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Abstract

In this work, we address the novel and challenging prob-
lem of domain adaptive 3D shape retrieval from single
2D images (DA-IBSR). While the existing image-based 3D
shape retrieval (IBSR) problem focuses on modality align-
ment for retrieving a matchable 3D shape from a shape
repository given a 2D image query, it does not consider any
distribution shift between the training and testing image-
shape pairs, making the performance of off-the-shelves
IBSR methods subpar. In contrast, the proposed DA-IBSR
addresses the non-trivial problem of modality shift as well
distribution shift across training and test sets. To address
these issues, we propose an end-to-end trainable model
called DAIS-NET. Our objective is to align the images
and shapes separately from both domains while simultane-
ously learn a shared embedding space for the 2D and 3D
modalities. The former problem is addressed by separately
employing maximum mean discrepancy loss across the 2D
images and 3D shapes of the two domains. To address the
modality alignment, we incorporate the notion of negative
sample mining and employ triplet loss to bridge the gap be-
tween positive 2D-3D pairs (of same class) and increase
the separation between negative 2D-3D pairs (of different
class). Additionally, we employ an entropy minimization
strategy to align the unlabeled target domain data in the
semantic space. To evaluate our proposed approach, we
define the experimental setting of DA-IBSR on the follow-
ing benchmarks: SHREC’14 ↔ Pix3D and ShapeNet ↔
SHREC’14. Considering the novelty of the problem state-
ment, we have demonstrated that the issue of domain gap
is prevalent by comparing our method with the existing lit-
erature. Additionally, through extensive evaluations, we
demonstrate the capability of DAIS-NET to successfully
mitigate this domain gap in image based 3D shape retrieval.

1. Introduction

Figure 1. Graphical representation of domain adaptation in 3D
shape retrieval. (a) Here, we see the query and shape for two non-
overlapping domains across two classes (squares and triangles).
(b). When no DA is applied for shape retrieval task, the query and
shape embedding align in the shared space for source domain for
same class, but not for target domain. (c) When retrieval task is
carried out with DA, both the source and target domain align for
the same class.

In today’s era, we are witnessing a growth of available
information from multiple sources, owing to unprecedented
development in data sensing and data generation technol-
ogy. This make it pivotal to have technology aimed at re-
trieving information from a practically endless sea of data.
In the information technology, historically a lot of work has
been focused in the field of data retrieval from text and im-
age modalities [17, 4]. However, with advancement in com-
puter vision domain, there has been a new research domain
of retrieving 3D shapes using 2D images or sketches, pri-
marily using deep learning based techniques. One of the
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prime challenge that every 2D-3D retrieval system faces
is the cross-modal differences between the two modalities
[23]. Typically, most of the cross-modal retrieval problems
have primarily worked to model the cross-modal differences
between the 3D and 2D modalities. One way to accomplish
this is by acquiring knowledge in a shared embedding space,
where the matching image-3D object pair retains only the
shared semantic content, discarding other non-relevant as-
pects for the purpose of matching [25]. Several works have
been carried out in this direction. For example, [5] intro-
duced a metric learning based shape retrieval framework
from sketches. Here, the authors introduce a discrimina-
tive loss to enhance the distinction between different cate-
gories within each domain. Additionally, a correlation loss
is employed to reduce the differences between sketch and
3D shape domains, aiming to minimize the domain discrep-
ancy. Similarly, [22] presents an approach on SHREC’19
dataset, where one of the participating teams utilized triplet
loss for aligning the shape and image modalities in the same
metric space.

However, most of the research works in this area cater to
the 2D images and 3D shapes only from a single domain,
making the problem very restrictive and with limited gen-
eralization. As an example, a retrieval system trained to
retrieve real world 3D objects from RGB images may not
work well when a sketch image is fed to it (as a query) with
the aim of retrieving a clay model of the 3D object. To
mitigate these domain differences, the idea of unsupervised
domain adaptation (UDA) is brought into picture. This has
been graphically shown in Fig. 1. Historically, there has
been an ample amount of work done in the intersection of
computer vision and domain adaptation, primarily in the
application of image classification [8], where the training
is carried out with source domain (with labels available),
while the model is then tested on a domain with disjoint
distribution. Domain adaptation has its fair share of chal-
lenges, such as aligning the two domains in a shared space
and establishing interclass differences within the target do-
main in absence of labels. Existing literature has shown
to handle these issues with several metric learning based
approaches, to bridge the gap between the two domains.
For instance, [34] proposes a novel discriminative maxi-
mum mean discrepancy (MMD) approach that employs an
intra-class trade off parameter and weighted inter-class dis-
tances to effectively control the degradation of feature dis-
criminability. Similarly, [33] proposes a triplet loss guided
by Bayesian perspective that adjusts the weights of intra-
domain and inter-domain pair-wise samples, particularly fo-
cusing on hard positive and hard negative pairs, resulting
in improved target pseudo labels. Additionally, enhancing
the interclass differences within the classes of the target do-
main in absence of labels is a non-trivial problem. This
problem is addressed in several works using the notion of

