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Abstract

This paper explores the use of synthetic data in a human
action recognition (HAR) task to avoid the challenges of
obtaining and labeling real-world datasets. We introduce a
new dataset suite comprising five datasets, eleven common
human activities, three synchronized camera views (aerial
and ground) in three outdoor environments, and three vi-
sual domains (real and two synthetic). For the synthetic
data, two rendering methods (standard computer graph-
ics and neural rendering) and two sources of human mo-
tions (motion capture and video-based motion reconstruc-
tion) were employed. We evaluated each dataset type by
training popular activity recognition models and compar-
ing the performance on the real test data. Our results show
that synthetic data achieve slightly lower accuracy (4–8%)
than real data. On the other hand, a model pre-trained
on synthetic data and fine-tuned on limited real data sur-
passes the performance of either domain alone. Standard
computer graphics (CG)-rendered data delivers better per-
formance than the data generated from the neural-based
rendering method. The results suggest that the quality of
the human motions in the training data also affects the
test results: motion capture delivers higher test accuracy.
Additionally, a model trained on CG aerial view synthetic
data exhibits greater robustness against camera viewpoint
changes than one trained on real data. See the project page:
http://humansensinglab.github.io/REMAG/

1. Introduction

Human action recognition (HAR) from videos is crucial
for numerous applications [37]. For instance, video-based
human action tracking has proven useful for surveillance

*Equal contribution to this work.
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Figure 1. REMAG - an HAR dataset suite comprises five datasets:
one real and four synthetic by combining two renderers (CG
and neural) with two motion sources (motion capture and video-
based). Each of them includes three camera views.

and detecting abnormal behaviors [36]. It has also been
used for sports, training, and physical therapy [17, 28, 52].

Robust learning for HAR models relies heavily on di-
verse, large-scale training data. Collecting data is laborious,
time-consuming, and error-prone. To solve these issues, re-
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searchers have used synthetic data for training [6, 7, 51].
A significant advantage of synthetic data is that it can be
scaled quickly, labels can be added effortlessly, and the data
can be diversified while keeping their photometric and geo-
metric qualities consistent for data augmentation.

We collected a dataset with video recordings of
eleven activity categories captured in the wild with three
cameras—one orbiting small UAV and two fixed ground
cameras. We also recorded indoor motion capture data and
RGB videos of the same activities and reconstructed the hu-
man motions in those videos using VIBE [22]. We utilized
these two sources of motion data (mocap and VIBE) to cre-
ate synthetic datasets by employing two different rendering
techniques: a 3D computer graphics (CG) engine Blender
and a neural human motion imitation generative model Liq-
uid Warping GAN (LWG) [29]. Figure 1 presents samples
of the waving gesture across the three camera views from
the real and synthetic modalities.

These datasets constitute REMAG—REndering, Motion,
Aerial, and Ground view analysis data suite for the HAR
task. With it, we sought to answer the following questions:

1. Does the choice of the ML model make a significant
difference in performance?

2. Does the synthetic data rendering method affect the
model performance?

3. Does improving the quality of the motion in the syn-
thetic training data improve the performance?

4. Can we combine synthetic training data with a limited
amount of real training data to improve performance?

5. Can the models trained on one camera view transfer to
a novel camera view?

We ran an extensive set of experiments and compared the
performance of models trained on different modalities of
the data. We used three off-the-shelf activity recognition
models—X3D [11] (a single video stream), SlowFast [12]
(dual video streams), and MViT [10] (transformer-based).

The contributions of our paper are as follows:
1) A new real-world video dataset for human action

recognition has been collected and annotated, including
three synchronized camera views, one aerial dynamic and
two ground static views, and eleven everyday activities;

2) Four synthetic counterparts of the real dataset were
created by combining two different rendering approaches
(CG and neural-based) with two human motion sources
(motion capture data and video-extracted motions);

3) An extensive set of experiments has been conducted
to answer the five research questions listed above using off-
the-shelf activity recognition models. We analyzed how
the different rendering techniques, the motion sources, and
transferring from one camera view to another affect the
models’ performance. To the best of our knowledge, we
are the first to perform such an analysis systematically. Our
datasets will be made public.

