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Abstract
Skull-stripping is an important first step when analyz-

ing brain Magnetic Resonance Imaging (MRI) data. Deep
learning-based supervised segmentation models, such as
the U-net model, have shown promising results in automat-
ing this segmentation task. However, when it comes to
newborn MRI data, there are no publicly available brain
MRI datasets that come with manually annotated segmen-
tation masks to be used as labels during the training of
these models. Manual segmentation of brain MR images
is time-consuming, labor-intensive, and requires expertise.
Furthermore, using a segmentation model trained on adult
brain MR images for segmenting newborn brain images is
not effective due to a large domain shift between adult and
newborn data. As a result, there is a need for more effi-
cient and accurate skull-stripping methods for newborns’
brain MRIs. In this paper, we present an unsupervised
approach to adapt a U-net skull-stripping model trained
on adult MRI to work effectively on newborns. Our re-
sults demonstrate the effectiveness of our novel unsuper-
vised approach in enhancing segmentation accuracy. Our
proposed method achieved an overall Dice coefficient of
0.916± 0.032 (mean± std), and our ablation studies con-
firmed the effectiveness of our proposal. Remarkably, de-
spite being unsupervised, our model’s performance stands
in close proximity to that of the current state-of-the-art
supervised models against which we conducted our com-
parisons. These findings indicate the potential of this
method as a valuable, easier, and faster tool for support-
ing healthcare professionals in the examination of MR im-
ages of newborn brains. All the codes are available at:
https://github.com/abbasomidi77/DAUnet.

1. Introduction
Brain Magnetic Resonance Imaging (MRI) is a non-

invasive imaging technique that has become an essential

tool for investigating the structure and function of the brain.
Brain MRI plays a crucial role in the diagnosis and moni-
toring of various neurological disorders.

Skull-stripping is a crucial first step in neuroimaging
analysis pipelines. Accurate segmentation can provide valu-
able information about the brain’s structure, which is help-
ful in the diagnosis of neurological diseases. If a dataset
with manual annotations, i.e., labels, is available, deep
learning models can perform very well in automating this
process, as they can learn to segment the brain from large
amounts of labeled data. Automatic segmentation using
deep learning models can save time and effort compared to
manual segmentation, which is time-consuming and suffers
from inter-/intra-subject annotation variability. It can also
provide more consistent and reproducible results across dif-
ferent datasets and imaging protocols.

Automatically segmenting the brain in MR images can
be particularly challenging for newborns. The neonatal
brain is immature: The shape and size of the brain and its
cortical and subcortical structures are different from adults.
Also, image contrasts differ: On T1-weighted images, the
intensity of the white matter (WM) is lower than that of
the gray matter (GM). These image contrasts are the re-
verse of those seen in adults. This contrast difference is well
known and caused by incomplete myelination in the white
matter of the neonatal brain. Because of the variability of
the myelination status in different fibers, the contrast be-
tween the gray and white matter in some areas is very poor
[24]. Newborn MRI data are also more commonly affected
by motion artifacts, which are another cause for distribution
shifts between adult and newborn MRI data. Moreover, ac-
curate segmentation of the neonatal brain from MR images
is complex due to the lack of labeled newborn MRI seg-
mentation datasets. These differences between adult and
newborn MR images are illustrated in Fig. 1.

One possible approach to developing skull-stripping
models for newborn brain MRI could involve training mod-
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Figure 1: T1-weighted MR images of an adult subject (left)
and newborn subject (right). Notice that the WM and GM
tissue contrast is inverted and has poorer contrast on the
newborn scans. The newborn image also has noticeable mo-
tion artifacts.

els on adult brain data since there are many publicly avail-
able labeled datasets [30, 22, 28], and then use these models
to obtain brain segmentations on newborn MRI. However,
a significant hurdle arises here from the fact that there is a
large domain shift between adult and newborn brain MRI
data. Therefore, these models solely trained on adult data
do not generalize to newborns.