unsupervised clustering [29, 21] and information theoretic
approaches [26, 1].

However, in several existing cross-modal retrieval tasks,
domain adaptation frameworks typically consider one of the
modality as a separate domain, thereby working on align-
ing the modalities, where one of the modality may act as
query while other one is to be retrieved [39]. Therefore,
in our present work, we simultaneously address the prob-
lem of modality alignment between the 2D images and the
3D shapes, as well as domain alignment between the im-
age and sketch queries and corresponding 3D shapes of the
two domains. To this end, we incorporate the domain align-
ment through maximum mean discrepancy loss (MMD) for
both 2D and 3D modalities. For modality alignment, we use
the notion of triplet loss, with negative class samples from
3D domain, as well as classification loss pertaining to each
modality, thus projecting the modality invariant features in
the same shared space. Additionally, inspired from infor-
mation theoretic approaches, we include an entropy min-
imization term over the probabilities of the target domain
features, so as to make the class embeddings more discrim-
inative even in absence of groundtruth labels.

Our specific contributions are enlisted as follows:

• We propose a pioneer work of image based shape re-
trieval (IBSR) across non-overlapping domains. This
means that during training stage, we have labels and
mapped query and shape information from one distri-
bution, and we have to transfer this model for shape
retrieval in another distribution for the retrieval task.

• To this end, we follow a transductive approach by us-
ing the unpaired and unlabeled images and 3D shapes
from the target domain during training. We use this in-
formation to mitigate the domain differences between
the source and target domains using an MMD loss.

• Additionally, we also incorporate target level feature
refinement by introducing an entropy loss over the tar-
get probabilities to ensure better intraclass compact-
ness among the target features.

• For modality alignment, we employ a synergistic com-
bination of cross-modal triplet loss [35] and classifica-
tion loss. The former brings the class embedding of
samples of same class from 2D and 3D domains closer
and increases their distance otherwise. The latter sep-
arately aligns the features of individual modality to-
wards it corresponding label, which is shared among
the two modalities.

• We have conducted several experiments on Pix3D,
SHREC’14 and ShapeNet datasets, both with and
without domain adaptation, and it is clearly visible
that in absence of cross-domain training, the results are
subpar as compared to our method.

3193



2. Related Work
In this section, we discuss the existing literature works

pertaining to 3D shape retrieval and domain adaptation.

2.1. 3D Shape Retrieval

3D shape retrieval has been a widely studied topic, with
various approaches proposed to address the challenges in
this domain. Shape retrieval is one of the most funda-
mental problems in computer vision. With recent devel-
opment in deep learning techniques for feature extraction
and 3D shape datasets, 3D shape retrieval from single im-
ages based shape retrieval (IBSR) has gained more atten-
tion. Mu et al. [36] proposed a novel architecture that maps
two kinds of features into high-dimensional Hilbert space to
decrease the gap. Deep cross-modality adaptation (DCA)
employs a metric learning-based method to learn domain
discriminative features and cross-modal transformation net-
work to transfer the features of the 2D sketch to the 3D
shape feature space. [42] proposed the unsupervised dual-
level embedding alignment (DLEA) network, which was
a first end-to-end network for this task. The gap between
the two modalities is reduced by alignment at the embed-
ding on domain and class levels. Recently, CDA [16] in-
troduces a joint domain-class alignment module to learn a
class-discriminative and domain-agnostic feature space for
2D images and 3D models. [43] proposes to learn discrimi-
native and transferable cross-domain representation for 2D
and 3D data using unsupervised adversarial domain adap-
tation. Despite significant prior works, using single images
to retrieve the 3D shapes is still a challenging problem, and
the major reason for this challenge is the problem of do-
main shift in both 2D and 3D features space. Solution to
this problem is Domain Adaptation (DA) [2, 6, 40]. For our
work, we will be focusing on Unsupervised Domain adap-
tation techniques.

