:303–338, 2010. 3, 5

[7] Jannik Fritsch, Tobias Kuehnl, and Andreas Geiger. A new
performance measure and evaluation benchmark for road de-
tection algorithms. In International Conference on Intelli-
gent Transportation Systems (ITSC), 2013. 6

[8] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.
Image Style Transfer using Convolutional Neural Networks.
In Proc. IEEE Conf. Computer Vision Pattern Recognition,
pages 2414–2423, 2016. 2

[9] Robert Geirhos et al. ImageNet-trained CNNs are biased to-
wards texture; increasing shape bias improves accuracy and
robustness. In ICLR. OpenReview.net, 2019. 1

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. MIT press, 2016. 4

[11] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and Harnessing Adversarial Examples. In In-
ternational Conference on Learning Representations, ICLR.
OpenReview.net, 2015. 1

[12] Klemen Grm et al. Strengths and Weaknesses of Deep Learn-
ing Models for Face Recognition against Image Degrada-
tions. IET Biometrics, 7:81–89, 2017. 1

[13] K. Grm et al. Strengths and weaknesses of Deep Learning
Models for Face Recognition against Image Degradations.
IET Biometrics, 7:81–89, 2018. 1

[14] Trevor Hastie, Robert Tibshirani, and Jerome H Friedman.
The Elements of Statistical Learning: Data Mining, Infer-
ence, and Prediction, volume 2. Springer, 2009. 7

[15] Kaiming He et al. Mask R-CNN. In Proc. IEEE Int. Conf.
Computer Vision, pages 2961–2969, 2017. 2

[16] Dan Hendrycks* et al. AugMix: A simple method to im-
prove robustness and uncertainty under data shift. In ICLR,
2020. 1, 2, 5

[17] HM Dipu Kabir et al. SpinalNet: Deep neural network with
gradual input. IEEE Transactions on Artificial Intelligence,
2022. 7

[18] Michał Koziarski and Bogusław Cyganek. Image recog-
nition with Deep Neural Networks in Presence of Noise-
Dealing with and Taking Advantage of Distortions. Inte-
grated Computer-Aided Engineering, 24:337–349, 2017. 1

[19] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adver-
sarial Machine Learning at Scale. In International Confer-
ence on Learning Representations, ICLR. OpenReview.net,
2017. 5

[20] Jin-Ha Lee et al. SmoothMix: A Simple Yet Effective Data
Augmentation to Train Robust Classifiers. In Proc. IEEE
Conf. Computer Vision Pattern Recognition, pages 756–757,
2020. 1, 2, 5

[21] Tsung-Yi Lin et al. Microsoft COCO: Common Objects in
Context. In ECCV, pages 740–755. Springer, 2014. 3, 5

[22] Tsung-Yi Lin et al. Focal Loss for Dense Object Detection.
In Proc. IEEE Int. Conf. Computer Vision, pages 2980–2988,
2017. 2

[23] Ding Liu et al. When Image Denoising Meets High-Level
Vision Tasks: A Deep Learning Approach. In International
Joint Conference on Artificial Intelligence (IJCAI), 2018. 1,
2, 5

[24] Claudio Michaelis et al. Benchmarking Robustness in Ob-
ject Detection: Autonomous Driving when Winter is Com-
ing. arXiv preprint arXiv:1907.07484, 2019. 1, 2, 4, 5

[25] Mark Ofori-Oduro and Maria A Amer. Data Augmentation
Using Artificial Immune Systems For Noise-Robust CNN
Models. In Proc. IEEE Int. Conf. Image Processing (ICIP),
pages 833–837, 2020. 2

[26] Zhaoqing Pan et al. DACNN: Blind Image Quality Assess-
ment via a Distortion-Aware Convolutional Neural Network.
IEEE Trans. Circuits Syst. Video Techn., 32(11):7518–7531,
2022. 1

[27] Zhenyu Peng et al. Lggd+: Image retargeting quality assess-
ment by measuring local and global geometric distortions.
IEEE-T-CSVT, 2021. 1

[28] Shaoqing Ren et al. Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. In Ad-
vances in neural information processing systems, pages 91–
99, 2015. 5

[29] Subhaluxmi Sahoo and Pradipta Kumar Nanda. Adaptive
feature fusion and spatio-temporal background modeling in
KDE framework for object detection and shadow removal.
IEEE Transactions on Circuits and Systems for Video Tech-
nology, 32(3):1103–1118, 2021. 4

[30] Taeyoung Son et al. URIE: Universal Image Enhancement
for Visual Recognition in the Wild. In ECCV, pages 749–
765. Springer, 2020. 1, 2, 5

[31] Masanori Suganuma, Xing Liu, and Takayuki Okatani.
Attention-Based Adaptive Selection of Operations for Image
Restoration in the Presence of Unknown Combined Distor-
tions. In Proc. IEEE Conf. Computer Vision Pattern Recog-
nition, pages 9039–9048, 2019. 1, 2, 5

[32] Zhun Sun et al. Feature Quantization for Defending against
Distortion of Images. In Proc. IEEE Conf. Computer Vision
Pattern Recognition, pages 7957–7966, 2018. 1, 2, 5

[33] Florian Tramèr et al. Ensemble Adversarial Training: At-
tacks and Defenses. In International Conference on Learn-
ing Representations, ICLR. OpenReview.net, 2018. 1

3862

[34] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-
Yuan Mark Liao. Scaled-YOLOv4: Scaling Cross Stage
Partial Network. In Proc. IEEE Conf. Computer Vision
Pattern Recognition, pages 13029–13038, 2021. 5

[35] Fisher Yu et al. Bdd100k: A diverse driving dataset for het-
erogeneous multitask learning. In Proc. IEEE Conf. Com-
puter Vision Pattern Recognition, pages 2636–2645, 2020.
6

[36] Sangdoo Yun et al. Cutmix: Regularization strategy to train
strong classifiers with localizable features. In Proc. IEEE
Conf. Computer Vision Pattern Recognition, pages 6023–
6032, 2019. 1, 2, 5

[37] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz. MixUp: Beyond empirical risk minimiza-
tion. In ICLR, 2018. 1, 2, 5

[38] Zhun Zhong et al. Random erasing data augmentation.
In Proceedings of the AAAI conference on artificial intelli-
gence, volume 34, pages 13001–13008, 2020. 1, 2, 5

[39] Yu Zhou et al. Omnidirectional Image Quality Assessment
by Distortion Discrimination Assisted Multi-Stream Net-
work. IEEE Trans. Circuits Syst. Video Techn., 32(4):1767–
1777, 2021. 1

3863