To overcome the challenge of performing skull-stripping
of newborn MR images, we introduce a novel unsuper-
vised domain adaptation (DA) technique capable of using
labeled adult MRI data combined with unlabeled newborn
MRI data to develop a skull-stripping method that segments
newborn MR images accurately. Our proposed approach
applies a special data augmentation transformation by in-
verting the adults’ MRI contrast to reduce the domain shift
between the adult and newborn data combined along with
introducing a U-Net-based [26] domain adversarial training
approach that makes our model learn domain invariant fea-
tures [12]. To the best of our knowledge, this is the first
time an unsupervised Domain-Adversarial Neural Network
(DANN) method [12] has been investigated to address the
challenges of accurately skull-stripping the neonatal brain
from MR images.

Our novel unsupervised DA approach, comprising a
combination of contrast inversion and a 3D U-Net-based
adversarial DA method, is evaluated on both datasets of
presumed healthy adult and newborn T1-weighted MR im-
ages, and the results show that this approach significantly
improves the quality of skull-stripping in newborns’ MR
images, while preserving the quality of the segmentation
in adult MR images. These results highlight the potential
of combining deep learning models with DA techniques to

address the challenges of domain shift in medical imaging
and improve the accuracy of skull-stripping in newborn MR
images.

2. Related work
Domain adaptation techniques play a pivotal role in en-

hancing the robustness and generalization of segmentation
models across diverse datasets. These methods aim to ad-
dress domain shift, where variations in image acquisition
protocols, modalities, and resolutions hinder the seamless
transfer of models from source to target domains [33, 20].
Adversarial domain adaptation has emerged as a power-
ful approach in which a domain discriminator is simulta-
neously trained with a segmentation network. This frame-
work encourages the segmentation network to generate fea-
tures that are domain-invariant, minimizing the distribution
gap between domains [11]. Another avenue for tackling do-
main shift is domain-invariant feature learning, which fo-
cuses on extracting features that are insensitive to domain-
specific variations. This allows models to generalize effec-
tively across different datasets [6]. The integration of such
domain adaptation techniques and feature learning methods
into segmentation tasks, including tasks like skull-stripping,
enhances the adaptability of models to variations in imag-
ing domains and modalities, promoting more accurate and
reliable results.

Skull-stripping refers to the process of segmenting the
brain from non-brain tissue in MRI scans. To address
the challenges of manual skull-stripping, various automated
methods have been proposed in the literature. These meth-
ods can be broadly classified into two categories: tra-
ditional image-processing techniques and deep learning-
based methods. Traditional image processing techniques
include BEaST [10], region growing [21], and deformable
models [7]. However, these methods are limited by their
dependence on predefined features and parameters and can
be affected by the variability in MR images.

Recently, deep learning-based methods have gained pop-
ularity for skull-stripping in MR images due to their abil-
ity to learn complex patterns from the data [25, 19]. Con-
volutional Neural Networks (CNNs) have shown promis-
ing results in various medical imaging tasks, especially in
image segmentation [23]. For example, Brebisson et al.
proposed a fully convolutional neural network (FCN) for
skull-stripping in MR images and showed improved accu-
racy compared to traditional image processing techniques
[8]. Chen et al. proposed a deep residual network for
skull-stripping in MR images and showed that the proposed
method outperforms traditional methods in terms of accu-
racy and efficiency [5].

However, one of the challenges in using deep learning-
based methods for skull-stripping in MR images is the pres-
ence of domain shift between the training and testing data.
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Domain shift refers to the difference in the distribution of
the data between the source domain and the target domain.
In the case of skull-stripping in MR images, the domain
shift can be due to the difference in image acquisition pro-
tocols, image resolution, or image modalities. To address
this challenge, recent studies have proposed the use of DA
techniques to improve the generalization of deep learning
models to new domains [35, 2, 27].

In the context of addressing the challenges associated
with domain shift in contrast and resolution, Billot et al.
proposed a novel technique utilizing a generative model [3].
This model was trained on a big dataset containing vari-
ous extensive datasets existing in the literature [34, 17]. By
leveraging this generative model, realistic synthetic brain
MRI scans were generated, closely resembling the appear-
ance of real scans. The synthetic scans were subsequently
employed to train a segmentation model, and their results
show efficacy in segmenting real brain MRI scans across a
wide range of contrasts and resolutions.

