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Abstract

Martian landslide segmentation is a challenging task
compared to the same task on Earth. One of the rea-
sons is that vegetation is typically lost or significantly less
compared to its surroundings in the regions of landslide
on Earth. In contrast, Mars is a desert planet, and there
is no vegetation to aid landslide detection and segmenta-
tion. Recent work has demonstrated the strength of vision
transformer (ViT) based deep learning models for various
computer vision tasks. Inspired by the multi-head atten-
tion mechanism in ViT, which can model the global long-
range spatial correlation between local regions in the input
image, we hypothesize self-attention mechanism can effec-
tively capture pertinent contextual information for the Mar-
tian landslide segmentation task. Furthermore, consider-
ing parameter efficiency or model size is another impor-
tant factor for deep learning algorithms, we construct a
new feature representation block, namely Progressively Ex-
panded Neuron Attention (PEN-Attention), to extract more
relevant features with significantly fewer trainable param-
eters. Overall, we refer to our deep learning architecture
as the Martian landslide segmentation network (MarsLS-
Net). In addition to the new architecture, we introduce a
new multi-modal Martian landslide segmentation dataset
for the first time, which will be made publicly available at
https://github.com/MAIN-Lab/Multimodal-
Martian-Landslides-Dataset

1. Introduction

Landslides have an important role in shaping the land-
scapes [20] and thus, can fundamentally change the planet’s
morphological features. While terrestrial landslides are
well-studied in detail, studies on the role of extraterrestrial
landslides in modifying the terrain are modest in number.
Mars, sobriquet the red planet, is being explored by several

Figure 1. Location of Valles Marineris (VM) on Mars used for
landslide segmentation in this study. The elevation map of VM
draped over hillshade.

researchers to study early climate as the planet was warm
and wet during the geological past [11]. Except for the
evidence of life, early Mars mimicked the Earth, with im-
prints of natural hazards like landslides, floods, volcanism,
dust devils, and meteorite impacts, which are omnipresent
throughout the surface of Mars. Thus, Mars is an ideal can-
didate for studying climate change as all the ancient natural
hazards are preserved in the most exquisite way [16,19,26].
Moreover, on a planet like Mars, which has made huge tran-
sitions in ‘geological’ scenarios from a water-bearing planet
to a barren one, the study of landslides can help us discern
the crucial climate change it witnessed.

Identifying a potential area on Mars to study landslides
left with a conspicuous choice of Valles Marineris (VM)
shown in Fig. 1. This area is considered a museum of land-
slides [34], characterized by different types of landslides,
such as debris flow, earth slide, rock avalanche as well as
simple and complex landslides. Typically, landslide studies
are conducted by means of visual interpretation of medium
to high-resolution optical images, where geomorphologists
are engaged to mapping terrestrial landslides [5, 34]. How-
ever, these methods are quite labor-intensive, subjective,
and time-consuming. In addition, the study of Martian land-
slides has been hindered by the availability of adequate re-
mote sensing data [6]. Therefore, there is a need to tackle
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two main challenges for landslide studies: 1) build a stan-
dard and publicly available dataset for the research commu-
nity, and 2) develop sophisticated computational methods to
automate the landslide identification and mapping process,
given the complexity of the morphological characteristics
of the Martian terrain.

In order to accurately identify Martian landslides, feature
extraction plays an important role. Morphological charac-
teristics of the landslide have been found to be a key ele-
ment for differentiating large Martian landslides [10,25,34].
Brunetti et al. [5] analyzed features such as shape, size,
tone, mottling, and texture, to recognize and map landslides
in the VM. Their study also suggested that an empirical re-
lationship (i.e., a power law) exists between the volume and
area of the Martian slides. Crosta et al. [10] mapped about
3,100 Martian landslides following standard geomorpho-
logical properties of VM landslides, such as the presence of
scars, morphostructures, lateral levees, etc. A very recent
study [34] found 15 critical features, such as length, width,
relative relief, slope statistics, the slope of the scarp, and ge-
ology, that are useful for landslide categorization in the VM,
Mars. Then they used traditional machine learning meth-
ods, such as logistic regression, which takes those extracted
features to classify landslides into three categories, includ-
ing debris flows, rock avalanches, and slumps. To sum up,
all aforementioned studies have put much attention on ge-
ometric parameters to identify Martian landslides. In the
work presented by [23], they adopted a Vision Transformer
(ViT) [12] model to classify three types of landslides on
Mars by dividing satellite images into patches, and demon-
strated the strengths of deep learning models for Martian
landslides classification. In this study, we introduce a new
end-to-end Martian landslide segmentation model that fuses
heterogeneous multi-modality imagery data in a contextu-
ally aware manner. The main contributions of this research
are summarized as follows:

1. We introduce a Martian landslide segmentation
dataset, which will be made publicly available to the
research community through a repository link.

2. We propose an end-to-end deep learning pipeline for
Martian landslide segmentation from multi-modal im-
agery data directly. Our analysis reveals the robustness
of deep learning models to address the challenges in
segmenting Martian landslides, based on the charac-
teristics of terrestrial landslides.

3. A new deep learning-based segmentation model,
namely the Martian landslide segmentation network
(MarsLS-Net), is further proposed. The experimen-
tal results and ablation study show the effectiveness
and superior performance of MarsLS-Net compared to
state-of-the-art methods.

2. Related Work
In this section, we review the most relevant machine

learning methods for landslide detection and segmentation.

2.1. Landslide Segmentation

Several approaches for landslide segmentation tasks re-
ported the use of traditional machine learning and deep
learning methods in combination with object-based image
analysis (OBIA) techniques [1, 17, 24, 42]. Tavakkoli et
al. [42] proposed the use of (OBIA) with a set of Machine
Learning methods for landslide detection, in which the best
performance was reported by using a stacked approach (en-
semble methods). Furthermore, they commented the use of
high-resolution satellite imagery does not guarantee a high
performance of the model, suggesting that it is also required
to identify parameters based on target object detection to
achieve competitive performance. Keyport et al. [24] pro-
vided a comparative analysis for pixel-based landslide de-
tection using very high-resolution (VHR) remotely sensed
aerial images. They reported the analysis by pixel-based
and object-oriented analysis (OOA) methods, concluding a
better performance for landslide mapping obtained by the
OOA method, with fewer false positives obtained in the pre-
dicted outcomes compared with the pixel-based approach.
Achariyaviriya et al. [1], combined three different ResNet
[21] models to reach generalization for landslide segmenta-
tion, in which each ResNet model was trained with a differ-
ent set of layers, such as RGB, normalized difference veg-
etation index (NDVI) and slope factor (SP) as inputs, com-
bining the generated features for each model to train a final
decision tree classifier. They claimed an improvement in
the performance by the use of additional layers rather than
RGB images, in addition to a low computational cost by the
use of a decision tree classifier.

2.2. U-Net based Segmentation Models

Recent works on landslide segmentation proposed to use
of end-to-end convolutional networks, such as U-Net [37]
to automatically segment landslides in several regions on
earth [4, 30,39]. Pedrosa et al. [39] explored deep learning-
based architecture models to show a generalization capacity
for automatic landslide segmentation in a mountainous re-
gion, located in the city of Nova Friburgo, Rio de Janeiro,
Brazil. They implemented the vanilla version of U-Net ar-
chitecture [37], reporting mixed performance of generaliza-
tion for landslide segmentation on each of the test areas.
In addition, they provided a discussion on the selection of
image patching sizes, network layers, and post-processing
procedures (e.g., morphological operations). Bragagnolo et
al. [4] also described the performance of U-Net architecture
for mapping landslide scars through the use of satellite im-
agery. They performed several experiments using scenes
captured by the Landsat-8 satellite from a region with a
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high prevalence of landslides in Nepal. The results of us-
ing U-Net architecture over this composed dataset indicate
a performance improvement, compared to previous efforts
in similar studies. Indeed, this study showed the capacity of
convolutional neural networks (CNN) based architectures
to detect landslides, however, there are still divergences be-
tween the edges when compared with the manually mapped
landslide scars.

