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Abstract

This paper proposes a generic multi-object tracking
(MOT) algorithm that is robust to unexpected motion
changes for generic objects. Deep learning has dramat-
ically been improving MOT performances. Nevertheless,
state-of-the-art tracking algorithms are still sensitive to
unexpected motion changes and the generic object target
beyond person tracking. This is because standard MOT
benchmark datasets such as MOT17 mainly consist of per-
sons in a crowd, often lacking unexpected shape and motion
changes; thus, these issues have yet to be focused on. We
propose a simple-yet-effective MOT framework that can dy-
namically improve tracking continuity by associating each
target based on adaptively modified motion states. The keys
are 1) to represent the target motions using multiple motion
states that have weak correlations with each other and 2) to
modify those states that have the lowest similarity to past
states as outliers. Our approach can improve trajectory
continuity and robustness to unexpected motion changes
for generic objects. Comprehensive experiments have con-
firmed that our framework is comparable to existing state-
of-the-art methods on a standard dataset and outperforms
those algorithms on the GMOT dataset with an overall 2%
improvement in IDF1, a measure of tracking continuity.

1. Introduction

Multiple object tracking (MOT) is one of the main
streams of computer vision tasks. Various algorithms [5,
43,52,53], large-scale datasets [2,6,33,38,39,45], and open
sources [9,48] have led to significant performance improve-
ments. Despite this spectacular success, even state-of-the-
art methods are sensitive to unexpected motion changes in
multiple generic objects, such as crowds of animals. Track-
ing moving objects for generic objects has various applica-
tions, such as animal behavior [31,36,37] and video surveil-
lance [4,25]. The trajectory of these moving generic objects
often contains unexpected and sudden motion changes.

(a) Existing tracking-by-detection (only IoU-based association)

(b) Our framework (IoU-based and motion-based association)

Figure 1. Overviews of the existing tracking-by-detection and our
proposed framework. Our framework can improve tracking per-
formance for generic objects by introducing motion-based associ-
ation and motion-state modification for each target.

MOT algorithms are usually designed based on the im-
plicit assumption that the shape and motion changes of the
tracked object are small. This implicit assumption holds as
long as the tracked target is a person in the crowd, as in
standard MOT datasets such as MOT17 [33]. In particular,
since the trajectory of a person is not significantly disrupted
in a crowd, large motion, and unexpected shape changes are
restricted. When those motion and shape changes are small,
the motions and shapes of each target are easily predictable
if these target objects are detected. Therefore, the tracking-
by-detection approach [5, 43, 47, 53] that directly uses the
strengths of modern object detection algorithms is effective,
and various sophisticated tracking-by-detection algorithms
(e.g., ByteTrack [52]) have been provided.

The object’s shape and motion unexpectedly change in
each frame when focusing on multiple generic object track-
ing, as we will discuss in the analysis of Sec. 3. As a re-
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(a) Ground truth

(b) Result by ByteTrack [52]

(c) Result by proposed method

Figure 2. Examples of ByteTrack [52] and our proposed method.
While ByteTrack [52] have failed to track many birds as in (b), our
proposed method can continuously track birds as in (c).

sult, performance, such as tracking continuity, is signifi-
cantly degraded in existing tracking algorithms because this
implicit assumption does not hold. Figure 2 (b) shows an
example of this limitation. The state-of-art tracking algo-
rithm [52] fails to track many birds. There is a critical de-
mand for a new framework that can break this limitation
while inheriting the strengths of existing MOT algorithms.

We propose a Fast and Robust Generic Multiple-Object
Tracking (FRoG-MOT) that can improve tracking conti-
nuity by explicitly associating each target using adaptively
modified motion states. The keys are 1) to represent the
target motions using multiple motion states that have weak
correlations with each other and 2) to modify those states
that have the lowest similarity to past states as outliers, as
shown in Fig. 1 (b). This simple-yet-effective approach im-
proves trajectory continuity and robustness to unexpected
changes in motion and shape, even for generic objects. In-
deed, as shown in Fig. 2 (c), the proposed framework can
continuously track multiple birds by explicitly using the
motion state. Extensive experiments show that our frame-
work outperforms those algorithms in GMOTs involving
various objects. Furthermore, on a standard dataset such
as MOT17, we show that the performance is comparable to

or even better than existing state-of-the-art methods, even
though our framework can achieve real-time processing.

