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Abstract

Despite advances in image recognition, recognizing
novel categories in unlabeled data remains challenging for
machine learning methods, even though humans can per-
form this task with ease. A recently developed setting
to tackle this problem is Generalized Category Discovery
(GCD), in which the task is to, given a labeled dataset,
classify an unlabeled dataset, where the unlabeled dataset
contains both known classes and novel classes that do not
appear in the labeled data. Existing GCD methods mostly
focus on learning strong image representations, on which
they then apply a clustering algorithm such as k-means.
Despite obtaining good performance, they do not fully ex-
ploit the potential of the learned features due to the sim-
ple nature of the clustering mechanism. To address this
issue, we make use of the fact that local neighborhoods
in self-supervised feature spaces are highly homogeneous.
We leverage this observation to develop Guided Cluster Ag-
gregation (GCA), a hierarchical approach that first groups
the data into small clusters of high purity, then aggregates
them into larger clusters. Experiments show that GCA
outperforms semi-supervised k-means in most cases, es-
pecially in fine-grained classification tasks. Code avail-
able at https://github.com/J-L-O/guided-
cluster-aggregation.

1. Introduction

Computer vision has made immense progress over the
last ten years, mainly due to deep learning methods. While
these methods may achieve human-like or even superhuman
performance in some tasks, e.g. image classification [10],
they still lack the breadth and adaptability that humans pos-
sess. For example, whereas humans can easily recognize
previously unseen classes of objects, conventional super-
vised and semi-supervised classification methods are lim-
ited to the set of classes that are contained in the labeled
data. To address this shortcoming, the problem setting of

Generalized Category Discovery (GCD) has been proposed
in [25]. In GCD, the task is to, given a labeled dataset
containing known classes, correctly classify an unlabeled
dataset, which contains both known categories, as well as
novel categories that do not appear in the labeled set.

Most existing approaches decompose the task into two
steps: representation learning and class assignment [22,
25, 29]. While recent improvements have mostly focused
on improving the representations, achieving strong perfor-
mance improvements, the class assignment has not received
as much attention. Currently, many methods employ simple
clustering methods such as semi-supervised k-means to per-
form the final class assignment [22, 25, 29], which does not
take full advantage of the pretrained representations. Im-
proving on previous methods using parametric classifiers
was first explored in SimGCD [27], which jointly learns
representations and a parametric classifier that outperforms
k-means, showing that more research into parametric meth-
ods is worthwhile.

However, both semi-supervised k-means and SimGCD
directly divide the data into the target categories, without
any intermediate steps, which we believe does not make
optimal use of the pretrained representations. As shown in
[2], even a k-nearest neighbor classifier can achieve strong
performance when working with strong pretrained image
representations, which shows that the local neighborhood
around a sample usually contains samples of a similar class.
We thus hypothesize that it is much easier to achieve a high-
purity clustering when the individual clusters are small and
only cover local neighborhoods. To take advantage of this
property, we propose Guided Cluster Aggregation (GCA),
a hierarchical approach to GCD. We first establish many
small local clusters using unsupervised clustering, then we
aggregate the clusters into the target classes using the pro-
vided labels as well as neighbor relations between clusters.
This way, we make effective use of the local structure while
still obtaining high-level classifications.

To summarize, our contributions are as follows:

• We propose Guided Cluster Aggregation, a novel ap-
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proach to Generalized Category Discovery that makes
use of bottom-up cluster aggregation

• We show that our approach can be used with multi-
ple pretrained models and outperforms the commonly
used semi-supervised k-means, especially on fine-
grained datasets

• Our approach not only categorizes samples into the tar-
get classes, it also yields a more fine-grained view that
can be used to gain further insight into the data

2. Related Work
Previous research in the field of category discovery

mostly focused on a slightly easier setting, called Novel
Class Discovery (NCD). In this setting, the classes in the la-
beled and the unlabeled dataset are disjoint, so no unlabeled
sample belongs to a known class. This setting was first for-
malized in [9], but some prior transfer learning approaches
can also be used to solve this task [11, 12]. After these
initial works, various performance improvements were in-
troduced to NCD, including self-supervised pretraining [8],
multi-view self-labeling [6], mixup augmentation [30], and
meta-learning [3].