With the promising performance obtained by the imple-
mentation of end-to-end CNN models for automatic land-
slide detection, several modified versions of U-Net [2, 27,
29, 47] were also explored. Qi et al. [31] introduced ResU-
Net for automatic mapping landslide, where they achieved
a high accuracy using only spectral bands of satellite im-
ages. The architecture adopted a U-Net alike architecture
with the addition of residual learning [21] in the convo-
lutional blocks of the encoding path of the U-Net archi-
tecture. The results showed that their proposed architec-
ture yields better performance than the baseline in terms
of precision, recall, and F1-score. Furthermore, Ghorban-
zadeh et al. [17] presented a comparative analysis of ResU-
Net [47], rule-base object-based image analysis (OBIA),
and the combination of both (ResU-Net-OBIA) for land-
slide detection. Their results showed that the combination
of ResU-Net and OBIA offered promising prior knowledge
added to the mapping landslide process, obtaining consider-
ably better results in terms of precision, recall, and F1-score
compared to each stand-alone method. It is worth mention-
ing that all aforementioned landslide detection algorithms
are typically applied in a rural area, which helps to easily
discriminate landslides from dense vegetation. However, on
extraterrestrial surfaces such as Mars, the same contrast is
not likely present, thus making the segmentation task con-
siderably difficult.

2.3. Vision Transformer-based Models

Vision Transformers (ViT) [12] is the adaptation of
Transformers [44] for the context of computer vision. Due
to the outstanding performance achieved by the use of
ViT for image classification, there have been several vari-
ations of ViT for segmentation tasks [7, 8, 40], and have
been applied to conduct different tasks, including land-
slide segmentation. For instance, Tang et al. [41] intro-
duced the use of SegFormer [46], a ViT-based model, for
landslide segmentation tasks. They reported a detailed
comparison of performance with several state-of-the-art
deep learning (DL) architectures, including HRNet [45],
DeepLabV3+ [9], Attention-UNet [27], U2Net [32] and
FastRCNN [35]. The proposed method was complemented
with a post-processing procedure based on morphological
operations, reporting outstanding performance in contrast
with the other evaluated models. A recent work [36] intro-
duced a contextual progressive layer expansion with self-

attention, as the key component of a DL model for multi-
class Martian landslide segmentation, which demonstrated
the strength of the self-attention mechanism in landslide
segmentation. In our proposed architecture, one of the ma-
jor components of ViT, multi-head self-attention, is used to
capture more relevant characteristics of landslides by lever-
aging the multi-modal imagery dataset for Martian land-
slide segmentation.

3. Methodology
3.1. Architecture

Overall architecture. The proposed Martian landslide seg-
mentation network (MarsLS-Net) is illustrated in Fig. 2.
Unlike the state-of-the-art deep learning-based segmenta-
tion models which are typically built upon encoder-decoder
architecture, the proposed MarsLS-Net is composed by a
series of repeated operational blocks, namely Progressively
Expanded Neuron Attention (PEN-Attention), which does
not follow traditional encoder-decoder structure. PEN-
Attention blocks exploit the potential of deep feature repre-
sentation only using Convolutional PE layers and attention
mechanism, yielding a less complex but effective model that
is easy to train and highly parameter efficient. The model
has shown a relatively faster convergence during training
with competitive performance when compared with well-
established segmentation models (i.e. U-Net, Attention U-
Net, ResU-Net). Details of the proposed architecture are
provided in the following section.
Convolutional Progressive Expansion (ConvPE). As
shown in Fig. 2 (c), Convolutional Progressive Expansion
(ConvPE) layer is composed of four consecutive operations:
a 2D convolution, batch normalization, ReLU activation,
and followed by a progressive expansion (PE). The concept
of PE is adapted from the work presented in [28, 29, 38],
where each neuron from its input or feature maps is firstly
progressively expanded using Maclaurin series expansion
of a nonlinear function, and then added, being expressed as

Su =

u∑
n=1

cnx
pn = c1x

p1 + c2x
p2 + ...+ cux

pu (1)

where x stands for the unit to be expanded, c and p are the
coefficients and powers in the Maclaurin series expansion.
u is a pre-defined hyperparameter that controls the number
of terms used in a series expansion.
Multi-head self-attention (MHSA). The MHSA layer is
incorporated into our proposed PEN-Attention block to at-
tend to important features from the previous PE layers by
aggregating the knowledge explored by multiple heads. As
described by Dosovitskiy et al. [12], self-attention is an at-
tention mechanism characterized by the use of scaled dot-
product for similarity estimation, which is mathematically