In summary, our contributions are: i) We propose a
generic MOT algorithm, FRoG-MOT, that can improve
tracking continuity by associating each target with adap-
tively modified motion states. ii) We analyze the standard
MOT dataset and generic MOT dataset and reveal chal-
lenges to be solved for the generic object tracking task. iii)
Comprehensive experiments on MOT17 [33] and GMOT-
40 [2] demonstrate the effectiveness of the proposed frame-
work. We prepare GMOT-Split101 based on GMOT-40,
which is an evaluation dataset for generic object tracking.

2. Related Works
2.1. Multi-Object Tracking

Recent MOT algorithms can be classified into 1) the
tracking-by-detection approach and 2) the transformer-
based approach.
Tracking-by-Detection Approach. The tracking-by-
detection approach is one of the mainstreams in MOT al-
gorithms. SORT and its variants [5, 7, 15, 46, 47] com-
bine the Kalman filter [44] and Hungarian [26] for track
association. To improve the pre-processing object detec-
tion performance, various algorithms have also been pro-
posed that incorporate the Re-ID branch and use object
detection, such as Track-RCNN [41], JDE and its vari-
ants [21, 30, 40, 43, 53]. CenterTrack [16] utilizes Cen-
terNet [16], an object detection method that captures ob-
jects at point origins rather than frames, to improve robust-
ness against object occlusion. The recently proposed Byte-
Track [52] uses YOLOX [19] for object detection and only
IoU for the multi-stage association. Despite its simplicity,
this approach achieves both high speed and high accuracy
in the MOT benchmark.

An advantage of the tracking-by-detection approach is
that the object detection module is separated from the track-
ing module, so the model parameters are smaller than the
transformer-based one, which makes it easier for real-time
processing. While these algorithms perform well on stan-
dard datasets such as MOT17 [33], it is still sensitive to un-
expected motion changes in generic objects.
Transformer-based Approach. Trackformer [32] and
MOTR [50] have been proposed as transformer-based ap-
proaches. Trackformer [32] is a transformer-based algo-
rithm that uses background and object queries obtained by
DETR [8]. MOTR [50] aims at long-term tracking by
adding a novel association mechanism that associates ap-
pearance features with location information. The advantage
of those methods is that they do not need to be combined
with the detection step. Although those network architec-
tures are highly expressive, they are infeasible for real-time
processing due to their large number of parameters.
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(a) MOT17 [33]

(b) GMOT-40 [2]

Figure 3. Time-series changes in typical target appearance and motion states in MOT17 and GMOT-40. In MOT17, there is little change
in each motion state even though the target has moved. In GMOT-40, the motion states of the target changed for each frame.

2.2. Datasets for Multiple Object Tracking

Various benchmark datasets for multiple object track-
ing have been proposed, roughly classified into two cate-
gories: 1) datasets for person tracking and 2) datasets for
generic object tracking. In contrast to datasets for image
classification [14], segmentation [10, 54], and object detec-
tion [17, 28], most of datasets for multiple object tracking
are more specific to persons in a crowd.

The MOT Challenge [12, 13, 27, 33] is one of the most
standard MOT datasets, and is a benchmark that targets per-
son tracking in the crowd. Among them, the MOT17 [33]
dataset is widely used in MOT performance evaluations.
Recently, MOT20 [13], which contains many more persons,
has been presented. Datasets that focus on more specific hu-
man behaviors have also been presented. Sports MOT [11]
is a dataset for players playing sports, including basketball,
football, and volleyball. Many occlusions between players
and high motion speeds characterize it. DanceTrack [38],
on the other hand, is a dataset of dance scenes involving
multiple players, each wearing the same costume and per-
forming synchronized movements.

Recently, GMOT-40 [2] has been proposed as a dataset
focused on generic objects. In GMT-40, each sequence is
composed of a crowd of different generic objects. Existing
datasets for generic objects [29, 51] contained much fewer
objects in each frame than the common MOT dataset, e.g.,
MOT17 [33]. In contrast, in GMOT-40, an average of 25
generic objects exist in each frame.