2.2. Domain Adaptation

Domain adaptation refers to the process of adjusting a
machine learning model that has been trained on one dataset
(the source domain) to perform well on a different dataset
(the target domain) where the data distributions may vary.
The existing literature offers a wide range of approaches
for domain adaptation, including techniques such as sub-
space alignment, pseudo-labeling, and adversarial methods,
among others [20]. The idea of DA is not only limited to
primary vision domain, but also extends to other derived ap-
plications, such as remote sensing [24] and medical imag-
ing [14]. Another commonly used approach is Domain-
Adversarial Neural Networks (DANN)[9], which involves
incorporating a domain classifier into the deep neural net-
work to enable it to differentiate between source and target
domain data. [30] introduced the notion of generalised ad-
versarial learning in the domain adaptation framework in

discriminative setting. The approach presents a step-wise
adaptation framework, where a pretrained network is taught
to adapt to the target domain through adversarial learning.

CyCADA[15] is an approach that utilizes cycle-
consistent adversarial learning to align the feature distri-
butions of the source and target domains. CDTrans[38]
employs cross-attention and two-way center-aware labeling
in Transformers[31] to achieve domain alignment, making
it robust against noisy label pairs. [32] proposes a novel
method of domain adaptation based on contrastive learn-
ing with pseudo-labels. Here, given an anchor image from
source domain, the distance of the target sample with same
pseudo-label as that of anchor is minimised with the anchor
sample, while pseudo sample generation follows a cluster-
ing based approach. Complementary to adversarial learn-
ing, there are several metric learning approaches to address
UDA. [18] proposed an optimal transport based approach of
UDA, where Wasserstein distance metric was used to bridge
the gap between the source and the target domains. [41] in-
corporated a modified form of triplet loss in the UDA along
with the notion of penalising the distance of second highest
probability from the decision boundary. Recently, there has
been interest in exploring vision-language models to tackle
the domain adaptation task, given their improved feature
space. The current method in this domain, DAPL[10], re-
lies on ad-hoc prompting to learn disentangled domain and
category representations.

2.3. How are we different?

The novelty of our work lies in tackling the problem of
image based 3D shape retrieval in cross-domain setting, i.e.
the annotated and paired dataset (primarily used for induc-
tive training) is vastly different in distribution aspect than
the test data. This makes our work a foundation research
in this domain. To this end, we have segregated the the
cross-domain retrieval task into multiple smaller sub-tasks,
and addressed them accordingly. We have mitigated the
domain differences between the participating sketch and
image domains (from 2D modalities) and the correspond-
ing 3D shapes using maximum mean discrepancy (MMD)
loss. To tackle the task of modality alignment between
shapes and images, we have incorporated supervised learn-
ing, where the paired source domain features of the two
modalities are trained to classify the respective samples in
the same class. Additionally, to further increase the inter-
class difference, we incorporate triplet loss, where we har-
ness the notion of negative sample mining and increase the
distance between samples of dissimilar classes. Finally, to
bolster the intraclass compactness among the target sam-
ples, we incorporate entropy among their class probabili-
ties. In the next section, we will give the description of
our proposed method along with the relevant mathematical
background.
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Figure 2. Schematic of proposed DAIS-NET from cross-domain 3D shape retrieval. Our model addresses the different aspects of modality
alignment and domain alignment in transductive setting to perform shape retrieval from target domain, when trained with labels and pairs
from source domain and unpaired and unlabelled samples from target domain. Initially, we pass the 2D images (from S and T ) through
the feature extractors Gq , thus getting embedding (fq)S and (fq)T . Simultaneously, 3D shapes are passed through Gr to get embeddings
(fr)S , (fr)T and (fr)

−
S (the last one being the embedding of the negative sample). For modality alignment, we primarily rely on the

triplet loss, which minimizes the Euclidean distance between (fq)S and (fr)S , while maximizes the same between (fq)S and (fr)
−
S .

Additionally, the features (fq)S and (fr)S are passed through the classifiers Cq and Cr to get the corresponding probabilities, which are
compared against the available groundtruth. For domain alignment, we minimize the maximum mean discrepancy loss between the 2D
((fq)S and (fq)T ) and 3D ((fr)S and (fr)T ) embeddings of the two domains each. Furthermore, for better intraclass discriminativeness
in T , we employ an entropy loss for both the modalities.

