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Abstract

Contrastive image representation learning through in-
stance discrimination has shown impressive transfer per-
formance. Recent strategies have focused on pushing the
limit of their transfer performance for dense prediction
tasks, particularly when conducting pre-training on scene
images with complex structures. Initial approaches em-
ploy pixel-level contrastive pre-training to optimize dense
spatial features, while subsequent methods utilize region-
mining algorithms to capture holistic regional semantics
and address the issue of semantically inconsistent scene im-
age crops. In this paper, we revisit pixel-level contrastive
pre-training on scene images. Contrary to the assumption
that pixel-level learning falls short in achieving these objec-
tives, we demonstrate its under-explored potentials: (1) it
can effectively learn holistic regional semantics more sim-
ply compared to region-level methods, and (2) it intrinsi-
cally provides tools to mitigate the impact of semantically
inconsistent views involved with scene-level training im-
ages. We propose PixCon, a pixel-level contrastive learning
framework, and explore two variants with different positive
matching strategies to investigate the potential of pixel-level
learning. Additionally, when PixCon incorporates a novel
semantic reweighting approach tailored for scene image
pre-training, it outperforms or matches the performance of
previous region-level methods in object detection and se-
mantic segmentation tasks across multiple benchmarks.1

1. Introduction
Contrastive image representation learning [1–3,5,15,16,

34, 38] has remarkably advanced transfer learning for vi-
sion tasks. Such contrastive learning methods conduct in-
stance discrimination [38] by pulling closer the features of
two augmented views of the same image (positive pairs)
while repelling them from those of different images (neg-
ative samples). As such methods work with global average-
pooled feature vectors of random image crops, they are of-
ten referred to as image-level learning methods [35, 36, 40,

1Code available at https://github.com/pangzss/PixCon
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Figure 1. An illustration of the problems this paper studies. Girds’
colors roughly indicate pixels’ associated semantic classes based
on the two input views for illustration purposes. The cross-view
pixels connected by solid lines with round markers indicate posi-
tive matches. The matching process for pixel-level learning imi-
tates the similarity-based matching from [35]. Region-level meth-
ods are motivated by the shown assumptions about pixel-level
learning and rely on region-mining algorithms as tools to perform
learning based on regional features. In this paper, we question
these assumptions about pixel-level learning and revisit it to fur-
ther exploit its potential.

45]. Image-level methods learn representations promising
for image classification but less satisfactory for dense pre-
diction tasks such as object detection [30] and semantic seg-
mentation [26]. Therefore, there have been various efforts
to leverage more spatial information for better dense predic-
tion performance [19, 21, 23, 31, 35, 36, 40, 41, 45], usually
referred to as dense learning methods due to their focus on
dense spatial features.

Besides, image-level learning methods primarily ben-
efit from meticulously curated datasets, e.g., ImageNet
[10]. However, they are insufficient for leveraging com-
plex scene-centric images [23,33,36,40] such as those from
the MS COCO dataset [24]. Overall, two issues limit their
performance on scene images. Firstly, it is challenging for
image-level learning to exploit the rich semantic informa-
tion in multi-object scene images. Secondly, the random
views from scene images can be semantically inconsistent
as they often encompass different semantic contents, pro-
moting the correlation between representations of different
objects or objects and backgrounds. An example of seman-
tically inconsistent views is provided in Figure 1, where the
panda only appears in the first view. Due to their wise uti-
lization of spatial information, dense learning methods have
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proven effective in dealing with these issues.
Dense learning methods are usually categorized as pixel-

level [29, 35] or region-level [19, 21, 23, 31, 36, 40, 41, 45],
as the former learns with individual spatial feature vec-
tors, whereas the latter works with selective aggregations
of them. Pixel-level methods rely on conceptually simple
ways to retrieve pixel-level positive pairs but are usually as-
sumed by some work [23, 36, 40, 45] to be not capable of
capturing holistic regional semantics. Region-level meth-
ods are usually equipped with various region-mining algo-
rithms such as unsupervised object detection [5, 15, 27, 32]
or segmentation [2, 13] to obtain regions of interest that
are used to pool spatial features. A conceptual illustra-
tion of their positive matching processes is provided in Fig-
ure 1. Either pixel-level or region-level learning helps bet-
ter exploit complex scene images compared to image-level
learning. In contrast to pixel-level methods, with the help
of region-mining algorithms, region-level methods usually
come with natural mitigation to the problem of semantically
inconsistent views cropped from scene images.

In this paper, we take a step back to revisit pixel-level
learning with scene images. We aim to show that: (1)
the potential of previous pixel-level baselines is under-
exploited; (2) pixel-level learning can also encourage the
emergence of regional semantics; and (3) pixel-level learn-
ing also naturally comes with tools to mitigate the problem
of semantically inconsistent scene crops. Specifically, we
make the following contributions:

• We first propose a pixel-level contrastive learning
framework, PixCon-Sim, which improves upon a pre-
vious pixel-level learning method, DenseCL [35], by
aligning its training pipeline with that of state-of-the-
art (SOTA) region-level methods [20,21,23,36,40,45]
and achieves competitive transfer performance com-
pared to SOTA region-level methods.