Recently, a more realistic setting called Generalized Cat-
egory Discovery (GCD) was established by Han et al. in
[25]. Here, the unlabeled data may contain both known
and novel classes, making the task more challenging than
NCD. In [25], this task is tackled by applying a mix of
supervised and self-supervised learning to learn a strong
feature extractor. The classification itself is done by apply-
ing a semi-supervised version of k-means clustering [20] on
the extracted features. In contrast, OpenCon [24] employs
end-to-end training where samples are assigned to the near-
est class prototype. Additionally, OpenCon detects samples
that are very likely to belong to novel classes and specif-
ically improves their representations using an open-world
contrastive loss. Concurrently, Cao et al. [1] derived the
same setting by extending semi-supervised learning to also
include novel classes in the unlabeled set. Their approach,
called ORCA, directly learns the classifier in an end-to-end
fashion by using ground-truth labels for the labeled data and
pseudo-labels for the unlabeled data.

Later works in GCD mostly focus on improving the fea-
ture representation, while using semi-supervised k-means
for the label assignment itself. DCCL [22] runs In-
foMap [23] clustering on a sample adjacency matrix to gen-
erate conceptual labels, as well as concept prototypes. The
representation of each sample is then pulled toward the cor-
responding concept prototype. Lastly, PromptCAL [29]
uses visual prompt tuning to adapt frozen parts of the
pretrained backbone to the new dataset. In addition,
PromptCAL identifies pseudo-positive and pseudo-negative
sample pairs that are fed into a SupCon-like loss.

The work most similar to ours is SimGCD [27], which
investigates why previous works found k-means to be supe-
rior to parametric classifiers. An analysis of existing para-
metric methods shows that a major reason for their low
performance is a bias toward the known classes, at the ex-
pense of novel class performance. They propose to mit-
igate this by applying mean-entropy regularization to the
classifier output. Based on these findings, they demonstrate
the viability of parametric classification in GCD by devel-
oping a baseline method, called SimGCD, which jointly
learns both representation and classifier and outperforms k-
means. While our work is also concerned with developing a
parametric classification scheme for GCD, our method dif-
fers substantially from SimGCD. Whereas SimGCD uses
pseudo-labels to learn the novel classes, our approach uses
a bottom-up scheme that aggregates smaller clusters into
bigger ones.

3. Method
In the Generalized Category Discovery (GCD) setting

the task is to, given a dataset D consisting of a labeled
dataset DL and an unlabeled dataset DU , predict the la-
bels of DU . This setup is similar to semi-supervised learn-
ing, however unlike in semi-supervised learning, in GCD
the classes differ between the labeled and the unlabeled
set. Concretely, the labeled samples all belong to one of
the known classes Cknown, whereas the unlabeled samples
could belong either to a known class or to one of the novel
classes Cnovel. The overall set of classes is denoted as
C = Cknown ∪ Cnovel.

3.1. Overview

Our method consists of two phases: First we perform an
initial fine-grained clustering, then we aggregate the fine-
grained clusters into the coarser target classes. An overview
of the method can be found in Fig. 1.

We begin with a pretrained feature extractor model f ,
which we use to extract image representations. Multi-
ple prior works have investigated in depth how to im-
prove the quality of the pretrained features, e.g. GCD [25],
DCCL [22] or PromptCAL [29]. Our method is orthogonal
to these prior works and can be initialized with any of these
pretrainings.