8238



Figure 2. The proposed MarsLS-Net architecture. (a) the overall framework of MarsLS-Net model that is composed of a series of stacked
PEN attention blocks, (b) represents the illustration of the multi-head self-attention mechanism, (c) provides details of the ConvPE Layer,
and (d) illustrates the structure of the PEN attention block.

described as:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (2)

where Q, K, and V are matrices representing queries, keys,
and values, respectively. The dot-product of Q and the
transpose of K acts as an attention filter. The

√
dk scales the

dot-product, while the softmax function returns the weights
which are then multiplied by V. In our proposed network,
the output of Q, K, and V can be calculated as

Q = PcWQ,K = PcWK ,V = PcWV (3)

where Pc represents the output from the concatenation of
the two-branch ConvPE layer as shown in Fig. 2 (a).

The multi-head self-attention can be defined as the
aforementioned attention mechanism repeated in parallel h
times, where h represent the number of heads, with different
learned projections WQ,WK ,WV for Q, K, and V, respec-
tively. From that, the outputs are concatenated and linearly
projected with WO as

Multihead(Q,K,V) = Concat(h1, .., hi, .., hh)WO

(4)

where hi can be defined as

hi = Attention(QWQ
i ,KWK

i ,VWV
i ) (5)

The MHSA layer is illustrated in Fig. 2 (d).
PEN-Attention Block. The PEN-Attention block is used to
focus on regions that are relevant in terms of the global con-
text of the concatenated PE layers, and thus generate a more
accurate prediction in the output of the model. This block
is composed by four components: 2D convolution, a two-
branch based ConvPE layers, an MHSA layer, and a layer
normalization [3], as shown in Fig. 2 (b). The two-branch
ConvPE layers extract fine-grained features which are then
concatenated, and subsequently fed to a MHSA layer. In
addition, we added a skip-connection that bypasses ConvPE
and MHSA layers to ease gradient flow in the network.

3.2. Implementation Details.

The proposed architecture is designed to be adjustable
according to the need of tasks. In other words, different
configurations can be easily obtained by setting hyperpa-
rameters in MarsLS-Net. For instance, we can select dif-
ferent numbers of terms (u in Eq. 1) in series expansion in
the PE layer to produce various numbers of feature maps.
This value was fixed to be 2 in our experiments to reduce
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model complexity. The number of PEN-Attention blocks is
denoted as the levels in the architecture, and this was set to
be 4 in our case as shown in Fig. 2 (a). However, it can be
increased to achieve deeper networks, and possibly, better
accuracy. The number of filters in 2D convolutions on each
ConvPE layer and on each PEN-Attention block is fixed to
48 with a kernel size of 5. In the ConvPE layer, we use di-
lated convolutions, instead of standard convolutions, with a
dilatation rate of 2 and L2 regularizer. The number of heads
in the MHSA is set to be 2 considering both segmentation
accuracy and memory efficiency. Experimental results on
different kernel sizes and feature maps are provided in the
Sec. 5.2. The use of stacked PEN Attention blocks are to
encode the multi-model representation within a latent space
and capture richer features.

Figure 3. Sample of landslides regions (128× 128) in the MMLS
dataset with their respective segmentation mask and modalities:
(a) RGB, (b) DEM, (c) thermal inertia, (d) slope, (e) gray-scale,
and (f) ground truth.

Table 1. A quantitative summary of data distribution in the MMLS
dataset.

Training
Dataset

Validation
Dataset

Testing
Dataset

Total
Patches

275 31 256 562

4. Dataset
To address the need for labeled data for the Martian land-

slide segmentation task, we created a landslide inventory for
VM with a total of 2169 incidents. This inventory includes
an existing landslide inventory of 682 incidents [34], and
another newly mapped 1487 landslides. Landslides were
vectorized from the Context Camera (CTX) imageries of
the Mars Reconnaissance Orbiter (MRO) by NASA, which
has a resolution of 5 m per pixel. The CTX data was ob-
tained from the planetary data system (PDS) by NASA1.