In the area of newborns’ skull-stripping, Weisenfeld et
al. developed an automatic segmentation algorithm for
brain MRI of newborn infants based on taking aligned T1-
and T2-weighted MR images and assigning a label to each
voxel in the image [36]. Research has shown that with in-
tensity correction, edge-preserving noise smoothing, and
tissue classification, good results in the skull-stripping of
newborns can be achieved [29]. However, the authors ac-
knowledge that it is difficult to distinguish cortical grey mat-
ter from myelin in the newborns’ brain tissue. To the best of
our knowledge, no research can be found in the literature re-
garding adapting segmentation models trained on adult data
to newborns.

In comparing and contrasting the existing approaches
within the realm of skull-stripping for brain MRIs, it be-
comes evident that addressing domain shift and the scarcity
of annotated newborn data remains a critical challenge. Tra-
ditional methods, such as BEaST, region growing, and de-
formable models, have been fundamental but often lack the
adaptability required to handle the inherent variability in
MR images. Deep learning-based approaches, including
convolutional neural networks (CNNs) like the FCN and
deep residual networks, have revolutionized skull-stripping
for adult brain MRIs, showcasing improved accuracy over
traditional techniques. However, the domain shift that arises
when transitioning to newborn brain images introduces a
substantial obstacle. Our proposed unsupervised adaptation
approach stands out as a promising solution to this issue.
By integrating domain adaptation techniques inspired by re-
cent advancements, our method offers a pathway to effec-
tively adapt a U-net model, originally trained on adult MRI
data, to accurately segment newborn brain images. Lever-
aging insights from generative models in the handling of
domain shift further solidifies the efficacy of our approach.

As a result, we contribute to addressing the unique chal-
lenges of newborn skull-stripping, ultimately improving the
efficiency and precision of segmentation tasks for neonatal
brain MRIs.

3. Materials and Methods
3.1. Dataset

3.1.1 Adult Dataset

In our study, we utilized the Calgary-Campinas public
brain MRI dataset [30], which has 359 (176M:183F) T1-
weighted, 3D, 1 mm isotropic adult brain MRIs. The dataset
also provides skull-stripped, i.e., brain masks, and WM,
GM segmentation masks. These data were collected in MRI
scanners from different vendors (General Electrica [GE],
Philips, Siemens) at two different magnetic fields (1.5 T and
3 T).

3.1.2 Newborn Dataset

We used a private dataset collected at the Alberta Children’s
Hospital using a GE 3T MRI scanner. The dataset has 12
(7F:5M) T1-weighted, 3D, 1 mm× 0.5 mm× 0.5 mm new-
born brain MRIs. Brain masks were manually obtained on
ten sagittal slices spaced by ten slices each on 5 out of the
12 samples in the dataset for evaluation purposes.

It is worth noting that the manual labeling process of an
entire MRI volume is slow. It requires more than 8 hours
for one MRI volume. This highlights the significance of
developing an automated model for skull-stripping newborn
brains in MRI scans that does not require labeled data for
training.

3.2. Proposed Method

3.2.1 Overview

The visual overview in Fig. 2 illustrates the architecture of
our network, which includes two learning loops to improve
the segmentation accuracy of newborns’ brains in MR im-
ages. The first loop is a standard 3D U-net learning loop
that operates on the adult MRI data (source domain images)
and their corresponding labels. In the forward propagation,
the network creates the brain masks for adults’ brains, and
in the backpropagation process, the network parameters are
updated to refine the segmentation accuracy.

The second loop focuses on the discriminator, which is
added after the bottleneck. The main objective of the dis-
criminator is to distinguish between the source domain im-
ages and the newborn MRI (target domain images). During
the backpropagation process, the discriminator is updated
properly to improve its ability to differentiate between the
two types of images. However, when the gradients reach
the encoder, a gradient reversal layer is activated, which
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Figure 2: The overview of our introduced approach. Our approach consists of two parallel learning loops. The first
one is a standard 3D U-net [26] learning loop, where the forward and backward propagation processes are performed on
our source images and their corresponding labels. The second loop involves a discriminator. During backpropagation,
the discriminator parameters are updated correctly, but the gradients are negated when they reach the encoder, resulting in
extracting indistinguishable and more generic features in the feature extractor.

multiplies the gradients by a negative constant, effectively
negating them. This leads to the encoder parameters being
updated such that it increases the discriminator loss, forcing
the feature extractor to learn domain-invariant features.