Based on the pretrained features, we compute the k-
nearest neighbor graph G defined by the adjacency matrix
A ∈ R|D|×|D| where |D| is the number of samples in the
training dataset and

Ai,j =

{
1 if j ∈ kNN(i, k1)

0 else
, (1)

where kNN(i, k1, ) are the k1 samples with the closest L2

distance to i. As shown in previous work, e.g. DINO [2],
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Figure 1. Overview of our method. The image is first processed by a pretrained feature extractor, then the features are used in two
classification stages. First, we overcluster the data in the initial stage to a fine-grained clustering of high purity. To obtain more robust
results, we train multiple such overclustering heads. The output of the overclustering stage is used to aggregate the kNN graph and derive
the pairwise target matrix T . Using these targets, we train the final stage, which recovers the target classes. After training, the clustering
stage can be discarded, so no additional performance overhead is created compared to directly training the classification stage.

the k-nearest neighbors in the feature-space of pretrained
vision models are usually from the same class as the query
sample, which makes the kNN graph interesting for cluster-
ing. However, it will still contain many false positives, so
directly using it for classification may introduce mistakes.
To prevent this, we first overcluster the data into many small
clusters, which is easier to achieve with high purity than di-
rectly classifying the data into the target classes.

3.2. Clustering

For the overclustering stage we make use of SCAN [7],
which uses the k-nearest neighbors as pairwise positives to
train a linear clustering head g on top of f to cluster the
data into smaller clusters Cover. The number of clusters c =
|Cover| is set to be much higher than the amount of classes
|C|. Given a batch B ⊆ D of samples SCAN minimizes the
clustering loss

Lcluster = − 1

|B|
∑
x∈B

∑
k∈kNN(x)

log g(x)Tg(k), (2)

where g(x) ∈ Rc is the probability distribution over the c
clusters. Consequently, g(x)Tg(k) is the predicted proba-
bility of x and k being in the same cluster. This loss allows
the network to learn a multi-class clustering from pairwise
labels, however it does have a trivial solution, which is to
simply assign every sample to the same cluster. To prevent
this, SCAN employs an additional entropy loss

Lentropy =
∑
c∈C

g′c log g
′
c,

with g′c =
1

|B|
∑
x∈B

gc(x).
(3)

The entropy term aims to avoid a collapse to a trivial solu-
tion, such as grouping every sample into the same cluster.

In total, the clustering loss is

LSCAN = Lcluster + λLentropy, (4)

where λ is a hyperparameter governing the strength of the
entropy regularization. This clustering step yields c approx-
imately balanced clusters of high purity, which we then ag-
gregate in the next step. We train using LSCAN for T epochs
until the clustering has stabilized.

3.3. Semi-supervised Aggregation

To aggregate the smaller clusters into our target classes,
we take inspiration from graph pooling methods. Graph
pooling is applied to obtain a more coarse-grained repre-
sentation of a graph, while still maintaining its key charac-
teristics. This can for example be done by merging similar
nodes, identified by clustering, as well as aggregating their
edges. We aim to achieve something very similar, in our
case the clustering is given through the output of clustering
head h, and we want to obtain a more coarse-grained rep-
resentation of G. An overview of the procedure is given in
Fig. 2.

Regarding the aggregation method, we choose to follow
[28], which calculates the aggregated adjacency matrix as

Aagg = STAS, (5)

where S ∈ R|D|×c is the soft cluster assignment matrix.
The resulting c × c adjacency matrix now contains adja-
cencies not between samples, but between clusters. At this
stage, we also utilize the knowledge contained in the ground
truth labels that are available for DL to aid the aggregation.
We do so by creating an additional matrix Asup ∈ Rc×c

which for each pair i, j of clusters considers the set of la-
beled samples Li and Lj within these clusters and counts
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1. Clustering based on kNN 2. Graph Aggregation 3. Identifying nearest Clusters

Figure 2. Our cluster aggregation procedure, divided into three steps. 1. We group the data into many small clusters based on their
neighbors in the k-nearest neighbor graph. 2. We use the clustering to aggregate the graph. For this, we use both the existing kNN graph,
and the given labels. In this example, the yellow and the blue samples are labeled, with the color indicating the class. This information
is used to increase the link strength between clusters that contain samples of the same class, and decrease it between those with differing
classes (depicted as red links between the clusters). 3. Finally, we use the aggregated graph to find clusters that are highly similar to each
other.

the pairwise agreements and disagreement between the sets.
Formally, we define Asup as

Asupi,j
=

∑
l∈Li

∑
l′∈Lj

a(l, l′)

where a(l, l′) =

{
+1 if l and l′ share the same class
−1 otherwise

.