2. Related Work
Research in video action recognition has progressed

quickly in the past decade. Several review papers covered in
great detail different types of models and datasets for deep
video action recognition [25] [47]. Here, we briefly discuss
the most popular public training synthetic HAR datasets,
the existing real HAR benchmarks, neural renderers for
HAR data, and video-based activity recognition deep learn-
ing models.

2.1. Synthetic HAR Datasets

Many synthetic video datasets have been created for
training HAR deep-learning models in recent years. Syn-
thetic data has already proven to be a helpful solution
when large amounts of annotated data should be produced
quickly. In Tables 1 and 2, we compare some of the most
recent synthetic and real HAR datasets.

The PHAV dataset [8] was created through a procedural
workflow based on human action videos parametric genera-
tive model. A unique feature of it is the so-called kite cam-
era dynamics model, which resembles the view from a per-
son following the actor. The characters were animated by
composite actions assembled from a library of atomic mo-
tions. It contains motion capture data or manually designed
motions. The Game Action Dataset (GAD) dataset [46] is
a relatively small dataset comprised of recordings of gam-
ing sessions (GTA5 and FIFA) performed by human play-
ers. This dataset is the first derived from gaming environ-
ments and includes synchronized ground and aerial views.
The game generates character motions that are conditioned
on players’ commands. Verol et al. used 3D human mo-
tion estimation models, such as HMMR [20] and VIBE [22],
to reconstruct the human body mesh and its motions from
a single view RGB videos to create the SURREACT [50]
dataset. The body mesh is based on the SMPL [31] sta-
tistical model and is further augmented with randomized
cloth textures, lighting conditions, and body shapes for bet-
ter diversity. SynADL [18] is a synthetic dataset focused
on detecting elders’ activities of daily living (ADL). The
3D human characters were created by scanning 15 par-
ticipants with a Kinect sensor. Motion capture data were
recorded from the same 15 participants and used to animate
the characters. Kim et al. combined PHAV, SURREACT,
and SynADL to create a new dataset called SynAPT [51].
The goal of this dataset was to pre-train a model which
would be transferred to a different downstream task involv-
ing completely new categories. RoCoG [6] and RoCoG-
v2 [40] are two datasets designed for human-robot interac-
tion based on seven gestures from the US Army Field Man-
ual [16]. RoCoG-v2 presents static ground and aerial views,
unlike RoCoG, which contains only a static ground view.
Moreover, RoCoG contains only manually-designed mo-
tions, whereas RoCoG-v2 introduces motion capture data
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Name Year Num.
Act.

Motion Sourcea,b Total
Frms

Num.
Seq. FPSqo Rendering Human Models Camera Viewsc Virt. Env.d

Ma. Ga. Vid. MC Engine Type # Type # St. Dy. Ae. Gr. # In. Out.
PHAV [8] 2017 35 ✓ ✓ 6.0M 39.9k 150 Unity CG 20 RD15e 1 ✓ ✓ 7 ✓ ✓
RoCoG [6] 2020 8 ✓ 17.6M 117.0k 150 Unity CG 4 HQn 8 ✓ ✓ 4 ✓

GAD [46] 2021 7 ✓ 0.3M 1.4k 186 GTA5
FIFA CG n/a game

char.f 2 ✓ ✓ ✓ ✓

SURREACT [50] 2021 100 ✓ 9.3M 109.0k 85 Cyclesg CG SMPL 8 ✓ ✓ ✓
SynADL [18] 2021 55 ✓15 135.0M 462.0k 292 UE4 CG 15 Kinecth 28 ✓ ✓ 4 ✓
SynAPT [51] 2022 150 ✓ ✓ ✓ 150.0k comb.i CG comb.i comb.i comb.i