3. Challenge of generic MOT
We discuss a challenge in generic object tracking by an-

alyzing standard datasets in multi-object tracking. We com-
pare MOT17, the standard dataset in MOT, and GMOT-40,

Table 1. Mean and standard deviation (Std) of motion state and
IoU evaluated from their ground truth of MOT17 and GMOT-40.

Mean ± Std MOT17 [33] GMOT-40 [2]

Velocity 3.16 ±6.15 9.35 ±45.7
Acceleration 0.68 ±1.87 6.15 ±62.8
Size change 1.01 ±0.03 1.06 ±0.43

Aspect-ratio change 1.01 ±0.02 1.06 ±0.22
IoU 0.92 ±0.12 0.82 ±0.66

Vector similarity 0.81 ±0.33 0.74 ±0.37

which contains many generic objects. Table 1 shows the
statistical differences in the motion states, e.g., velocity, ac-
celeration, and shape, for tracking targets in MOT17 and
GMOT-40. For a more detailed analysis, Figure 3 shows
the time-series changes of a target appearance and the cor-
responding motion states for those datasets.

Table 1 shows that the standard deviations of the aspect-
ratio, velocity, and acceleration in MOT17 are consider-
ably smaller than those in GMOT-40. In Figure 3, each
plot shows velocity, acceleration, size, aspect-ratio change,
IoU, and vector similarity corresponding to the ground-truth
value for each frame. In MOT17, there is little change in
each motion state even though the target has moved. On the
other hand, in GMOT-40, the motion states of the target dra-
matically changed for each frame. Generic multiple-object
tracking should be designed to be robust to those sudden
motion changes. Those observations also suggest that 1)
velocity, acceleration, and shape (size and aspect-ratio) are
often dramatically changed for generic objects, as shown in
Table 1, and 2) one of those motion states, e.g. acceleration,
suddenly changes during tracking, as shown in Fig. 3 (b).
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Figure 4. Overview of our proposed method. Our framework consists of detection, tracklet prediction , association using on IoU and
motion based association, and motion state modification.

4. Method

The proposed method aims to improve tracking perfor-
mance for generic objects with unexpected motion changes.
The framework of the proposed method consists of object
detection, association based on IoU and motion state, and
motion state modification, as shown in Figure 4. First,
YOLOX [19] is employed to obtain the detection bound-
ing box and the corresponding confidence score. In tracklet
prediction, we predict the position of each corresponding
bounding box in the next frame from each previous tracklet,
using a Kalman filter [22]. The associations using the IoU
and the motion state are performed in the association step.
These associations are integrated by maximum value calcu-
lation to update each tracklet. Finally, the updated tracklets
are used to modify the motion state of each tracklet.

The proposed method is inspired by ByteTrack [52]. The
main difference from ByteTrack is the improved tracking
continuity for generic targets by explicitly incorporating the
motion states of each tracklet into the association. In the
following, the IoU-based association, the motion-based as-
sociation, and the motion state modification are described.

4.1. IoU-based Association

The IoU-based association is evaluated from the IoU be-
tween the predicted and the detected bounding boxes. Var-
ious existing algorithms have employed the IoU-based as-
sociation because association using IoU is a practical ap-
proach for tracking objects with small motion state changes.
The IoU-based association is used for the detected bounding
boxes with a confidence score above a threshold of 0.3 to as-
sociate targets with small motion changes. The IoU-based
association score is represented as SIoU = IoU(ϕA, ϕB),
where IoU(ϕA, ϕB) is the IoU of the predicted bounding
box ϕA and the detected bounding box ϕB .

4.2. Motion-based Association

We introduce motion-based associations and IoU-based
associations. First, we represent the motion state of each
tracklet using multiple motion states, such as the velocity
and acceleration of each target. Next, the motion-based as-
sociation score is obtained by evaluating the similarity be-
tween each motion state for the corresponding trajectory
and the hypothesis motion state for each detected object us-
ing robust association similarity.
Motion State Representation. In this paper, as shown in
Figure 5, we employ the following three values as the mo-
tion states: (1) shape, i.e., the aspect-ratio and the size of
the bounding box, (2) velocity, i.e., the first-order deriva-
tive of position, and (3) acceleration, i.e., the second-order
derivative of position. Note that those three motion states
change dramatically for the generic object during tracking,
as described in Sec. 3. Indeed, as discussed in the ablation
studies in Sec. 5, the choice of those three motion states is
the most effective one. Let xk and Lk be k-th motion state
and the motion state function for the k-th motion state for
each tracklet, respectively. In our proposed method, the mo-
tion state function Lk for each tracklet is represented by the
Laplace distribution as follows:

Lk(xk; ρk,Λk, x̃k) = exp
(
−ρkΛk

(
xk; x̃k

))
, (1)

where ρk, Λk, and x̃k are the scale for Laplacian distribu-
tion, k-th residual function, and the average for the motion
state xk. In this paper, the residual function Λ for the shape,
the velocity, and the acceleration are defined as follows:

Λ1

(
x1=(r, s); x̃1=(r̃,s̃)

)
=max

{r

r̃
,
r̃

r

}
·max

{s

s̃
,
s̃

s

}
−1, (2)

Λ2

(
x2 = v; x̃2 = ṽ

)
= |v − ṽ|, (3)

Λ3

(
x3 = a; x̃3 = ã

)
= |a− ã|, (4)
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Figure 5. Three motion state variables.

where r, s, v, and a are the aspect-ratio, the size, the ve-
locity, and the acceleration for each tracklet at the t − 1-th
frame, respectively. On the other hand, r̃, s̃, ṽ, and ã are
those values of each tracklet at the t-th frame, respectively.
In this paper, the initial values of each scale ρk and the aver-
age motion state x̃k were evaluated using training data set.
Robust Association Similarity Measure. Using the ro-
bust association similarity, a motion-based association score
Smot is obtained by evaluating the similarity between each
motion state xk for the corresponding trajectory and the
hypothesis motion state for each detected object. In our
problem setting, it is required to robustly associate motion
states that continue to change significantly during tracking.
Therefore, the association similarity should be designed to
be robust to the corresponding target motion state changes.

The most naive association similarity is to evaluate the
product of all the motion state functions {Lk}. However,
this naive design will be sensitive to changes in a small
number of motion states. An unexpected change in a single
motion state will result in a significant decrease in the asso-
ciation similarity. Our proposed method treats this changed
motion state as an outlier and evaluates the association sim-
ilarity based on robust statistics. Specifically, we introduce
a robust similarity measure based on L-estimator so that the
similarity does not decrease excessively when a small num-
ber of the motion state functions change significantly. Our
motion-based association score Smot is given by

Smot(x) = λ ·max
l

{ ∏
k∈{K\{l}}

Lk(xk; ρk,Λk, x̃k)

}
,

l̂ = arg max
l

{ ∏
k∈{K\{l}}

Lk(xk; ρk,Λk, x̃k)

}
,

(5)

where λ is a parameter to balance the scales of SIoU and
Smot, {K \{l}} represents the set of all indexes K from
which an index q is removed. We uses three motion states
xk=1,2,3: shape, velocity, and acceleration. Therefore, our
motion-based association score Smot is obtained using the
proposed robust correlation similarity, which is equivalent

to calculating the score with the highest similarity when two
motion states are chosen from those three ones.

Smot(x)=λ·max
{
L1(x1; ρ1,Λ1, x̃1)·L2(x2; ρ2,Λ2, x̃2)

L2(x2; ρ2,Λ2, x̃2)·L3(x3; ρ3,Λ3, x̃3),

L3(x3; ρ3,Λ3, x̃3)·L1(x1; ρ1,Λ1, x̃1)
}
.

Finally, the IoU-based association score SIoU and the
motion-based association score Smot are integrated by max-
imum value calculation S = max(SIoU, Smot) to update
each tracklet. In other words, if either SIoU or Smot is
higher than the threshold, add a bounding box to the cor-
responding ID and update the tracklet.