(6)
The two matrices are then added to obtain the combined
matrix Acluster = Aagg+Asup. Given this combined clus-
ter adjacency matrix, we can now identify the top k2 most
similar clusters for each cluster defined as

kNC(i, k) = arg top k(Asupi,∗), (7)

where Asupi,∗ is the ith row of A. Similar to the k1-nearest
neighbors on the sample level, the k2-nearest clusters are
highly likely to share the same majority class. We can lever-
age this property to obtain a sample-level similarity matrix
T with

Ti,j =

{
1 if c(j) ∈ kNC(s(i), k2)

0 else
,

with s(i) = argmaxSi,∗.

(8)

Using the binary targets, we train the classification head h,
which classifies the samples into the |C| target classes. We
train h using the binary cross entropy loss

Lclass =− 1

|B|2
∑
x∈B

∑
x′∈B

Tx,x′ log h(x)Th(x′)

+ (1− Tx,x′)(1− log h(x)Th(x′)).

(9)

After the training is completed, the clustering head g can
be discarded, leaving the backbone f and the classification
head h.

3.4. Multi-head Clustering

While the clustering is guided by the clustering loss
Lcluster, different random initializations of the clustering
head may lead to different final clusterings. To increase
stability, it has often been found beneficial in image cluster-
ing to train not just one clustering head, but l independent
heads [7, 13, 14]. We also make use of this approach and,
following SCAN [7], train l = 10 independent heads for the
first stage. This means that instead of one clustering head
g we have multiple heads g0, g1, . . . , gl. Consequently, we
average the clustering loss over these heads, so that

Lcluster =
1

h

l∑
i=0

− 1

|B|
∑
x∈B

∑
k∈kNN(x)

log gi(x)
Tgi(k).

(10)
Instead of one assignment matrix S we now obtain multiple
matrices S0,S2, . . . ,Sl. The matrix belonging to the head
that shows the lowest loss is used for the aggregation step,
thus making sure that only the best clustering is used. For
the final stage itself we do not employ multiple heads, so
the final outcome of the training is the same as with just one
clustering head.

4. Experiments
4.1. Experimental setup

Datasets We evaluate our method on two standard clas-
sification datasets, CIFAR10 and CIFAR100 [18]. In addi-
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Table 1. Overview of the used benchmarks. Following previous work [25], for CIFAR100 the classes are split into 80 known and 20 novel
classes, and evenly split between known and novel classes for the other datasets. The known class samples are evenly split into labeled and
unlabeled.

Dataset CIFAR10 [18] CIFAR100 [18] ImageNet-100 [4] CUB-200 [26] Stanford Cars [17] FGVC-Aircraft [21]

# Classes Known 5 80 50 100 98 50
Novel 5 20 50 100 98 50

# Images Labeled 12,500 20,000 31,860 1,498 2,000 1,666
Unlabeled 37,500 30,000 95,255 4,496 6,144 5,001

Table 2. Accuracy on standard classification datasets. PrCAL
stands for PromptCAL [29]. Results for ORCA are taken from
[29] and adapted to also use Vit-B/16 for a fair comparison.