RoCoG-v2 [40] 2023 7 ✓ ✓ 19.6M 107.0k 183 Unity CG 2 HQn 12 ✓ ✓ ✓ 2 ✓
SynCG-MC (ours) 2023 11 ✓26 31.4M 25.4k 1,236 Eeveej CG 32 Pro.p 3 ✓ ✓ ✓ ✓ 3 ✓
SynCG-RGB (ours) 2023 5 ✓15 5.0M 6.1k 820 Eeveej CG 32 Pro.p 3 ✓ ✓ ✓ ✓ 3 ✓

SynLWG-MC (ours) 2023 11 ✓26 31.2M 25.4k 1,228 LWGk+
Eeveej

NRl+
CG 32m SMPL 3 ✓ ✓ ✓ ✓ 3 ✓

SynLWG-RGB (ours) 2023 5 ✓15 5.0M 6.1k 816 LWGk+
Eeveej

NRl+
CG 32m SMPL 3 ✓ ✓ ✓ ✓ 3 ✓

a Four motion sources: manually designed motions (Ma.), game engine motions (Ga.), video-extracted (Vid.), and motion capture data (MC)
b The numbers depict the number of subjects included in the data c View types: Static (St.), Dynamic (Dy.), Aerial (Ae.), Ground view (Gr.)
d Virtual Environments: Indoor (In.), Outdoor (Out.) e 15-muscle ragdoll model f Game character
g Blender Cycles render engine h 25-joint models made by scanning human participants with a Kinect sensor
i A combination of PHAV, SURREACT, and SynADL datasets j Blender Eevee render engine k Liquid Warping GAN [29]
l Neural Renderer m SMPL meshes were textured using 32 real human avatars n High-quality human assets from public repositories
o Mean number of frames per sequence p Models have 25 motion capture-animated joints, high-resolution meshes and textures

Table 1. Synthetic HAR datasets comparison sorted by the year of publication. The underlined datasets include real counterparts (Table 2).

Name Year Num.
Act.

Subj. Seqs. Views Sites
# Ae. In. Out.

UCF-ARG [13] 2010 10 12 1.4k 3 ✓ ✓
HMDB51 [24] 2011 51 6.8k 1 ✓ ✓
UCF-101 [44] 2012 101 13.3k 1 ✓ ✓
Kinetics-400 [21] 2017 400 306.2k 1
Charades-Ego [42] 2018 157 112 8.0k 2 ✓
Kinetics-600 [2] 2018 600 495.4k 1
Kinetics-700 [3] 2019 700 650.3k 1
Kinetics-700 2020 [43] 2020 700 647.9k 1
NTU-RGB+D 120 [27] 2020 120 106 114.5k 3 ✓
RoCoG [6] 2020 8 14 1.5k 1 ✓
HOMAGE [38] 2021 75 27 5.7k 2 ✓
UAV-Human [26] 2021 155 119 22.5k 1 ✓ ✓ ✓
YAD [46] 2021 8 0.4k 1 ✓ ✓
RoCoG-v2 [40] 2023 7 10 0.5k 2 ✓ ✓
Real (ours) 2023 11 24 1.5k 3 ✓ ✓

Table 2. Real HAR datasets comparison sorted by the year of pub-
lication.

for some motions. Both datasets deliver real twin datasets.

We introduce four unique synthetic datasets: SynCG-
MC, SynCG-RGB, SynLWG-MC, and SynLWG-RGB, gen-
erated using a combination of a motion source (motion cap-
ture or video-based motions) and a rendering technique (CG
and neural rendering). As evident from Table 1 SynLWG-
MC and SynLWG-RGB are the only HAR datasets based
on neurally-generated videos, all other datasets are created
using different kinds of CG renderers. To the best of our
knowledge, we are the first to generate such HAR datasets
and compare them with the standard CG engines. Our syn-
thetic datasets were created using 32 realistic rigged 3D

human characters produced by scanning real people [14].
They were animated using a 26-participant motion capture
library we created. Furthermore, very few aerial synthetic
HAR datasets exist, which is also apparent from Table 1.
The two other datasets are GAD and RoCoG-v2. Still, nei-
ther contains nor provides analysis on a more complete set
of camera views as we do, namely, synchronized dynamic
aerial and static ground views. Moreover, the test results
in [51] highlight the need for more synthetic aerial HAR
datasets. The authors use a combination of three synthetic
datasets (PHAV, SURREACT, and SynADL) without aerial
view data to pre-train their models. UAV Human [26], the
only aerial dataset out of the six real test datasets, delivers
the lowest accuracy.