During training, the model is exposed to labeled adult
data with the original and inverted WM-GM contrast and
unlabeled newborn data. The contrast inversion is explained
in Section 3.2.2. In section 3.2.3, the domain adversarial
model is explained in detail.

3.2.2 Contrast Inversion

One major challenge in segmenting newborn brain MRI is
the distinct characteristic of immature GM and WM tissue
in newborn brains, which exhibit a poorer and reversed con-
trast compared to adult brains. To mitigate the domain shift
caused by this difference in WM-GM contrast, we devise
an extra data augmentation that inverts the contrast between
WM and GM in adult brain MRIs. This contrast inverted
image dataset is then used along with the original images to
train our model, enabling successful skull-stripping of both
adult and newborn brain MR images.

The WM-GM contrast inversion is implemented accord-
ing to the following equation:

C̄(i) =

{
max
∀j∈M

[C(j)]− C(i), ∀i ∈M

C(i), otherwise
(1)

In the above equation, M represents the GM-WM mask,
and i denotes all voxels in the mask. By applying the
above equation, a new image with reversed contrast denoted
by (C̄(i)) is created. This new contrast value is obtained
by subtracting the original voxel intensity (C(i)) from the
maximum intensity present in the GM-WM mask, denoted
by (max[C(j)]). The contrast inversion is depicted in Fig.
3.
3.2.3 DANN

In our segmentation process, we utilize a modified version
of the U-Net model [26] specifically designed for 3D im-
ages. The U-Net architecture consists of two main sections:
the encoder and the decoder. The encoder follows a 3D
convolutional network structure, employing two consecu-
tive 3 × 3 × 3 convolutions (without padding), each fol-
lowed by a rectified linear unit (ReLU) activation function
[13]. Subsequently, a 2× 2× 2 max pooling operation with
a stride of 2 is applied to downsample the feature channels.
At each downsampling step, the number of feature channels
is doubled.
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(a) (b)

(c)

Figure 3: (a) T1-weighted brain MRI of an adult subject.
(B) WM-GM segmentation mask of (a). (C) T1-weighted
brain MRI after contrast inversion.

On the other hand, the decoder section of the U-Net per-
forms upsampling of the feature map, followed by a 2×2×2
convolution that reduces the number of feature channels
(known as ”up-convolution”). The upsampled feature map
is then concatenated with the corresponding cropped feature
map from the contracting path. Two 3× 3× 3 convolutions
with ReLU activations are applied to the concatenated fea-
ture map. Cropping is necessary to compensate for the loss
of border pixels during each convolution. Finally, a 1×1×1
3D convolution is employed in the last layer to map the 64-
component feature vector to the desired number of classes.

In the U-Net architecture, skip connections are estab-
lished, which directly connect the encoder and decoder sec-
tions of the network. These skip connections enable the
transfer of information across multiple layers during for-
ward propagation, contributing to the effectiveness of the
U-Net in various image segmentation tasks [9] [1].

In our proposed model for DA, we make three major
modifications to the traditional U-Net architecture. First,
we add a discriminator phase to the model. Second, we
concatenate the final layer and the bottleneck of the U-Net
and feed them to the discriminator, allowing it to learn both
high-level and low-level features. Lastly, we use a gradi-
ent reversal layer that reverses the sign of gradients during
backpropagation and feeds them to the encoder.

The primary purpose of the discriminator is to differen-
tiate between the source images (adult brain MRI) and the
target images (newborn brain MRI). By analyzing the fea-
tures extracted from the bottleneck layer concatenated to the
final layer, the discriminator aims to identify the domain to
which an input image belongs.

During the training process, the discriminator is exposed

to a combination of source and target images. It learns to
classify the images based on their distinctive domain char-
acteristics. The discriminator is equipped with its own set
of parameters, which are updated through backpropagation
and gradient descent. The objective is to optimize the dis-
criminator’s ability to discern between the source and target
domains accurately.