CIFAR10 CIFAR100 ImageNet-100

Classes All Old New All Old New All Old New

k-means [20] 83.6 85.7 82.5 52.0 52.2 50.8 72.7 75.5 71.3
GCD [25] 91.5 97.9 88.2 70.8 77.6 57.0 74.1 89.8 66.3
ORCA [1] 96.9 95.1 97.8 74.2 82.1 67.2 79.2 93.2 72.1
DCCL [22] 96.3 96.5 96.9 75.3 76.8 70.2 80.5 90.5 76.2
PrCAL [29] 97.9 96.6 98.5 81.2 84.2 75.3 83.1 92.7 78.3
SimGCD [27] 97.1 95.1 98.1 80.1 81.2 77.8 83.0 93.1 77.9

GCD + Ours 92.8 94.4 91.9 76.6 79.5 70.7 82.1 92.6 76.8
PrCAL + Ours 95.5 95.9 95.2 82.4 85.6 75.9 82.8 94.1 77.1

Table 3. Accuracy on fine-grained classification benchmarks.
PrCAL stands for PromptCAL [29]. Results for ORCA are taken
from [29] and adapted to also use Vit-B/16 for a fair comparison.

CUB-200 Stanford Cars FGVC-Aircraft

Classes All Old New All Old New All Old New

k-means [20] 34.3 38.9 32.1 12.8 10.6 13.8 12.9 12.9 12.8
GCD [25] 51.3 56.6 48.7 39.0 57.6 29.9 45.0 41.1 46.9
ORCA [1] 36.3 43.8 32.6 31.9 42.2 26.9 31.6 32.0 31.4
DCCL [22] 63.5 60.8 64.9 43.1 55.7 36.2 - - -
PrCAL [29] 62.9 64.4 62.1 50.2 70.1 40.6 52.2 52.2 52.3
SimGCD [27] 60.3 65.6 57.7 53.8 71.9 45.0 54.2 59.1 51.8

GCD + Ours 62.3 72.0 57.5 45.4 65.5 35.6 47.1 57.1 42.2
PrCAL + Ours 68.8 73.4 66.6 54.4 72.1 45.8 52.0 57.1 49.5

tion, we also evaluate on ImageNet-100, a subset of 100
classes selected from the standard ImageNet [4] dataset.
The selection of the ImageNet classes follows [25]. We also
evaluate on three fine-grained classification datasets, CUB-
200 [26], Stanford Cars [17], and FGCV-Aircraft [21].

We follow the standard data split into known and novel
classes used in previous works [22, 25, 29], which means
that for CIFAR100, 80 classes are known and 20 are novel,
and for all other datasets half the classes are known and half
are novel. The known classes are split into 50% labeled
and 50% unlabeled samples. A full overview of the used
datasets can be found in Tab. 1.

Evaluation Metrics The quality of the final class assign-
ment is quantified using clustering accuracy, which is de-
fined as

ACC(y, ŷ) = max
m∈perm(C)

1

|y|
∑
i

1
(
yi = m(ŷi)

)
, (11)

where perm(C) is the set of permutations of C. Intuitively,
it measures the accuracy of the most favorable assignment
between predicted classes and ground truth classes. In prac-
tice, this matching can be found by using the Hungarian al-
gorithm [19].

Implementation Details Following previous work, we
use a Vit-B/16 backbone [5] with all parameters except
the last block kept frozen. As pretrained models, we use
GCD [25], the original work which introduced the GCD set-
ting, and PromptCAL [29], a more recent method with im-
proved performance. We set the number of first-stage near-
est neighbors k1 to 5, the number of nearest clusters k2 to 2,
and the number of clusters c to 1000. Following SCAN [7],
we set λ to 5. The model is trained using the Adam op-
timizer [16] with a learning rate of 10−3, β1 = 0.9 and
β2 = 0.999. We use a batch size of 512 and train for 200
epochs on the larger datasets (CIFAR10, CIFAR100, and
ImageNet-100) or 300 epochs on the smaller ones. The first
100 epochs are used for learning the first-stage overcluster-
ing, afterwards, we switch to learning the target classifier.
We use faiss [15] to quickly find the nearest neighbors. All
experiments were conducted using either Nvidia V100 or
Nvidia RTX 3090 GPUs.