2.2. Real HAR Datasets

We also provide a real dataset containing the same three
camera views and action categories as the four synthetic
variants mentioned in the previous section. This dataset
provides a performance baseline (train and test on real data
only), a real test set, and a fine-tuning dataset. More de-
tails for creating it are provided in Section 3.2. Table 2
briefly compares our real and other currently existing HAR
datasets.

The UCF-ARG [13] dataset varied the scope of the cam-
era angles by providing videos from aerial and rooftop cam-
eras. The aerial view was captured by a camera attached to a
balloon. HMDB51 [24] was one of the first datasets with an
increased number of action categories, providing 51 action
categories from 6766 videos. UCF-101 [44] dataset intro-
duced a larger dataset with 101 activity classes subdivided
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into five categories. Introducing massive action datasets
from the Kinetics family (Kinetics-400 [21], Kinetics-
600 [2], Kinetics-700 [3], and Kinetics-700-2020 [43]) ac-
celerated the progress in the field by providing several hun-
dred activity categories and close to 1000 videos per cate-
gory. Charades-Ego [42] and HOMAGE [38] are datasets
of videos of daily human activities recorded from first-
and third-person perspectives. The NTU-RGB+D120 [27]
dataset also introduced labeled multi-view videos for action
recognition with 120 classes from 110 000 clips of video,
depth map sequences, 3D skeletal data, and infrared videos
for each sample. UAV-Human [26] is a dataset of human ac-
tivities captured by a flying UAV in multiple urban and rural
districts in daytime and nighttime. It is the largest real HAR
dataset which contains an aerial view. YAD [46] (YouTube-
Aerial Dataset) is a small HAR dataset containing aerial
videos from YouTube. It includes large and fast camera
motions as well as variable shooting altitudes. RoCoG [6]
RoCoG-v2 [40] also contain real data of the same activity
categories as their synthetic variants. RoCoG-v2 contains
aerial and ground views, whereas RoCoG provides only a
static ground view.

2.3. HAR Data Neural Renderers

Models like Everybody Dance Now [5] and Liquid Warp-
ing GAN (LWG) [29] generate videos by transferring the
body pose from a video of a person performing an activity
to a new person from another video or an image. They can
generate action videos with different appearances depend-
ing on the input visual source image. However, these mod-
els rely on body pose estimation from monocular videos or
images, which is inherently less accurate than motion cap-
ture. We integrated MoSh [30], a model for generating 3D
human SMPL meshes from a motion capture marker set,
into the LWG architecture. Thus, we extended its capabili-
ties to generate videos from motion capture data.

In recent years, NLP models have demonstrated the ca-
pability to generate different data types from text prompts.
Models like TEMOS [34], MotionCLIP [48], MDM [49],
T2M-GPT [55], and MotionGPT [19] can generate realis-
tic human motions by taking activity descriptions (text-to-
motion). Other models like Stable Diffusion [41] and Dall-
E [39] can generate images from text (text-to-image). Ma
et al. [32] also made one of the first attempts for a pose-
guided text-to-video generation. However, it is hard to in-
corporate such models into our pipeline because they do not
offer fine-grained control over the generated output and es-
tablish precise motion matching across different synthetic
sets—an important aspect of our analysis.