After completing the discriminator backpropagation
training process, the gradient values are multiplied by a
negative coefficient (-λ) through the gradient reversal layer.
This manipulation leads to the encoder parameters being
updated in a way that increases the discriminator loss,
thereby prompting the feature extractor to extract fewer
domain-variant features. The intention behind this process
is to align the feature distributions of the two domains, mak-
ing them as similar as possible and indistinguishable for
the discriminator. Ultimately, this results in the creation of
domain-invariant features that can be effectively used for
newborn skull-stripping.

The approach outlined above, which incorporates the
gradient reversal layer with a negative coefficient (-λ),
proves to be effective for newborn skull-stripping. This
technique allows the optimizer to update the model pa-
rameters in a manner that promotes the extraction of more
generic features. The subsequent equations demonstrate
how the introduction of the -λ coefficient modifies the pa-
rameter updates, leading to the extraction of features that
are less specific to a particular domain and more adaptable
to different image characteristics.

θy ← θy − µ
∂Li

y

∂θy
(2)

θd ← θd − µλ
∂Li

d

∂θd
(3)

θf ← θf − µ

(
∂Li

y

∂θf
− λ

∂Li
d

∂θf

)
(4)

The provided equations describe the update process for
the parameters (θ) in different components of the model.
Equation 2 corresponds to the decoder (θy) and demon-
strates how its parameters are updated using derivatives
from the Dice loss (Li

y). These derivatives are multiplied
by the learning rate (µ) and subtracted from the current de-
coder parameters to obtain updated values.

Equation 3 pertains to the discriminator (θd) and show-
cases its parameter update. Here, the gradients are obtained
from the derivative of the discriminator loss (Li

d) with re-
spect to the discriminator parameters. The learning rate (µ)
and the coefficient (λ) are both multiplied with the gradients
to determine the direction and magnitude of the parameter
update. The inclusion of the λ term allows the update to be
influenced by the domain discrimination objective.
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In Equation 4, the update process is applied to the en-
coder which is the feature detector part(θf ). Similar to the
decoder, chain derivatives from the Dice loss (Li

y) are uti-
lized. However, in this case, the gradients are modified by
subtracting the product of the derivative of the discrimina-
tor loss (Li

d) and the coefficient (λ). The resulting negative
λ term in the encoder updating process leads to a reverse
update of the encoder parameters.

By incorporating the λ term in the updates, the model
focuses on learning features that are challenging for the dis-
criminator to distinguish between the source and target do-
mains. This technique helps in creating domain-invariant
features, enhancing the model’s ability to perform newborn
skull-stripping across different domains.

The λ term is defined as follows:

λ =
2

1 + exp(−10α)
− 1 (5)

In equation 5, λ is defined as a coefficient within the
gradient reversal layer during the feature extractor’s update
in the model. To optimize this process, we propose the
linking of α to the current position within the data loader
across epochs. This approach ensures that α maintains a
diminished value in the initial epochs, causing λ to ap-
proach proximity to zero. Consequently, during these initial
epochs, the feature extractor experiences training through
the reverse path of the decoder. This specific training strat-
egy aims at extracting features that hold significance for ac-
curate segmentation. As the progression through the data
loader advances, α gradually increases, thereby driving λ
closer to 1. This adjustment introduces an additional path-
way within the reverse process, originating from the dis-
criminator. This augmentation aids in refining features to
be more universally applicable while retaining their impor-
tance for segmentation. The underlying rationale for this
particular choice of λ is to guarantee that the model gains
a robust grasp of pivotal segmentation features before un-
dergoing any domain adaptation. In order to reproduce the
results, any coefficient that steers the model’s focus towards
segmentation features during the initial epochs would suf-
fice.

3.2.4 Loss Function

For the segmentation loss function, we utilize Dice Loss
[31], which measures the similarity between the predicted
and ground truth segmentation maps by calculating the
overlap of corresponding pixels. For the discriminator loss
function, we use Binary Cross-Entropy (BCE), which mea-
sures the dissimilarity between predicted probabilities and
true binary labels. The final loss function used for training
this network can be mathematically shown as equation 6.