4.2. Results

Main results We compare GCA to the original GCD
method, as well as an adapted version of ORCA [1] that
also uses Vit-B/16 to ensure a fair comparison. The adapted
ORCA values are taken from [29]. In addition to these
older methods, we also compare to more recent improved
approaches such as DCCL [22], PromptCAL [29], and
SimGCD [27]. Out of these methods, GCD, DCCL, and
PromptCAL use semi-supervised k-means clustering for the
final class assignment, whereas ORCA and SimGCD di-
rectly output class predictions. For these main results, we
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Table 4. Estimated number of classes. The number of classes is
estimated using the approach described in [25]. As we do not have
access to the original pretrained models, our reproduction predicts
slightly different class numbers compared to the original.

CIFAR100 ImageNet-100 CUB-200 Stanford Cars

Ground truth 100 100 200 196
GCD [25] 100 109 231 230

GCD (repr) 97 112 240 182
PromptCAL 108 110 353 210

assume the number of classes is given beforehand following
previous work.

The results on coarse-grained classification tasks in
Tab. 2 show that for the GCD pretraining, GCA achieves
much better results than the standard GCD method, out-
performing it by 8.0% on ImageNet-100, and 4.8% on CI-
FAR100. However, when using the PromptCAL pretrain-
ing, the results are less clear. In this case, GCA does not
provide a clear advantage on the coarse-grained tasks, with
GCA outperforming standard PromptCAL on CIFAR100,
but lagging behind on CIFAR10, with no clear winner on
ImageNet-100.

For fine-grained classification tasks, GCA more clearly
shows its advantage. As shown in Tab. 3, the GCD-
pretrained GCA models outperform GCD considerably,
outperforming GCD by 11.0% on CUB-200 and by 6.4%
on Stanford Cars. In contrast to the results on coarse-
grained datasets, the PromptCAL-pretrained models also
perform better than their PromptCAL counterparts on fine-
grained tasks, achieving 5.9% better accuracy on CUB-200
and 4.2% higher accuracy on Stanford Cars. For both pre-
trainings, GCA especially excels at predicting the known
classes with the known-class accuracy increasing consider-
ably over the corresponding pretraining. This shows that the
proposed cluster aggregation approach is effective at trans-
ferring knowledge from labeled to unlabeled samples.

These results show that, while showing strong perfor-
mance on the fine-grained benchmarks, GCA does not
clearly outperform previous work on the coarse-grained
benchmarks. A possible explanation for this is that the
coarse-grained tasks may be easier to solve due to the larger
differences between the clusters, resulting in constrained k-
means already obtaining near-optimal results. In contrast,
the more difficult fine-grained tasks might be harder for k-
means due to the higher similarity between different classes,
whereas GCA might be more robust in these cases due to fo-
cusing on local neighborhoods in the feature space instead
of taking a global view like k-means.

Results with Unknown Class Number While we pre-
viously assumed knowledge of the number of classes, we
also evaluate our method in a setting where the number

Table 5. Accuracy on CIFAR100 and ImageNet-100 when the
number of classes has to be estimated. The performance with
known class number is given for reference. PrCAL stands for
PromptCAL [29].

# of Classes CIFAR100 ImageNet-100

Classes All Old New All Old New

GCD [25] Known 70.8 77.6 57.0 74.1 89.8 66.3
SimGCD [27] Known 80.1 81.2 77.8 83.0 93.1 77.9
GCD + Ours Known 76.6 79.5 70.7 82.1 92.6 76.8
PrCAL + Ours Known 82.4 85.6 75.9 82.8 94.1 77.1

GCD [25] Estimated 70.8 77.6 57.0 72.7 91.8 63.8
SimGCD [27] Estimated 80.1 81.2 77.8 81.7 91.2 76.8
SimGCD [27] 2x true 77.7 79.5 74.0 80.9 93.4 74.8
GCD + Ours Estimated 73.9 77.5 66.8 77.4 92.3 69.9
PrCAL + Ours Estimated 81.7 86.4 72.3 81.1 94.2 74.5

Table 6. Accuracy on CUB-200 and Stanford Cars when the
number of classes has to be estimated. The performance with
known class number is given for reference. PrCAL stands for
PromptCAL [29].