2.4. Deep Video Action Recognition

An expansive set of activity recognition models has been
developed in recent years [35]. This section reviews some

of the most popular and accessible ones used in our analysis.
Architectures like I3D [4] and X3D [11] were built on

image classification networks applied to videos. I3D does
that by inflating the filters and pooling kernels to 3D, while
X3D progressively expands on a tiny 2D image classifica-
tion model with multiple axes (space, time, width, height).
The performances of I3D and X3D are 73% and 77%, re-
spectively when tested on Kinetics [9]. The SlowFast [12]
architecture was built upon a different approach, combin-
ing the slow and fast pathways, which take small and large
frame rates of the video, respectively, to identify gestures
happening at shorter and longer time frames. Its perfor-
mance on Kinetics was 77%. MViT [10] is founded upon
multi-scale transformers to create a multi-scale pyramid of
features to learn coarse to complex features. So far, MViT
has shown the best performance on Kinetics—83% [9].

3. Our Datasets
This section describes the creation of our dataset suite

consisting of a real-world and four synthetic video datasets.

3.1. Activity Classes

Our datasets contain eleven daily human activity cate-
gories (Figure 2), where five are Gestures and six involve
Object-handling. Every frame that does not fit into any of
these categories was labeled as Idle. The set of activities
was intentionally constructed to contain confounding pairs
to increase the difficulty of the recognition task. For in-
stance, Carrying a shovel on the shoulder resembles Carry-
ing a bat on the shoulder; some instances of Holding out a
flashlight may be confused with Talking on the phone; Wav-
ing ”Hello or Goodbye” is similar to Shaking fist.

3.2. Real-World Capture

This dataset contains video recordings of human partici-
pants using multiple cameras during daylight hours in three
outdoor environments: a grass field, a parking lot, and a
tennis court. The data collection spanned eight months
(November 2021 to July 2022). Thus, different seasons
were captured. All subjects consented with an approved In-
stitutional Review Board (IRB) for video or motion capture.

In total, 24 subjects (18 male and 6 female) participated
in the video collection process. Most of them were cap-
tured with three cameras1 recording simultaneously in 4K
(3840 px×2160 px) resolution at 30 fps. One camera was a
remotely-controlled small UAV (DJI Mavic 2 Zoom), which
circled over the participant at a constant speed as shown in
Figure 3. This camera constitutes the aerial view. The tar-
get radius of the circular UAV trajectory Rtraj is 15m. The
flying altitude Htraj was maintained within the 11m – 13m
range. These two trajectory parameters were selected such

1One and a half participant sessions lack the second ground camera.
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1. Wave
”Hello or Goodbye”

2. Wave
for attention

3. Gesturing
”Come Here”

4. Gesturing
”Move Forward”

5. Shake Fist
(expressing anger)

6. Hold Out Phone
(e.g. for taking picture)

7. Carrying
a cell phone

8. Talking
on the phone

9. Carrying an object on 
the shoulder (shovel)

10. Holding/carrying a 
baseball bat

11. Holding out
a flashlight

Object-handling activities

Gestures

Figure 2. Human activity classes.

Participant

Ground 
camera B

Ground 
camera A

UAV flying 
trajectory

UAV-mounted 
camera

Participant's 
facing direction

Figure 3. Real data collection setup.

that the camera’s tilt angle θtilt would vary within the range
30◦ – 45◦. The mean height of the participant in the im-
age frame was kept to about 200 px by adjusting the lens
focal length. The subject performed every activity twice,
once for each flying direction of the UAV (clockwise and

Figure 4. Front and rear view of a subset of two male and two fe-
male 3D human characters used to generate our synthetic dataset.

counter-clockwise). The other two cameras were stationary
(mounted on tripods) and elevated about 1.3m above the
ground. They constitute the ground view. The three views
can be seen in Figure 1.

To synchronize the three video streams, we asked each
participant to clap their hands above their head at the begin-
ning of each session. The temporal offsets of the streams
were determined manually in post-processing using the
clapping actions. The annotation software ELAN [53] was
used to synchronize and label the activity being performed.

The real-world dataset contains a total of 1538 video se-
quences. For all videos, we detected the subjects in each
frame using Faster R-CNN [54] and cropped around the
center of the bounding box. The frames were resized to
224 px × 224 px. The videos have a frame rate of 30 fps.
The total frame count of the dataset is 1 844 253 (∼17.08 h).
The mean video sequence length is 39.97 s.