L =

N∑
i=1

[Dice(ŷi,yi) +BCE(xi,di)] +

M∑
j=1

BCE(xj ,dj)

(6)

In the above equation, the variable L represents the total loss
function. The first summation in the equation consists of two
terms. The first term is the Dice Loss applied to the predicted
masks (ŷi) of N source images and the corresponding mask la-
bels (yi) of them. These values are obtained through training us-
ing our 3D U-Net model. The summation over i indicates that we
are taking the sum of the Dice Loss over all N source images.

The second term in the first summation is a binary cross-
entropy loss applied to the N source images and their correspond-
ing domain labels, represented by xi and di respectively. The
summation over i indicates that we are taking the sum of the bi-
nary cross-entropy loss overall N source images.

The second summation in the equation is also a binary cross-
entropy loss, but this time it is applied to M target images and
their corresponding domain labels, represented by xj and dj re-
spectively. The target images are from a different domain than the
source images, and the binary cross-entropy loss is used to help the
model adapt to the target domain during D. The summation over
j indicates that we are taking the sum of the binary cross-entropy
loss overall M target images.

We aim to enhance both the discriminator and segmentation
models using loss functions. However, by multiplying -λ in the
internal derivation calculations, we influence the encoder to focus
more on indistinguishable features, resulting in a continual tug-of-
war between the encoder and discriminator. The discriminator loss
function is intended to improve its performance, while the features
become increasingly difficult to distinguish with each epoch.

3.3. Metrics
In this research, we utilize 95th percentile Hausdorff [16] and

Dice coefficient [37], to compare the quality of our brain masks
with the manual segmentation reference. The metrics are com-
puted on a slice-by-slice basis. The 95th percentile Hausdorff dis-
tance is effective in identifying outliers by capturing the maximum
distance between corresponding points on the boundaries. Con-
versely, the Dice coefficient quantifies segmentation accuracy by
measuring the overlap and similarity between the two sets. These
widely recognized metrics contribute to a comprehensive evalua-
tion of our brain masks, enabling a robust assessment of segmen-
tation performance.

The 95th percentile Hausdorff distance is a variant of the Haus-
dorff Distance that measures the maximum distance between two
sets of points. In the context of image segmentation, it serves as a
valuable metric for evaluating the dissimilarity between the bound-
aries of the predicted mask and the ground truth mask. This di-
rected distance calculates the maximum distance from each point
in one mask to its nearest point in the other mask.

The Dice coefficient is a statistic that assesses the spatial over-
lap between two binary masks. It calculates the ratio of twice the
intersection of the masks to the sum of the sizes of the individual
masks. The Dice coefficient ranges from 0 to 1, where a value of
1 indicates a perfect overlap between the masks, while a value of
0 indicates no overlap at all.
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4. Experiments
4.1. Experimental Settings

To our knowledge, there are no existing unsupervised models
specifically designed for newborn brain skull-stripping in the lit-
erature to compare our model directly with. To demonstrate the
advancements achieved by our unsupervised model, we conducted
a comprehensive comparison involving the current state-of-the-art
(SOTA) supervised model for skull-stripping. Among these mod-
els, we examine SynthStrip [15], which exhibits promising out-
comes in skull-stripping tasks and Hippodeep [32] which was ini-
tially developed for extracting the hippocampus from brain MRIs,
but its latest PyTorch version has been enhanced to encompass
skull-stripping as well. Although both these models are super-
vised, having been trained on an extensive dataset of MRIs across
various age groups, including infants, our model’s performance
closely rivals their outcomes. This comparison underscores the
exceptional capability of our unsupervised model to stand toe-to-
toe with established supervised approaches. Also, we performed
experiments involving the training and testing of three additional
models, alongside our model, on newborn data, allowing for com-
parative analysis of the results. The first model, referred to as
U-Net, was trained solely on adult brain MRI images and subse-
quently evaluated on newborn data. This model utilized the con-
ventional U-Net architecture without any modifications.