# of Classes CUB-200 Stanford Cars

Classes All Old New All Old New

GCD [25] Known 51.3 56.6 48.7 39.0 57.6 29.9
SimGCD [27] Known 60.3 65.6 57.7 53.8 71.9 45.0
GCD + Ours Known 62.3 72.0 57.5 45.4 65.5 35.6
PrCAL + Ours Known 68.8 73.4 66.6 54.4 72.1 45.8

GCD [25] Estimated 47.1 55.1 44.8 35.0 56.0 24.8
SimGCD [27] Estimated 61.5 66.4 59.1 49.1 65.1 41.3
SimGCD [27] 2x true 63.6 68.9 61.1 48.2 64.6 40.2
GCD + Ours Estimated 61.9 72.5 56.6 43.6 64.3 33.7
PrCAL + Ours Estimated 62.0 65.2 60.4 54.5 71.2 46.5

of classes is not known. For this case, we first estimate
the number of classes using the class number estimation
method proposed in [25], then run GCA with the estimated
number of classes. Note that while we use the same estima-
tion technique as GCD, we do not have access to the orig-
inal pretrained models, hence the estimated class numbers
are not the same. In addition, the estimates differ between
the GCD and the PromptCAL pretraining. The exact esti-
mates are listed in Tab. 4.

We compare GCA to GCD [25] and SimGCD [27] on
four different datasets. While GCD also uses the aforemen-
tioned class number estimation technique, SimGCD pro-
posed to simply set the number of classes to a large enough
number, e.g. two times the ground truth class number, and
let the model discard unnecessary class prototypes. Conse-
quently, SimGCD reports two numbers, one using the esti-
mation technique from [25] and one using twice the ground
truth class number.

The results in Tab. 5 and Tab. 6 mostly mirror the ones
for known class numbers, with only a minimal accuracy de-
crease compared to the known class number setting. The
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Figure 3. GCA hyperparameter sensitivity analysis. We analyze the sensitivity to changes in the number of first-stage nearest neighbors
k1, the number of second-stage nearest clusters k2 and the number of first stage clusters c. All experiments are run with PromptCAL [29]
as pretraining.

exception to that is the PromptCAL-pretrained model on
CUB-200, where performance drops by 6.8% compared to
the result in Tab. 3. The most likely cause for this drop is
the large discrepancy between predicted and ground truth
class number for this combination of dataset and pretrain-
ing, with the estimate overshooting the true class number
by more than 75%. For the other datasets and pretrainings,
the class number estimate is much closer to the ground truth,
which results in very little performance degradation.

Further Analysis We analyze GCA’s sensitivity to
changes in hyperparameters to gain a sense of its robust-
ness. We focus on the number of nearest neighbors k1,
the number of nearest clusters k2, and the number of first-
stage clusters c. The sensitivity analysis is performed on
CIFAR100, a coarse-grained dataset, and CUB-200, a fine-
grained dataset.

The results in Fig. 3 show that k1 should not be set
to very low values such as 1 or 2, but performance gains
quickly plateau afterwards. A closer look at the purity of the
first-stage clustering for k1 = 1 and k1 = 5 shows a mas-
sive increase in cluster purity from 68% to 82% for CUB-
200, and from 70% to 91% for CIFAR100. This shows
that the nearest neighbors are essential to achieving a good

Table 7. Experiments on CIFAR100 with varying numbers of
known classes and varying shares of labeled samples. For each
setting, the first number signifies the number of known classes,
and the second the percentage of known class samples that are la-
beled. The default setting for CIFAR100 corresponds to C80-L50.
PrCAL stands for PromptCAL [29]. Results for GCD, ORCA and
PromptCAL are taken from [29].