4.3. Motion State Modification

After the associations for each tracklet between frame t
and frame t − 1 are completed and each tracklet is final-
ized, the motion state for each tracklet is modified. In this
step, the motion state xk that became an outlier in the target
association (i.e., the remaining one motion state excluding
the two adopted motion states) is the target of this modifi-
cation. If the current distribution of this outlier motion state
and the hypothetical distribution (i.e., the distribution con-
sisting of the most recent frames) are significantly different,
the motion state is switched to this hypothetical distribution
as follows:

Lnew
k (xk; ρk,Λk, x̃k)=

{
Lk(xk; ρ

hyp
k ,Λk, x̃

hyp
k ), k= l̂

Lk(xk;ρk,Λk,x̃k), k ̸= l̂
(6)

where ρhypk and x̃hyp
k are the scale and the mean value for

the hypothetical motion state.
In the early stages of tracking, there are often short track-

let trajectories (about ten frames), so it is necessary to calcu-
late the distance of distributions from a small sample size.
The proposed method measures the distance between the
existing and hypothetical distributions based on the effect
size in a parametric t-test. The parametric t-test can measure
the distance between distributions from a small sample size
compared to an approach that explicitly measures the prob-
ability distributions of both samples. The effect size r is ex-
pressed r =

√
t2d/(t

2
d + df), where td and df are the t-value

and the degrees of freedom used in the t-test. The effect size
r is generally closer to 1, indicating a stronger correlation
between the two distributions, and closer to 0, indicating a
weaker correlation between the two distributions. The cor-
relation between distributions is generally small when the
effect size r is less than 0.3. When the effect size r is less
than 0.3, we switch the motion state from the current state
to the hypothetical one. As will be shown in our ablation
study, our adaptive modification allows tracking more ro-
bust than when all motion states are switched.
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5. Experiments
5.1. Experimental Setup

Datasets. GMOT-40 [2] and MOT17 [33] were used for
our evaluation. The GMOT-40 was used to evaluate MOT
methods independent of target type and situation, while the
MOT17 was used to compare with various existing MOT
algorithms, including state-of-the-art ones. For MOT17, in
addition to the MOT17-test evaluation, the MOT17 half-val
was used for detailed evaluations.

Although the existing GMOT-40 is a comprehensive and
highly useful data set for generic object tracking, unlike
most benchmark sets, the data set protocol needs to be or-
ganized uniformly. We have prepared a dataset based on
GMOT-40, which we call GMOT-Split101, and used this
evaluation set for training and testing. In particular, we
aligned the length of each test sequence to 101 frames, con-
sisting of one initial frame and 100 frames for tracking, to
prevent evaluation bias caused by the non-uniform length of
each sequence.
Evaluation Metrics. Our approach focuses on improving
tracking continuity. To evaluate the continuity of tracking
on GMOT-Split101, we employed IDP, a precision mea-
sure for tracking IDs, a similar robustness measure IDR,
and their overall measures IDF1 [35]. In the tracking-by-
detection approach, including our framework, the detec-
tion performance, i.e., precision and recall of detection, are
also evaluated because detection performance is also sig-
nificantly related to tracking performance. In addition to
those evaluation measures [3] (i.e., MOTP, MOTA, MT,
IDS, Frag) were used in the evaluation for the MOT17-half-
val dataset, where MOTP is the multiple object tracking pre-
cision, MOTA [24] is multi-object tracking accuracy, MT
indicates the ratio of ground-truth trajectories that are cov-
ered by a tracking result for at least 80% of their respective
lifespan, and IDS and Frag are the numbers of IDs that were
swapped and broken, respectively. In MOT17-test, we used
IDF1 [35], HOTA [30], MOTA, FP, FN, Recall, Precision,
IDS, and Frag as standard evaluation measures, following
the evaluation measures in the public benchmark set. FP/FN
is the number of false positives and false negatives.
Implementation Details and Environments. The initial
value of the motion scale ρk and the motion mean value
x̃k were set to 0.4 and 0 for all motion states. The thresh-
old θa for integrated similarity S=max(SIoU, Smot) used
for association was set to be θa = 0.6, and the balance pa-
rameter λ was set at 0.5. The training data, e.g. MOT17
and GMOT-Split101, were only used for training our de-
tector, i.e., YOLOX [19]. In particular, the MOT17 half-
val was compared under the condition that the various pa-
rameters were not changed by the sequence in MOT17
half-val. We compared our proposed method with various
tracking-by-detection-based algorithms [1,18,42,49,52,55]

Table 2. GMOT-Split101 benchmark results with state-of-the-art
methods. The best/Second results are shown in bold/underline.