3. DAIS-NET for IBSR
The details and mathematical background of DAIS-NET

will be discussed in this section. The overall model can be
seen in Fig. 2.

3.1. Preliminaries

We are given the dataset D = {S, T } comprising the
source domain S and the target domain T , such that, S =
{sjI , sjM , yjS}

nS
j=1 and T = {tkI , tkM , ykT }

nT
k=1 Here, we have

the input image pairs, denoted as sjI and tjI , in the respective
domains and the corresponding 3D shapes are represented
as sjM and tjM , respectively. Since, the problem setting is of
domain adaptation, the The dimensions of the image pairs
are given by {sjI , tjI} ∈ RM×N×3, where M and N re-
fer to the spatial dimensions of the three-channel RGB im-
ages, while the 3D shapes are represented by {sjM , tjM} ∈
RP×M×N×3, with P denoting the number of image frames
used to represent a 3D object or shape. Additionally, yjS
and yjT depict the labels associated with the source and tar-
get domains, respectively. The variables nS and nT indi-
cate the number of training pairs available for the source
and target domains.

3.2. Problem Definition

Given the image samples sjI and corresponding class la-
bels yjS , our objective is to retrieve the 3D shapes from the
provided dataset. The scope of this research extends to a
cross-domain setting, wherein the retrieval model is primar-
ily trained on the data originating from the source domain S
and subsequently deployed in another domain denoted as T .
To address the challenge of domain discrepancy, we adopt
a transductive learning approach, leveraging unpaired and
unlabeled query 2D images and 3D shapes from the target
domain during the training phase to facilitate domain align-
ment.

3.3. Modality Specific Feature Extractors

We define separate feature extractors for the query im-
ages and 3D shapes, given as Gq and Gr respectively. For
3D shapes, owing to the multiple number of frames, Gr is
based on a multiview CNN [27]. Being the transductive
setting, the samples from both S and T are passed through
them to give the corresponding embedding vectors, given
as:
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(f j
q )S = Gq(sjI), (f

j
q )T = Gq(tjI) (1)

(f j
r )S = Gr(sjM ), (f j

r )T = Gr(tjM ) (2)

The embeddings are then sent to the subsequent modules
for further processing.

3.4. Cross-Domain Alignment

In order to bring the source domain closer to the tar-
get domain, maximum mean discrepancy (MMD) [13] loss
is considered. MMD serves as a powerful non-parametric
measure to assess the similarity between distributions using
two distinct datasets. The equations for the same are seen
below.

L2
mmd2D

(S, T ) =
∣∣∣∣∣∣ 1
b1
ϕ((f j

q )S)−
1

b2
ϕ((f j

q )T )
∣∣∣∣∣∣2
H

(3)

L2
mmd3D

(S, T ) =
∣∣∣∣∣∣ 1
b1
ϕ((f j

r )S)−
1

b2
ϕ((f j

r )
k
T )

∣∣∣∣∣∣2
H

(4)

Here, ϕ(.) represents the kernel function, which is as-
sumed to be a Gaussian radial basis function (RBF). The
kernel projects the features to H, the reproducing kernel
Hilbert space (RKHS).

3.5. Modality Alignment using Negative Samples

The major challenge in IBSR is the alignment of the par-
ticipating modalities. To this end, we have leveraged the
idea of triplet loss, where we not only bring the samples
from 2D and 3D modalities of the two same classes closer
to each other, but also use negative samples (samples from
different class) from 3D modality and increase its distance
from the 2D sample. Initially, the negative sample (denoted
as (sjM )−). We first pass this through the feature extractor
Gr, and get the embedding (f j

r )
−. The triplet loss is thus

represented as:

Ltriplet =

nS∑
i=1

max
{(∣∣∣∣∣∣(f j

q )S − (f j
r )S

∣∣∣∣∣∣2
2
−

∣∣∣∣∣∣(f j
q )S − (f j

r )
−
S

∣∣∣∣∣∣2
2
+ α

)
, 0
}

(5)

Here, α is the margin term in the triplet loss, which defines
the threshold difference between the distances between pos-
itive and negative pairs.