C50-L10 C25-L50 C10-L50

Classes All Old New All Old New All Old New

GCD [25] 60.2 68.9 55.8 56.8 67.6 55.0 48.3 65.1 47.3
ORCA [1] 60.3 66.0 55.3 58.2 79.9 57.5 51.7 78.0 50.2
PrCAL [29] 68.9 77.5 64.7 65.7 76.9 63.9 53.2 79.3 51.7
SimGCD [27] 60.5 65.0 56.4 60.6 71.9 58.7 49.6 33.3 50.5

GCD + Ours 69.9 76.4 64.1 64.2 79.4 61.8 62.7 69.6 62.3
PrCAL + Ours 74.5 81.8 67.9 67.9 81.1 65.7 56.8 55.6 78.6

initial clustering, which is consistent with observations in
SCAN [7], the clustering method the first stage of GCA is
based on.

For the number of nearest clusters k2, we see different
trends for CUB-200 and CIFAR100. Whereas CIFAR100
shows a slight upward trend with increasing k2, CUB-200
reaches its best performance at k2 = 2, with a gradual de-
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Figure 4. Qualitative examples of our hierarchical clustering approach. Each 5x5 block contains images that were assigned to the same
class in the final stage, and each row within a block contains images from one first-stage cluster. The images are sourced from ImageNet-
100, a subset of ImageNet [4]. The model used to obtain the clustering and the predictions uses PromptCAL [29] for pretraining.

cline in accuracy for higher values. This could be due to the
different number of classes between the two datasets, which
results in a different number of first-stage clusters per target
class. For example, for each CIFAR100 class, there will be
on average 10 first-stage clusters, but only 5 for each CUB-
200 class. As a result, increasing k2 will more quickly lead
to unrelated clusters being merged, hence the lower perfor-
mance. Lastly, the exact value of c does not seem to heavily
influence accuracy, with no meaningful differences between
c = 600 and c = 1400 for both datasets. These results
show the robustness of GCA, which is especially important
since Generalized Category Discovery works with mostly
unlabeled data, so in practical applications, searching for
optimal hyperparameters is difficult.

We also investigate how well GCA performs when the
amount of labeled data is reduced compared to the standard
setting. Following [29], we benchmark GCA on three dif-
ferent variations of the CIFAR100 benchmark, varying both
the number of known classes and the percentage of known-
class samples that are assigned to the labeled set. We com-
pare GCA to GCD, ORCA, PromptCAL, and SimGCD. For
SimGCD, we adapt the weight ϵ of the entropy regulariza-
tion term and set it to 0.5 as the default value for CIFAR100
yields low accuracy in this setting. The results in Tab. 7
show that GCA also achieves strong results in this more ex-
treme setting, with GCA consistently outperforming its cor-
responding pretrained model. In general, it seems that the
number of known classes is more important to the perfor-
mance of GCD methods than how many samples of these
known classes are labeled, which shows that discovering
new classes is much harder than recognizing known ones.

Lastly, we provide qualitative examples of the relation-
ship between the first-stage clusters and the target classes.
In Fig. 4, we show three different ImageNet-100 classes and

for each class, we show five randomly selected examples
for five first-stage clusters that were assigned to this class
by our PromptCAL-pretrained GCA model. The examples
show that the first-stage clusters tend to specialize on partic-
ular aspects or perspectives of their superclass, for example,
the third cluster of the class “matchstick” contains mostly
images that focus on the head of the matchstick, whereas
other clusters focus more on the flame. We also see the
effect of mispredictions, e.g. the second cluster does not
consist of matchstick images at all but was mostly likely
aggregated into the class due to its visual similarity. This
more fine-grained view of the data is an additional benefit
of GCA that previous methods do not provide.

5. Conclusion

In this paper, we propose Guided Cluster Aggregation
(GCA), a hierarchical approach to GCD that first groups the
data into many small clusters before aggregating them into
the target classes using the given labels as guidance. Ex-
tensive experiments show that GCA is superior to the semi-
supervised k-means clustering employed in many previous
works. Hierarchical approaches such as GCA are funda-
mentally not limited to GCD tasks, they could also be ap-
plied to other tasks that operate on a mix of labeled and
unlabeled data, such as semi-supervised learning. Investi-
gating the potential for such applications is an interesting
topic for future work.
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