3.3. Synthetic Data Generation

Two generation methods were employed: a standard
computer graphics (CG) pipeline and a deep generative neu-
ral model called Liquid Warping GAN (LWG) [29]. To ani-
mate the human characters, we used two sources of motion:
a motion capture (MC) dataset we collected and motions ex-
tracted from real video sequences (RGB). We utilize a sim-
ple naming convention to differentiate between the four syn-
thetic datasets—Syn〈Renderer〉-〈MotionSource〉: SynCG-
MC, SynCG-RGB, SynLWG-MC, SynLWG-RGB. Below, we
provide more details on how each one was created.

Fully CG-based synthetic data We used Blender as
the main 3D scene development and rendering environ-
ment (Eevee engine). MotionBuilder [1] was used as mo-
tion data editing and re-targeting software. We used 32
commercially-available rigged and skinned human charac-
ters [14] (Figure 4) divided into two gender groups—16
male and 16 female. We collected motion capture data
from 26 human actors2 (19 male, 7 female) performing the

2For more information, refer to the supplementary material.
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same eleven activities from Figure 2 and re-targeted it to
the characters from their gender group. Therefore, each
subject’s data were used to animate 16 characters. A 3D
graphics artist designed three virtual environments (visu-
alizations can be found in the supplementary material) re-
sembling the ones from the real data capture. The ground
plane meshes were reconstructed from the shooting loca-
tions through photogrammetry [45]. Various vegetation
(trees and grass) and structure (buildings and fences) assets
were added manually. We randomized the camera location,
the lighting conditions3, and the characters’ clothing colors
to introduce more diversity in the final synthetic images.
The colors were sampled from the real videos.

Each of the three camera views of the SynCG-MC
dataset is represented by 8648 video sequences that con-
tain 10 453 420 frames—equivalent to almost 100 h of data.
In total, this synthetic variant contains 31 million frames,
equivalent to about 290 h of data, roughly 17 times more
than the real dataset.

While collecting the motion capture data, we also cap-
tured RGB videos from 15 subjects. With this data, we
generated another variation of the data rendered from the
CG pipeline, SynCG-RGB. We used VIBE [22] to fit the
SMPL [31] parametric model for each person in the videos
and produce 3D meshes and skeletons. They were used to
animate the synthetic avatars, similar to SynCG-MC. The
rendering pipeline follows that of SynCG-MC.

LWG-generated Data A major drawback of using the
traditional CG pipeline is that it requires time and manual
effort to design virtual scenes and render them. To solve
this problem, we used a neural-based rendering method to
generate videos of the same gestures. Because the model
has been pre-trained on priors to generate video of human
motions, it reduces the processing for generating a single
video sequence.

In particular, we used LWG with Attention [29] to gener-
ate the second set of synthetic videos. LWG is a unified
framework for human image synthesis, including human
motion imitation, appearance transfer, and novel view syn-
thesis, with a 3D body mesh recovery module that utilizes
SMPL [31] to disentangle the pose and shape.

We chose LWG because it allowed us to easily incorpo-
rate motion capture data a second source of human motion
data. The original pipeline relies on a pose reconstruc-
tion model from 2D videos called SPIN [23]. We used
the indoor videos we captured while collecting the mo-
tion capture data to generate a synthetic HAR dataset with
this non-traditional, neural-based method (SynLWG-RGB).
This approach resulted in lower motion quality compared
to that of the motion capture. We also generated a coun-

3The lighting conditions of each scene were determined by randomly
selecting one out of 13 HDRI environmental spherical panoramas down-
loaded from Poly Haven [15]

terpart of the SynLWG-RGB dataset by modifying the orig-
inal LWG pipeline by replacing the motions extracted from
SPIN with SMPL fit on motion capture and CG source im-
ages (SynLWG-MC). We used the SMPL parameters fitted
on raw marker data from motion capture using MoSh [30].
SynLWG-MC had a better quality of motion (less jittery)
compared to SynLWG-RGB.