1https://ode.rsl.wustl.edu/

The digital elevation model (DEM) of the Valles Marineris
is obtained from U.S. Geological Survey [15]. This ele-
vation data is a combined product of NASA’s Mars Or-
biter Laser Altimeter (MOLA) of the Mars Global Surveyor
spacecraft (MGS) and the European Space Agency’s High-
Resolution Stereo Camera (HRSC) of the Mars Express
(MEX) spacecraft. It has a ground resolution of 200 me-
ters per pixel. Imagery and elevation data for the Valles
Marineris are brought into the ESRI ArcGIS software pack-
age and landslides were digitized based on morphological
parameters described by Quantin et al. [33] and Crosta et
al. [10]. RGB image data was obtained from USGS Astro-
geology Science Center2. The image data has a resolution
of 232 m per pixel. The RGB data was developed by NASA
AMES from NASA’s Viking Mission. Thermal inertia (TI)
data of Valles Marineris region was obtained from USGS
Astrogeology Science Center3 [14], which have a spatial
resolution of 100 m per pixel. These data were developed
from Thermal Emission Imaging System (THEMIS) images
of the 2001 Mars Odyssey orbiter mission. In addition,
slope values of the study area are derived from the DEM
using the Slope tool in the ArcMap. The RGB data, CTX
data, DEM, slope, and TI were melded together as a single
TIFF image using the Composite bands’ tool in ArcMap.
Consequently, we named our dataset as Multi-modal Mar-
tian LandSlide (MMLS) dataset.
Landslides Mapping. Landslides were vectorized manu-
ally in a GIS environment and were identified by scarp and
surface morphology of the scarp and surface. The mor-
phological properties include: 1) Scarps which are semi-
circular steep, slope or escarpment, often perpendicular to
flow direction [34, 43]; 2) The toes, as well as the depleted
area, are characterized by heavily fractured surface [18]; 3)
Martian landslides have irregular and jumbled morphology,
and hence, exhibits hummocky structure (i.e. rounded hills
or mounds) and lateral levees [10, 13, 22]. The landslides
were mapped as polygons that included the zone of deple-
tion and the entire run-out. Fig. 4 shows the visual distri-
bution of Martian landslides in the Valles Marineris region,
while Table 1 summarizes the quantitative distribution of
the training, validation, and testing sets used in this study.
All the modalities are downsampled to match the spatial res-
olution of the RGB modality, thus the resulting images can
be fed to DL models for training. In Table 1, the size of
each patch is fixed to 128×128 pixels, and we maintain the
spatial resolution of each modality to 232 m per pixel.

5. Results and Discussion
Experimental setup. We empirically demonstrate the ef-
fectiveness of the proposed MarsLS-Net using the MMLS

2https://planetarymaps.usgs.gov/mosaic/Mars Viking MDIM21
ClrMosaic global 232m.tif

3https://astrogeology.usgs.gov/
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Figure 4. Distribution of Martian landslides in the Valles Marineris region. Region (b) and (d) are used to train and validate deep learning
models respectively, while region (c) is used for performance testing.

Figure 5. Spider plots representing the performance of the deep
learning models that are experimented with in this study. The pre-
cision and F1-score are plotted on the X-axis (left and right an-
gles), and the mIoU and recall scores are plotted on the Y-axis
(top and bottom angles).

dataset and compare its performance with state-of-the-art
deep network architectures. The performance of DL models
is evaluated in terms of four standard assessment metrics: a)
mean intersection over union (mIoU), b) precision, c) recall,

Table 2. Quantitative evaluation on the test set.

Method mIoU F1-score Recall Precision
U-Net [37] 0.6479 0.7519 0.7479 0.7558
Attention U-Net [27] 0.6370 0.7380 0.7182 0.7590
ResU-Net [47] 0.6196 0.7163 0.6769 0.7607
R2U-Net [2] 0.6474 0.7550 0.7651 0.7452
SwinUnet [7] 0.6583 0.7602 0.7539 0.7666
TransUnet [8] 0.6521 0.7488 0.7192 0.7810
SegFormer [46] 0.6656 0.7626 0.7409 0.7857
PSP Net [48] 0.5641 0.6516 0.5881 0.7304
Deeplabv3+ [9] 0.6131 0.7163 0.6961 0.7376
MarsLS-Net 0.6878 0.7831 0.7684 0.7983

and d) F1-score, all of which are typically used for landslide
detection studies. Since most of the tested models converge
within the range of 60-80 epochs, all the experiments, in-
cluding competing models, run for a total of 100 epochs
with a batch size of 16 samples per iteration. Each training
process is monitored, and the best performance (mIoU) is
saved. The training process was optimized with the Adam
algorithm using a scheduled learning rate, initially set to
0.001 and reduced by a factor of 0.01 in every epoch, and
binary cross-entropy is used as the loss function.