Method IDF1↑ IDP↑ IDR↑ Rec.↑ Prec.↑ MOTA↑ MOTP↑

CenterTrack [55] 72.8 78.0 68.3 77.6 88.6 65.8 0.21
Trackformer [32] 78.5 84.0 73.7 81.1 92.5 73.6 0.21

ByteTrack [52] 78.8 81.3 76.5 83.8 89.2 72.3 0.20
Ours 80.8 83.7 78.2 83.9 89.8 73.2 0.20

and transformer-based ones [32, 50] including state-of-the-
arts. We experimented on an Ubuntu 20.04 64-bit PC with
Intel(R) Xeon(R) Gold 6154 @ 3.00GHz CPU, Tesla V100
GPU, and 64 GB RAM, PyTorch [34].

5.2. Evaluation Results

Result on GMOT-Split101. To evaluate the MOT method
for generic object recognition, comparative evaluations with
existing methods are performed using GMOT-Split1011.
Table 2 shows the evaluation results of the proposed and
the existing methods [32, 52, 55]. Compared to Center-
Track [55], the proposed method is superior in all evalua-
tion metrics. Comparing Trackformer [32] and the proposed
method, although the proposed method is inferior in Prec.,
it is also clearly superior in overall performance IDF1 be-
cause it significantly outperforms IDR. (As we will describe
later, the processing speed of transformer-based methods
such as TrackFormer [32] is slow.) We also compared the
performance with ByteTrack [52], one of the state-of-the-
art tracking-by-detection algorithms. Note that the origi-
nal code is designed explicitly for MOT benchmarks and
person crowds, and it eliminates horizontal tracking results
with aspect-ratios w/h greater than 1.6. For fair evaluation
on GMOT-Split101, we use the ByteTrack code without us-
ing this aspect-ratio restriction. Compared to ByteTrack,
the proposed method improved overall, including the evalu-
ation value for ID, indicating that the proposed method is ef-
fective for various types of generic targets. In particular, our
method outperforms those algorithms with an overall 2%
improvement in IDF1. Note that even though our method
with the same hyper-parameters is designed for generic ob-
ject targets, as shown in Table 4, the similar effectiveness
of our method is also shown in the result on the Dance-
Track dataset [38], a large-scale dataset for a specific target.
This is because the proposed method explicitly uses a mo-
tion state in its algorithm design, while ByteTrack uses only
IoU for the association 2.

Visual Comparisons and Discussion. Figure 6 shows
the visual comparisons of our proposed and the existing
method. The areas indicated by the yellow and white arrows

1The details of our datasets are described in our supplemental material.
2Additional results, analysis of computational efficiency, and detailed

discussions of the limitations of our method are also described in Sec. A
of our supplemental material.
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Table 3. MOT17-val-half benchmark results with state-of-the-art methods. The best/Second results are shown in bold/underline.

Method IDF1↑ IDP↑ IDR↑ Rec.↑ Prec.↑ MT↑ IDS↓ Frag↓ MOTA↑ MOTP↑

CenterTrack [55] 64.2 74.2 56.6 71.6 94.1 41.3 528 588 66.1 17.9
Trackformer [32] 71.5 83.4 62.5 73.2 97.7 48.7 345 417 70.8 14.6

ByteTrack [52] 77.0 81.1 73.2 82.7 91.6 56.0 206 505 74.7 17.1
Ours 79.2 83.9 75.0 83.2 93.1 58.4 170 477 76.7 15.5

Table 4. Analysis using DanceTrack validation set [38].

Method IDF1↑ IDP↑ IDR↑ Rec.↑ Prec.↑ MOTA↑ MOTP↑

ByteTrack [52] 46.9 46.1 47.8 94.6 91.2 0.843 0.18
Ours 49.9 50.2 49.6 92.3 93.6 0.85 0.178

(a) Ground truth

(b) Result by ByteTrack [52]

(c) Result by proposed method

Figure 6. Examples of existing method and our proposed method.
The areas indicated by the yellow and white arrows in (b) and (c)
show that the proposed method can track the target fish for a long
period, whereas [52] can only track it for a short period.

in Figures 6 (b) and (c) show that the proposed method can
track the target fish for a long period, whereas ByteTrack
can only track it for a short period. However, as the red ar-
row indicates, failure to detect the fish makes it difficult to
track the object for longer.