3.6. Modality Specific Classification Module

The problem of shape retrieval requires the query image
to retrieve the shape of the corresponding class. Thus, to
ascertain that the feature learning at source level is discrim-
inative enough at class level, we incorporate a shared clas-
sifier at domain level for the two modalities (Cq and Cr) re-
spectively for query and shape embeddings. The classifiers
output the softmax probabilities, for features corresponding
to query image and retrieved shape for each domain given
as (pjq)S and (pjr)S , and (pjq)T and (pjr)T in Eq. 6 and 7.

(pjq)S = Cq((f j
q )S), (p

j
q)T = Cq((f j

q )T ) (6)

(pjr)S = Cr((f j
r )S), (p

j
r)T = Cr((f j

r )T ) (7)

The modality specific softmax probabilities from source do-
main are subjected to cross-entropy loss against the avail-
able groundtruth samples, while those corresponding to tar-
get domain are used for unsupervised feature refinement
(see section 3.6.1).

LCEq = −
nS∑
j

yj log(pjq)S (8)

LCEr
= −

nS∑
j

yj log(pjr)S (9)

3.6.1 Entropy guided feature extraction

In this research work, the problem of DA is addressed in a
transductive setting. In such a case, we have no label infor-
mation corresponding to the target domain. Thus, in order
to the induce the discriminativeness within the sample, we
introduce the idea of entropy minimization in unsupervised
setting, for both the modalities in the target domain. This
forces the features of samples of similar class to be near to
each other in the shared space, as shown in:

LEq
= −

nT∑
j

(pjq)T log(pjq)T (10)

LEr
= −

nT∑
j

(pjq)T log(pjr)T (11)

3.7. Training and Inference

The model is trained on the combined loss function given
as:

Lfinal = (λ2DLmmd2D
+ λ3DLmmd3D

) + (λcqLcq+

λcrLcr ) + (λtripletLtriplet) + (λEq
LEq

+

λEr
LEr

) (12)
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Figure 3. Cross domain retrieval of 3D shapes from (a) Pix3D dataset (when trained on SHREC’14 as source) and (b) SHREC’14 dataset
(when trained on Pix3D as source).

Here, all the λ terms represent the Lagrangian multipli-
ers for the corresponding loss functions.

After the training is complete, we take the corresponding
feature extractors for the 2D and 3D modalities from the tar-
get set T , and pass the query images and shapes from the
retrieval dataset through them. Then the similarity between
the embedding of query and the shapes is calculated using
L2 norm, and the images are retrieved in the ascending or-
der of the magnitude of the L2-norm. In order to assess the
performance of shape retrieval, we use mean average pre-
cision (mAP) [19], calculated over K number of retrieved
samples.

4. Experiments
In this section, we discuss the datasets and experimental

protocols followed in the research work.

4.1. Dataset

We used three different benchmark datasets for
our experimentation, SHREC’14[12], Pix3D[28] and
ShapeNet[3]. SHREC’14 contains 13,680 hand-drawn
sketches and 8,987 3D shapes. This dataset also contains 80
sketches for each category, 50 for training and 30 for test-
ing. We combined both the split into one set. Pix3D consists
of 10,069 real-world images and 395 unique 3D models.
ShapeNet consists of 51,300 3D shape models, the query
images for ShapeNet were taken from ImageNet[7], which
consists of 1.3 million images across 1000 categories. We
chose 4 common classes across these 4 datasets for our ex-
periments, viz. bed, chair, sofa and table.

4.2. Training Protocols

The problem of domain adaptation has been addressed
by creating pairs of SHREC’14 and Pix3D, and SHREC’14
and ShapeNet datasets. For both the dataset pairs, one of the
dataset is considered as the source domain while the other
is considered as target domain, thus giving 4 dataset pairs
to test our methods. In order to ascertain the effectiveness
of our method, in the proposed architecture, the initial fea-
ture extraction is carried out using pretrained CNN based
vision models, which are finetuned while training. Specifi-
cally, for shape features, we rely on multi-view CNN archi-
tecture. We primarily try two backbones, namely ResNet18
and ResNet34, both for query and shape features for all the
datasets. During training and inference, all the images are
resized to 224 × 224 before feeding into the models. The
training is carried out on Nvidia DGX 80GB with the Adam
optimizer, with an initial learning rate of 0.0001. The num-
ber of training epochs are fixed to 30 for all the datasets.
Additionally, in the final loss function, the value of λEq

and
λEr is set to 0.1, while all the other λ values are set to 1.