5.1. Comparison with State-of-the-art Methods

The performance of our MarsLS-Net is compared with
several the state-of-the-art segmentation models, including
U-Net [37], Attention U-Net [27], ResU-Net [47], R2U-Net
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Figure 6. The illustration presents a visual comparison of Martian landslide segmentation results achieved through various deep learning
approaches. The highlighted red boxes depict the areas where our approach adeptly predicts landslide-prone regions in accordance with
the ground truth. These visual cues underscore the discernible differences in performance compared to other competing methods.

[2], SwinUnet [7], TransUnet [8], SegFormer [46], PSP-
Net [48], and DeepLabV3+ [9]. Quantitative evaluation of
our MarsLS-Net performance and the aforementioned mod-
els is provided in Table 2. It can be observed that the pro-
posed deep network architecture outperforms all competing
methods in terms of mIoU, recall, precision, and F1 score.
The mIoU is a reliable metric for the segmentation task
since this takes into account the relation between the pre-
dicted and ground truth annotation. From Table 2, it can
be seen that the highest mIoU of 0.6878 is achieved by our
MarsLS-Net, a considerable improvement over the second
best performer (i.e., SwinUnet with a mIoU of 0.6583). Fig.
5 explains how our model performs when tested on four
aforementioned evaluation metrics, while Fig. 6 shows a
visual comparison of some sample results obtained by deep
models experimented in this study. Specifically, a total of
six random samples from the testing dataset are shown with
the respective input image, segmentation mask, or ground
truth, and the prediction of each model is used for com-
parison. As it is observed, our MarsLS-Net shows a more
accurate segmentation for most of the cases.

5.2. Ablation Study

We conduct a set of experiments for ablation studies of
our model from two different aspects: 1) the relative impor-
tance of different components in MarsLS-Net architecture,
and 2) the sensitivity of various configurations of MarsLS-
Net.
Importance of model components. In Table 4, we evalu-
ate the performance of the proposed model by dropping one
or more of the core components, including ConvPE layer,
MHSA layer, and PE layers. As demonstrated in the ta-
ble, the performance of MarsLS-Net decreases in the ab-
sence of any of the aforementioned components, in terms of
mIoU, F1-score, and recall. For instance, mIoU is dropped

Figure 7. Model size vs. mIoU of different segmentation models
experimented in this study.

by around 6.3% if PE and MHSA layers are excluded. This
further confirms that the promising performance achieved
by our proposed model is not a direct result of a particular
component. Instead, its learning procedure can be seen as
a form of episodic learning where every component has its
own functionality.
Sensitivity of model configuration. Table 3 shows the
performance of the proposed architecture by using differ-
ent configurations in terms of the number of feature maps
and the 2D convolution kernel size (i.e., the total number
of PEN-Attention blocks). In each configuration, a name
was denoted by the size of the architecture. For instance,
in MarsLS-Net (S-3), S stands for a small model, a 3 × 3
kernel size used for each 2D convolution, along with 16 ini-
tial feature maps. We herein report experimental results by
varying the initial feature maps to 16, 32, and 48, and the
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Table 3. Comparison of different configurations of the proposed MarsLS-Net architecture.