For both SynLWG datasets, we used front and back ren-
dered images of the 3D human character to generate the
input source images (Figure 4). For each sequence, we
used the same background, avatar, and motion capture se-
quence that was used in the corresponding CG sequence.
All frames were resized to 224 px × 224 px and were gen-
erated at 30 fps.

4. Experiments
We used three deep video activity recognition models in

our experiments: SlowFast [12], MViT [10], and X3D [11].
All models are part of the PyTorch [33] implementation of
SlowFast on GitHub [9].

We trained all models for 300 epochs and used top-1
classification accuracy to compare their performance. We
used Kinetics-400 [21] pre-trained network weights. We
used an SGD optimizer for Slowfast and X3D, and an
AdamW optimizer for MViT with a cosine learning sched-
ule of learning rate decay starting with 0.001 following
[10–12]. We trained on 4 GPUs (batch size 7/GPU).

During training, we employed three 50% probability
augmentation methods: color-jittering (brightness, hue,
contrast, saturation), random Gaussian blur, and sharp-
ness adjustment. We randomly select 64-frame clips from
videos, count frame labels, and assign the label with the
highest count to the clip. All training samples contain at
least 80% of frames with the same label.

During testing, we evaluated all 64-frame clips from the
videos and predicted their labels. Training procedures vary
depending on the dataset. For real data, we exclude test
subjects. For lab-captured datasets, we train on all data and
test on the real data for three subject groups.

4.1. Analysis

This section presents the experiments we conducted us-
ing our dataset suite. They were designed to answer the
following questions:

Does the choice of the ML model make a significant
difference in performance? We set a performance base-
line by training three activity recognition models (SlowFast,
MViT, X3D) on real-world data. Each model is trained on
eleven activity classes from 21 subjects, excluding the test
subjects. Three models were trained for each camera view,
each with a distinct test group.

The results from this experiment are shown in Figure 5.
On average, SlowFast outperforms MViT and X3D for both
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Figure 5. Recognition accuracy achieved by the three activity
recognition models trained and tested on the real-world data us-
ing the full set of eleven activities.
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Figure 6. Evaluation of SlowFast trained on all datasets for eleven
classes.

camera views most of the time. We believe that this re-
sult is because MViT and X3D are designed for high spatio-
temporal resolution samples. Our input sample size of 64
frames with 224 px × 224 px was too small to take advan-
tage of this functionality. Based on these initial results, we
used only SlowFast for the remainder of the experiments.

We also observe that the ground view always performs
better than the aerial one (Figure 5). We believe this is be-
cause the aerial view is recorded with a moving camera,
making it more challenging to learn the task-specific spatio-
temporal features. The ground cameras provide two views
and, therefore, twice as much data. The overhead camera
angle may also degrade performance.

Does the synthetic data rendering technique affect
the model performance? A unique feature of our dataset
suite is that it is generated using two different rendering
techniques. We compared the performance of SlowFast
trained on three datasets, Real, SynCG-MC and SynLWG-
MC for eleven activities. The models were tested on three
real test groups, excluding overlaps with the training data.

The results in Figure 6 show that the models trained on
real data consistently outperform those trained on synthetic
data by 4-8%. SynCG-MC data performs strictly better than
SynLWG-MC, suggesting the distribution gap between the
data generated by the standard CG-based method for ren-
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Figure 7. Evaluation of SlowFast trained on real and synthetic
datasets for five gesture classes – 15 subjects. Comparison be-
tween different motion data sources.

dering and the real data is smaller than the one between the
LWG approach and the real data.

Does improving the quality of the motion in the syn-
thetic training data improve the performance? Another
property of our dataset suite is that we used two different
motion sources to generate the synthetic dataset. Motion
capture systems collect the skeletal data in 3D, whereas
the motion extracted from the RGB video extrapolates the
3D information from the 2D data. Therefore, the syn-
thetic data generated using motion capture data has supe-
rior quality. We compared the performance of SlowFast
trained on Real, SynCG-MC, SynCG-RGB, SynLWG-MC,
and SynLWG-RGB. Because SynCG-RGB has only 15 sub-
jects, we also limited the other datasets to 15 subjects. We
evaluated the models for the five gesture-only classes.