For the second model, denoted as U-Net CI, we trained the
same architecture as U-Net but incorporated both the original adult
data and the contrast-inverted (CI) adult data during training. The
third model, U-Net DA, was trained on the original adult data and
featured the inclusion of the discriminator component and gradient
reversal layer. Basically, in this model, the architecture is the same
as our model, but the model is only fed with the original adult data,
not the CI data.

The fourth model was our proposed model, which incorporates
both CI and DA elements. The U-Net and the U-net CI mod-
els were trained using a Dice loss function, while the U-Net DA
and our proposed method were trained using the loss function de-
scribed in Section 3.2.4.

In all six models, namely U-Net, U-Net CI, U-Net DA, Synth-
Strip, Hippodeep, and our proposed model, we maintained consis-
tency in terms of the optimizer, learning rate, and dynamic λ. We
employed the Adam [18] optimizer with an initial learning rate of
1e−4 for all models. Additionally, to prioritize the early stages of
training and enhance segmentation performance, we incorporated
a dynamic lambda rate adjustment in all models. This adjustment
allowed us to allocate more emphasis and resources toward im-
proving segmentation accuracy during the initial training process.

The training process of all models involved 450 epochs, and it
was executed on an A-100 GPU. The chosen batch size for training
was 4. Each epoch took approximately 15 minutes to complete on
the specified GPU. In order to handle the large volume of data,
we adopted a patch-based approach using a patch size of 96 ×
96 × 96. This patching technique was facilitated by utilizing the
MONAI framework [4]. Due to hardware limitations, we were
unable to continuously utilize the GPU. To address this constraint,
we implemented a custom function that allowed us to store and
retrieve crucial information for resuming the training process. This
included saving the model states, optimizer states, the last fully

trained epoch, and the corresponding loss function value. This
approach ensured that we could resume the training process from
the point of interruption and continue the model’s progress.

For comparing the models, we computed the metrics described
in Section 3.3 using a source domain test set of adult MR images
and a target domain test set of newborn brain MR images. The
train, validation, and test split used in the experiments are summa-
rized in Table 1.

Table 1: Summary of the train, validation, and test split of
the source and target domain datasets used in the experi-
ments. The number of samples of each set corresponds to
T1-weighted MRI volumes.

Data Train Set Validation Set Test Set
Adult Data 243 104 12

Newborn Data 5 2 5

4.2. Results
The Dice coefficient results and the 95th percentile Hausdorff

distance results for the newborn and adult test sets are summa-
rized in Table 2 and Table 3, respectively. Our proposed method
obtained the best metrics in the newborn test set among unsuper-
vised models with a 50% improvement in the Dice coefficient and
35% improvement in the Hausdorff distance metrics compared to
the second-best unsupervised method, which was the U-Net DA.
Furthermore, in comparison to the cutting-edge supervised mod-
els, our model’s outcomes stand in remarkable proximity, exhibit-
ing a marginal deviation of 0.7% less than Hippodeep and 2.7%
less than SynthStrip in the Dice coefficient. It is worth highlight-
ing that the SynthStrip model has already been trained on a dataset
of labeled newborn MRIs, acquired at Boston Children’s Hospi-
tal from individuals aged between 0 and 18 months, and the Hip-
podeep model has been trained on an extensive combination of
over 5,000 MRI samples.

On the adult test set, our method obtained the second-best Dice
coefficient and Hausdorff distance metrics, but the differences in
metric quality between the best result and the worst result were
smaller than 2%. This underscores the robustness of our model,
highlighting that its proficiency in skull-stripping newborn brains
does not come with compromising its performance on adult brains.

Segmentation masks representative of the overall results on the
newborn and adult test sets are depicted in Fig. 4 and Fig. 5,
respectively.

4.3. Discussion
Our innovative unsupervised DA approach to skull-stripping

T1-weighted MR images of newborns offers a unique combina-
tion of speed and accuracy. By integrating DA techniques, we
are able to rapidly generate segmentation results without the need
for laborious manual labeling. This streamlined process signif-
icantly reduces the overall processing time, enabling healthcare
professionals to obtain timely segmentations for clinical analysis.
Remarkably, despite being an unsupervised approach, our model
delivers reasonably accurate segmentation.