5. Results and Discussions

Table 1. mAP analysis using our proposed approach on
SHREC’14 and Pix3D datasets. In the experiments, we have alter-
nately used SHREC’14 and Pix3D as source and target domains.

Method SHREC −→ Pix3D Pix3D −→ SHREC
IBSR [23] 0.14 0.24
DD-GAN [37] 0.42 0.25
DA - MSE Loss (ResNet18) 0.34 0.22
DA - Triplet Loss (ResNet18) 0.70 0.36
DA - MSE Loss (ResNet34) 0.45 0.30
DA - Triplet Loss (ResNet34) 0.75 0.42
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Table 2. mAP analysis using our proposed approach on
SHREC’14 and ShapeNet datasets. In the experiments, we have
alternately used SHREC’14 and ShapeNet as source and target do-
mains. The correctly retrieved object are placed in a green box
while the incorrect ones are placed in the red box.

Method SHREC −→ ShapeNet ShapeNet −→ SHREC
IBSR [23] 0.27 0.24
DD-GAN [37] 0.40 0.27
DA - MSE Loss (ResNet18) 0.28 0.30
DA - Triplet Loss (ResNet18) 0.62 0.37
DA - MSE Loss (ResNet34) 0.30 0.33
DA - Triplet Loss (ResNet34) 0.64 0.41

The results of our proposed approach are presented
in Tables 1 and 2 respectively for SHREC’14/Pix3D and
SHREC’14/ShapeNet datasets. The first two rows in both
the tables show the results of cross-domain retrieval using
methods that were trained on single domain setting (IBSR
[23] and DD-GAN [37]). We find that DD-GAN outper-
forms IBSR owing to the effort to generate modality in-
variant features by the former, while IBSR only focuses on
color invariant features. However, when compared against
DAIS-NET, it is visible that the mAP is much better in
comparison to when DA is not applied. Furthermore, it is
also visible in both the tables, that the performance is bet-
ter when ResNet34 is used as a feature extractor instead of
ResNet18. This is self-evident from the fact that ResNet34
has richer feature representation of the two and finetuning it
does not degrades its performance in retrieval task. In addi-
tion, to highlight the effectiveness of triplet loss for modal-
ity alignment, we have compared it against mean squared
error loss (MSE). It is clearly visible that triplet loss outper-
forms the MSE loss by a large margin, in both the dataset
pairs and for both ResNet18 and ResNet34 feature extrac-
tors.

In addition, it is also visible in both the tables that when
SHREC dataset (consisting of sketches) is chosen as source
domain, the retrieval performance on Pix3D and ShapeNet
(which are image based datasets) is much better in contrast
to the case when Pix3D or ShapeNet chosen as source do-
main and test on SHREC. This is due to the fact that CNN
based feature extractors inherently suffer from a shape bias
[11]. This means, when a model that is trained on sketches
is tested for shape retrieval using images, it would require
to match the shape and outlines of the object only. How-
ever, in the reverse case, the model is trained to expect the
texture and colour information as well, which is missing in
the sketches. This would make it difficult for the model
to transfer the knowledge from image to sketch domain for
shape retrieval.

Moreover, we have also shown the qualitative perfor-
mance of shape retrieval on top-4 objects DAIS-NET in
Fig. 3 on Pix3D and SHREC’14 dataset, alternately taken
as source and target domains. The green box shows that the

object is retrieved from the same class as that of the query
image/sketch, while the red box shows otherwise. We see
that in most of the cases, the objects are correctly retrieved.
However, there are still a few instances of incorrectly re-
trieved objects, owing to the problem of domain difference
in the shape retrieval problems.

Figure 4. TSNE plots when the training is carried out (a) ShapeNet
→ Pix3D without DA (b) ShapeNet → Pix3D With DA (c) Pix3D
→ ShapeNet without DA (d) Pix3D → ShapeNet with DA