Figure 7 show that the model trained on real data per-
forms the best for both views. For ground view data, the
motion source does not significantly influence model per-
formance in both CG and LWG-rendered videos. In aerial
data, motion capture-generated datasets outperform video-
extracted motion datasets, likely because ground cameras
focus on lateral axes, aligning with pose reconstruction
methods. In contrast, aerial views encompass diverse an-
gles, making the quality of the motion more important.

Can we combine synthetic training data with a lim-
ited amount of real training data to improve perfor-
mance? To assess this hypothesis, we created two sub-
sets from the real dataset that include 5- and 10-subject
data. Then, we used them to train/fine-tune three models—a
model untrained on any of our datasets and two pre-trained
on SynCG-MC and SynLWG-MC. Our results (Figure 8) in-
dicate that pre-training a model on synthetic data and subse-
quently fine-tuning it on a small amount of real data outper-
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Figure 8. Accuracy of SlowFast pre-trained on synthetic data and
fine-tuned on limited amounts of real data. Experiments are based
on eleven activity classes.
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Figure 9. Camera view change analysis. The recognition accuracy
delivered by SlowFast trained on five (gestures only) and eleven
activity classes and tested on the opposing camera view data.

forms a model trained only on the exact small amounts of
real data. That is valid for both camera views. Furthermore,
the models pre-trained on SynCG-MC consistently outper-
form the ones pre-trained on SynLWG-MC. The improve-
ment is considerably more subtle for the ground view when
the larger (10 subjects) real subset is used. The overall lim-
ited diversity of the static ground view data most probably
causes that effect, which underlines the importance of the
synthetic HAR datasets for improving the performance on
more dynamic scenes, such as the aerial view.

Can the models trained on one camera view transfer
to a novel one? In this experiment, we evaluated the ro-

bustness of the model trained on our datasets to the change
of camera viewpoints. We did that by cross-view evalu-
ation. We ran two sets of experiments, one with the five
gesture-only datasets and the other with all eleven behaviors
for Real, SynCG-MC and SynLWG-MC datasets excluding
any overlaps with the test set.

The results in Figure 9 show that the model trained on
the aerial view is more robust to view change than the model
trained on the ground view for all types of training data. We
hypothesize that two factors are responsible for this differ-
ence in performance. First, while the ground cameras only
see the subject from the front, drone cameras see the sub-
ject from all sides. This more varied viewpoint allows the
model trained on aerial data to transfer to the ground data
more easily than in the opposite direction. Second, the dif-
ference in the sizes of the ground and the aerial datasets play
a role: because the ground view data is twice as large as the
aerial view data, it is harder for the model trained on ground
view data to transfer to the aerial view.

5. Conclusion

In this paper, we introduced a new HAR dataset suite
containing real and synthetic data captured from ground
and dynamic aerial camera perspectives. Synthetic data was
generated using two rendering methods: standard computer
graphics (CG) and neural-based rendering (LWG). We eval-
uated synthetic data performance against baseline models
trained on real-world data, yielding the following findings:
(1) Training data rendering method matters (CG outper-
forms LWG). (2) Motion quality is more crucial than render-
ing quality for model performance. (3) Fine-tuning models
with a smaller batch of real data after pre-training on syn-
thetic data improves performance, sometimes surpassing
models trained solely on the full real dataset. (4) Synthetic
data training with diversity enhances model robustness to
changes in camera view compared to real data training. In
summary, the quality of synthetic data is vital for bridg-
ing the domain gap with real-world data, and even small
amounts of real-world data can boost performance through
fine-tuning. Future experiments should explore broader ac-
tivities, alternative synthetic data forms, and the impact of
fine-tuning and data mixing ratios.
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