The integration of the CI and DA methods has resulted in sig-
nificant improvements in the segmentation of newborn brain MRIs
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Figure 4: Visual representation of models segmentation results on the newborn test set (target dataset).

Figure 5: Visual representation of models segmentation results on the adult test set (source dataset).

Table 2: Summary of the results on the newborns’ test set.

Approach Hausdorff Distance Dice coefficient
U-Net 8.9220 ± 0.5335 0.0790 ± 0.0926

U-Net CI 6.6315 ± 1.0921 0.3863 ± 0.1518
U-Net DA 5.5144 ± 0.7054 0.6086 ± 0.1846

SynthStrip* 3.1570 ± 0.1389 0.9412 ± 0.0063
Hippodeep* 3.7995 ± 0.2343 0.9222 ± 0.0162

Ours 3.6621 ± 0.4572 0.9156 ± 0.0324
* Models marked with an asterisk are supervised and al-
ready trained on a newborn dataset.

Table 3: Summary of the results on the adults’ test set.

Approach Hausdorff Distance Dice coefficient
U-Net 1.6876 ± 0.2778 0.9513 ± 0.0260

U-Net CI 1.7223 ± 0.2634 0.9500 ± 0.0261
U-Net DA 1.7130 ± 0.2558 0.9514 ± 0.0257

SynthStrip* 2.0116 ± 0.2232 0.9426 ± 0.0165
Hippodeep* 2.0426 ± 0.1973 0.9576 ± 0.0080

Ours 1.6972 ± 0.2687 0.9521 ± 0.0262
* Models marked with an asterisk are supervised and al-
ready trained on a newborn dataset.

while maintaining a satisfactory performance on adult brain MRIs.
The tables illustrate a remarkable 50% increase in the dice co-
efficient when compared to using DA alone, and a notable im-
provement of 137% compared to utilizing CI alone. Notably, there
are no existing unsupervised models in the literature for newborn
brain skull-stripping to provide a direct comparison. These find-
ings highlight the effectiveness of our method in achieving accu-
rate segmentation and efficient DA, making it a valuable tool in
medical imaging applications without the need for manual labels.

Compared with SOTA supervised models, our results are close,
nearly 0.7% less than Hippodeep and 2.7% less than SynthStrip.
Notably, SynthStrip is trained on newborns labeled MRI from ages
0 to 18 months, and Hippodeep uses over 5000 MRI samples.

However, despite the remarkable accuracy achieved in our re-
sults (0.916 ± 0.032), there are some limitations that can serve

as potential avenues for future research. To enhance the practical
applicability of our model in clinical settings, it is necessary to im-
prove its performance. One potential approach to achieve this is by
augmenting the training dataset with a certain amount of labeled
newborn data. This additional labeled data can provide valuable
guidance and fine-tuning to enhance the model’s accuracy.

Furthermore, the current architecture utilized in our research
may be relatively large, limiting computational efficiency. To ad-
dress this concern, we can explore alternative architectures, such
as Transformers, which have shown promising results in vari-
ous domains [14]. By adopting more efficient architectures, we
aim to streamline the model and optimize its computational re-
sources while maintaining or even improving its segmentation per-
formance. These future research endeavors will contribute to the
overall advancement of our approach and facilitate its practical im-
plementation in real-world scenarios.

5. Conclusions
In conclusion, this research presents a compelling demonstra-

tion of our model’s ability to adapt to the unique characteristics of
MR images and achieve accurate segmentations without reliance
on pre-existing labels. These findings hold great significance for
medical imaging applications, particularly in situations where ob-
taining labeled data is challenging.

The high Dice coefficient of 0.9156 ± 0.0324 achieved by us,
surpassing other unsupervised approaches examined in the results
section, and stands in close proximity to that of the current state-
of-the-art supervised models highlighting the substantial potential
of our method to impact clinical decision-making. Our findings
demonstrate a remarkable 50% increase in the dice coefficient
when comparing our model to the use of DA alone and a sig-
nificant improvement of 137% compared to the use of contrast
inversion alone. The improved accuracy in segmentations opens
up new possibilities for precise diagnosis and treatment planning,
ultimately benefiting patient care.
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