Model Name Initial
feat. map Kernel size mIoU F1-score Recall Precision Model Parameters

(Million)
MarsLS-Net (S-3)

16
n=3 0.6635 0.7703 0.7881 0.7533 0.0476

MarsLS-Net (S-4) n=4 0.6581 0.7774 0.8447 0.7200 0.0770
MarsLS-Net (S-5) n=5 0.6060 0.7542 0.8875 0.6557 0.1149
MarsLS-Net (M-3)

32
n=3 0.6635 0.7787 0.8335 0.7307 0.1770

MarsLS-Net (M-4) n=4 0.6816 0.7855 0.8062 0.7659 0.2932
MarsLS-Net (M-5) n=5 0.6831 0.7846 0.7954 0.7742 0.4427
MarsLS-Net (L-3)

48
n=3 0.6510 0.7739 0.8496 0.7105 0.3883

MarsLS-Net (L-4) n=4 0.6866 0.7847 0.7822 0.7872 0.6487
MarsLS-Net (L-5) n=5 0.6878 0.7831 0.7684 0.7983 0.9835

Table 4. Ablation study on the contribution of different compo-
nents in the MarsLS-Net.

Method mIoU F1-score Recall Precision
w/o ConvPE 0.6442 0.7449 0.7267 0.7641
w/o MHSA 0.6450 0.7380 0.6921 0.7905
w/o PE & MHSA 0.6443 0.7372 0.6904 0.7908
Full version 0.6878 0.7831 0.7684 0.7983

2D convolution kernel size to 3, 4, and 5. For further ref-
erence, M stands for Medium, and L stands for Large. It
is noticeable that the performance of the architecture tends
to improve, in terms of mIoU, as the kernel size and initial
feature map increase when the architecture is either medium
or large. However, for the smaller version of the architec-
ture, the trend goes in the opposite direction, reaching the
best performance when the kernel size is 3 and the lowest
performance with a kernel size of 5. It is important to point
out that there is an increment of the computational cost as
the feature map and the kernel size increase, as shown in the
last column of the table. From this table, it can be observed
that the best mIoU score (the most wildly metric used in the
segmentation task) is achieved by setting a feature map of
48 and a kernel size of 5 (i.e., MarsLS-Net L-5) which is
used in our proposed MarsLS-Net.

Figure 7 depicts a comparison of the parameter effi-
ciency and segmentation accuracy, in terms of mIoU, of
all variants of MarsLS-Net and the other competing mod-
els. As it is shown that the proposed MarsLS-Net with
all its variants is consistently more parameter efficient and
achieves a better mIoU score compared to the other state-of-
the-art segmentation methods, which demonstrates the effi-
ciency and effectiveness of the proposed model.

6. Conclusion

Detection of Landslides comprise a great importance for
hazard assessment and environmental management. It is
noteworthy to mention that while the developed model was
specifically designed for Martian landscapes, its applicabil-

ity extends to landslides on Earth as well. By adapting our
methodology, we can potentially assist in automating the
identification of landslides in terrestrial environments. In
addition, regions like the Sahara, where vegetation cover is
sparse, can benefit from our approach, as it does not rely
on vegetation for landslide detection, similar to the Martian
landscape.

Our proposed model, namely the Martian landslide seg-
mentation network (MarsLS-Net), is a light-weighted deep
neural network architecture. MarsLS-Net is composed by
a series of progressively expanded neuron attention (PEN-
Attention) blocks, where each PEN-Attention block con-
sists of two core components: convolutional progressive
expansion layer and multi-head self-attention layer. These
two components were designed to obtain rich but also more
relevant feature representation for segmenting Martial land-
slides. To test the effectiveness of our proposed architec-
ture, we introduced a multi-modal Martian landslide seg-
mentation (MMLS) dataset. This dataset will soon be made
publicly available on a GitHub repository for the research
community. We believe our study will establish a solid
foundation for future research.

In addition, several interesting observations are drawn.
(i) We find that it is possible to learn strong representations
with a series of PEN-Attention blocks without introducing
other complex deep network architectures. (ii) We empiri-
cally showed that both convolutional progressive expansion
and multi-head self-attention mechanisms are key learners
to extract pertinent information on landslides from multi-
modal Mars imagery. (iii) We achieved superior results
in segmenting Martian landslides compared to the state-
of-the-art deep learning models, including the popular U-
Net and its variants that have been explored for earth-based
landslide segmentation tasks. In future work, we anticipate
analyzing the contributions of each modality in the dataset
for the Martian landslide segmentation problem and also ex-
plore innovative data fusion methods that can facilitate pre-
diction outcomes.
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