To visualize the discrimination ability by our proposed
approach, we have presented the TSNE plot showing the
retrieval results without DA and with DA. In the Fig. 4 (a)
and (b), we have considered that domain S is sketch-shape
pair, while domain T is image-shape pair, from pix3D and
SHREC datasets. The vice versa case is demonstrated in
Fig. 4 (c) and (d). We can clearly see that when DA is
applied (Fig. 4 (b) and (d)), we end up with more refine
clusters, where the same classes from both the domains and
modalities overlap and 4 distinct clusters corresponding to
each class are created. However, when DA is not applied,
the clusters corresponding to same classes for same modal-
ity do not overlap (Fig. 4 (a) and (c)), which shows the
significance of domain differences and the need of apply-
ing domain adaptation. If we compare Fig. 4 (b) and (d),
we can also observe that the clusters are more well-defined
in the the former than the latter. This could be attributed
to the fact that when training is carried out with sketches as
queries, then the evaluation with images as queries is easier,
instead of when the order is reversed. This is because in the
former case, the model is able to learn the shape informa-
tion from the sketches, which could be deciphered in case
of images. However, in the latter case, the model learns the
colour and texture information as well from the images for
retrieval task, which is entirely absent in the images, leading
to poor discrimination and thus, overlapping clusters.
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Table 3. Ablation study over the different combination of do-
main adaptive and modality alignment losses in DAIS-NET on
SHREC’14−→Pix3D dataset pair.

Loss combination mAP
Lmmd2D

+ Lmmd3D
+ LCE 0.47

Lmmd3D
+ Ltriplet + LCE 0.48

Lmmd2D
+ Ltriplet + LCE 0.57

Lmmd2D
+ Lmmd3D

+ Ltriplet 0.66
Lmmd2D

+ Lmmd3D
+ Ltriplet + LCE 0.71

Lmmd2D
+ Lmmd3D

+ Ltriplet + LCE +LE 0.75

We have performed an ablation study on the losses, the
ablation study of which is shown in Table 3 for SHREC’14
and Pix3D dataset (with the former one being the source do-
main) with ResNet34 as the backbone model. For simplic-
ity, the entropy and classification losses for both the modali-
ties are represented as LCE and LE . It is clearly visible that
when all the losses are involved, mAP is the highest (0.75),
thus proving that all the losses complement each other and
contribute together in learning a shared cross-modal and
cross-domain representation. Additionally, we also observe
the contribution of entropy based loss over the target do-
main, which gives and improvement of 0.04 (0.71 −→ 0.75),
than when its is not used. Moreover, we get a very low mAP
performance in the first row (0.47), when neither of triplet
loss and entropy are used, which further prove their contri-
bution in our approach. Furthermore, from the second and
third rows, we see that the performance is high when MMD
loss is applied only in the 2D modality (query) than in the
3D modality, which shows that domain alignment is a more
serious issue in the former. From the fourth row, we can
see that when classification losses are removed, the mAP
loss decreases which shows their effectiveness in modality
alignment.

Table 4. Number of parameters for the proposed and existing meth-
ods. ‘M’ denotes ‘millions’.

Method IBSR DDGAN Ours
(ResNet18)

Ours
(ResNet34)

Number of
parameters

35.06 M 33.43 M 28.92 M 39.03 M

In Table 4, we compare the computation complexity of
our methods against the existing methods of shape retrieval.
It is visible that even with 28.92 million parameters on
ResNet18 based model, our method has the ability to sur-
pass the existing methods in the task of image and sketch
based shape retrieval.

6. Conclusions and Future Scope
In this work, we propose a pioneering approach of mul-

timodal domain adaptation for image-based 3D shape re-
trieval. Our method tackles the challenges of aligning two
modalities (2D images/sketches and 3D shapes) and align-

ing disjoint domains containing the 2D queries and 3D
shapes. To address the modality alignment challenge, we
introduce the notion of negative sample mining and in the
source domain and create the negative samples from 3D
shapes from the classes different from that of the query
image. Then, we employ the triplet loss where the dis-
tance between the samples of same class is minimised and
that of two different classes is maximised between 2D im-
age and 3D shape. Furthermore, we incorporate modality-
specific classifiers to align the 3D shapes and 2D images
in the source domain. To address domain alignment, we
utilize the maximum mean discrepancy for each modal-
ity across the two domains. Additionally, we introduce
an entropy loss to establish discriminativeness among the
target features based on class probabilities of the target
embeddings for both modalities. Our model is evaluated
on two pairs of image-shape datasets, namely SHREC’14-
Pix3D and SHREC’14-ShapeNet. The experimental results
demonstrate the presence of the domain adaptation prob-
lem, and our proposed approach effectively addresses it, as
evidenced by both qualitative and quantitative evaluations.
As future work, we plan to extend our approach to zero-
shot domain adaptation and explore domain generalization
techniques to handle multiple domains simultaneously.
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