In general, if detection fails due to target occlusion, this
failure will degrade tracking performance. These limita-
tions are common challenges for tracking-by-detection ap-
proaches, and improving object detection performance is
also an essential factor. To further analyze the tracking
performance without the effects of object detection failure,
we evaluated the tracking performance on GMOT-40 using
ideal detection results. Table 5 (a) shows that the gain from
the conventional method is further increased when detection
is ideal.

Note that, interestingly, as shown in Table 5 (b), this ad-
vantage is enhanced when the frame rate is small. This huge

Table 5. Additional analysis using ideal detection results.

(a) Result on GMOT-40 [2] with ideal detection
Method IDF1↑ IDP↑ IDR↑ Rec.↑ Prec.↑ MOTA↑ MOTP↑

ByteTrack [52] 89.3 90.1 88.6 97.3 98.9 95.3 0.095
Ours 92.0 92.3 91.8 97.9 98.4 95.7 0.098

(b) Low fps setting evaluation based on IDF1
Videos sampling ratio

Method 1 5 10 15 20 25 30

ByteTrack [52] 89.3 72.8 62.1 53.4 47.6 43.6 38.5
Ours 92.0 75.0 65.0 57.9 52.0 49.0 45.7

(+2.7) (+2.2) (+2.9) (+4.5) (+4.4) (+5.4) (+7.2)

drop in ByteTrack is due to the assumption that motion be-
tween frames is small, and the proposed method can com-
pensate for this shortcoming3. These experiments suggest
that improving the detection accuracy further improves the
effectiveness of the proposed method.

In contrast to person tracking, generic object tracking
involves large geometric transformations such as rotation.
The object detection algorithm is known to be sensitive to
large geometric transformations [23]. It is essential to im-
prove both object tracking and object detection algorithms.
Result on MOT17. The performance was also evaluated
on MOT17 (MOT17-half-val and MOT17-test). Tables 3
and 6 show the evaluation results of the proposed and the
existing methods. Note that for processing speed, we re-
ferred to the submitted values of the MOT17 test set for
a fair comparison. As shown in Table 3, our proposed
method outperforms existing methods (e.g., ByteTrack) in
terms of evaluation metrics related to tracking continuity
(e.g., IDF, IDP, IDR), similar to the evaluation results for
GMOT-Split101. This result suggests that our key idea (i.e.,
integration of motion state and IoU) is also effective for
person-tracking tasks. Furthermore, as shown in Table 6,
even in the MOT17-test, widely used for evaluation, the
proposed method is comparable or superior to the existing
methods in several evaluation metrics including IDF1. In
particular, compared to ByteTrack, our proposed method
adds additional processing (i.e., associating with the mo-
tion state and modifying the motion state) 4. However, our

3This shortcoming in ByteTrack has also been described in [20].
4Note that MOTA and IDS are highly dependent on detection perfor-

mance. As FN decreases, IDS and FM increase and MOTA also decreases.
As previously discussed in Table 5 (a), tracking performance improves for
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Table 6. MOT17-test benchmark results with state-of-the-art methods. The best/Second results are shown in bold/underline.

Method IDF1↑ HOTA↑ MOTA↑ FP↓ FN↓ Rcll↑ Prcn↑ IDS↓ Frag↓ FPS↑

CenterTrack [55] 64.7 52.2 67.8 18,498 160,332 - - 3,039 - 17.5
Trackformer [32] 68.0 57.3 74.1 34,602 108,777 80.7 92.9 2,829 4,221 5.7
STC-Tracker [18] 70.9 59.8 75.8 44,952 87,039 84.6 91.4 4,533 5,721 9.5

GSDT [42] 66.5 55.2 73.2 26,397 120,666 78.6 94.4 3,891 8,604 4.9
MOTR [50] 75.0 62.0 78.6 23,409 94,797 83.2 95.3 2,619 6,231 7.5

ReMOT [49] 72.0 59.7 77.0 33,204 93,612 83.4 93.4 2,853 5,304 1.8
ByteTrack [52] 77.3 63.1 80.3 25,491 83,721 85.2 95.0 2,196 2,277 29.6
BoT-SORT [1] 80.2 65.0 80.5 22,521 86,037 84.8 95.5 1,212 1,803 6.8

Ours 77.8 63.5 79.5 28,557 74,718 86.8 94.4 2,244 2,376 28.2

proposed method is still fast enough to allow for real-time
processing, and substantially outperforms the transformer-
based methods (TrackFormer [32] and MOTR [50]) in terms
of the processing speed. Note that although BoT-SORT [1]
achieves comparable or better performance than our pro-
posed method in some evaluation metrics, the proposed
method is significantly superior in processing speed.

5.3. Ablation Study and Analysis

Finally, we conducted two ablation studies: 1) the effec-
tiveness of motion state variable selection and 2) the effec-
tiveness of motion state modification.

Effectiveness of Motion State Variable Selection. In the
proposed method, three motion states, i.e., shape, velocity,
and acceleration, were selected to represent the motion state
of each tracked target. We added jerk and velocity direc-
tional correlation (called vector in the following) as other
candidates of the motion state and evaluated the best mo-
tion state selection, including three variables we used in
our method. Note that jerk is the first derivative of ac-
celeration (i.e., the third derivative of position), and vec-
tor is the cosine similarity Scos of velocity normalized to
Lcos = (Scos + 1)/2. As shown in Table 7, the proposed
combination of the three motion states (i.e., shape, velocity,
and acceleration) is the most effective. This result indicates
that combining these motion states is a simple-yet-effective
choice for representing motion states. While acceleration is
the most key motion state in motion modification, velocity,
and shape are also key motions in the bird sequence shown
in Fig. 2. Details are described in our supplemental.

Effectiveness of Motion State Modification. In the pro-
posed method, we select the motion states that are the out-
lier and adaptively modify these motion states. To evaluate
the effectiveness of this adaptive motion-state modification,
we compared the performance of the proposed method (i.e.,
adaptive modification) with two baselines: 1) no modifica-
tion (i.e., ρk and x̃k are fixed at their initial values) and 2)
complete modification (i.e., all motion states ρk and x̃k) are

all indicators when detection results are ideal.

Table 7. Comparison results on GMOT-Split101 for the combina-
tion use of different motion state of the proposed method.

Set of motion states IDF1↑ IDP↑ IDR↑

(shape,velocity,vector) 78.7 80.7 76.8
(shape,acceleration,vector) 78.7 80.7 76.7

(shape,jerk,vector) 78.7 80.8 76.7
(shape,jerk,velocity) 80.2 83.4 77.2

Ours 80.8 83.7 78.2

Table 8. Comparison of the results from different modification
protocols on GMOT-Split101.

Modification manner IDF1↑ IDP↑ IDR↑

No modification 78.1 79.8 76.5
Complete modification 79.5 81.9 77.2

Ours (adaptive modification) 80.8 83.7 78.2

switched). Table 8 shows that the proposed method outper-
forms these two naive baselines. Interestingly, when all pa-
rameters are modified, all metrics, i.e., IDF1, IDP, IDR, are
lower than those of the proposed method. This is because
the mandatory modification of motion states that do not re-
quire modification results in tracking failures, suggesting
that this complete modification strategy overfits the hypo-
thetical motion state. Those results show that our adaptive
motion state correction in our framework is effective.

6. Conclusion
We proposed the simple-yet-effective generic MOT algo-

rithm called FRoG-MOT that can improve tracking continu-
ity by associating each target with adaptively modified mo-
tion state. The keys are 1) to represent the target motions us-
ing multiple motion states that have weak correlations with
each other and 2) to modify those states that have the lowest
similarity to past states as outliers. Our approach can im-
prove tracking continuity and robustness to unexpected mo-
tion changes of each object. Comprehensive experiments
have confirmed that our framework is comparable to exist-
ing state-of-the-art methods on a standard dataset and out-
performs those algorithms on the GMOT-Split101 dataset.
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tracking and detection challenge: How crowded can it get?
arXiv:1906.04567 [cs], June 2019. arXiv: 1906.04567. 3

[13] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers,
I. Reid, S. Roth, K. Schindler, and L. Leal-Taixé. Mot20:
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