• We then investigate the potential of pixel-level learning
by comparing two positive matching schemes, namely
similarity-based [35] and coordinate-based [29, 36],
with their corresponding models named PixCon-Sim
and PixCon-Coord. We show that the similarity-based
scheme intrinsically encourages the learning of re-
gional semantics that region-level methods focus on.

• Finally, we propose PixCon-SR with a Semantic
Reweighting strategy for tackling the problem of se-
mantically inconsistent scene crops by simultaneously
utilizing pixel spatial coordinates and pixel feature
similarities. PixCon-SR achieves better or competi-
tive transfer performance compared to current SOTA
methods on dense prediction tasks, including PAS-
CAL VOC object detection [12], COCO object detec-
tion and instance segmentation [24], PASCAL VOC
semantic segmentation [12] and Cityscapes semantic

segmentation [9].

2. Related Work
Image-level Self-Supervised Learning. Initial efforts in
self-supervised image representation learning train models
to predict colors [44], relative positions [11], or rotations of
pixels [14]. Recent work exploits the task of instance dis-
crimination [38] based on contrastive learning, where fea-
tures of two augmented views of the same image are op-
timized to be closer than those of different images in the
dataset [3, 5, 16]. The commonly utilized InfoNCE loss
[28] can be decomposed into alignment and uniformity loss
terms [34]. BYOL [15] removes the uniformity term and
only aligns positive pairs by applying specific strategies to
avoid the trivial solution that the network outputs the same
values for all inputs.

The methods above work on the average-pooled versions
of spatial features and are thus referred to as image-level
learning methods. The resulting representations are promis-
ing for image classification but less impressive in terms of
dense prediction tasks, as the spatial features are not directly
optimized to be discriminative enough to provide a decent
starting point for such downstream tasks.
Dense Self-Supervised Learning. Current efforts in craft-
ing better representations for dense prediction tasks usu-
ally focus on exploiting more spatial information. Pixel-
level methods usually find cross-view pixel-level positive
matches. Pinheiro et al. [29] propose to match cross-
view pixels with the spatial coordinate. DenseCL [35] in-
stead finds matches based on cross-view feature similari-
ties. Later work usually considers such pixel-level learn-
ing as limited and proposes to work on region-level features
to tap into more holistic spatial information. Such meth-
ods usually require region-mining algorithms to produce
region-level features, based on which contrastive learning
[5] or self-distillation [15] is performed. Some methods
[23, 31, 40] apply unsupervised object region proposal al-
gorithms [5, 15, 27, 32] to directly generate object-centric
crops. Some methods utilize segmentation masks to per-
form selective pooling of spatial feature maps. Specifically,
Henaff et al. [20] applies the FH algorithm [13] to obtain
segmentation masks. Feature-level KMeans [25] is used
by [21] to generate segmentation masks on the fly, result-
ing in an alternating training scheme. Learnable prototypes
are applied by [36, 45] to produce masks. PixPro [41] con-
nects pixel-level and region-level learning by first consider-
ing spatially close cross-view pixel features as matches and
transforming one of the pixel features into a region-level
feature using its self-attention map. Hence, we still con-
sider it a region-level method.

Despite the common assumption made by some region-
level methods [23, 36, 40, 41, 45] that pixel-level learning
only focuses on local rather than regional semantics, we
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will show that pixel-level learning can also promote learn-
ing regional semantics but without using region-mining al-
gorithms, and can eventually obtain decent transfer perfor-
mance as well.
Learning with Scene-Centric Images. Compared to
image-level learning methods, dense representation learn-
ing has proven to be more effective when it comes to pre-
training with scene-centric images [20,21,23,33,35,36,39,
45] such as those from MS COCO [24]. On the one hand,
such methods can leverage richer spatial information com-
pared to image-level methods. On the other hand, region-
level methods, with the help of their region-mining algo-
rithms, can often readily handle the situation where two ran-
dom crops of a scene image are semantically inconsistent,
but at the cost of complicated pre-processing [20,23,33,39],
nontrivial computational burden during training [21], or less
transferrable features [36,45] compared to pixel-level meth-
ods. However, as we will show, pixel-level learning also
provides natural tools to mitigate the negative influence of
semantically inconsistent views and does not resort to any
region-mining algorithms.

3. Preliminaries

This section reviews two popular image-level learning
pipelines, MoCo-v2 [16] and BYOL [15], where the latter
is the default pipeline of most of the region-level methods.
We also introduce a variant of MoCo-v2 with a similar ar-
chitecture to that of BYOL, coined MoCo-v2+ by [22].

Common in MoCo-v2 and BYOL, each input image
is augmented into two different views x1 ∼ T1(x) and
x2 ∼ T2(x), which are then fed into the online encoder fθ
and the target encoder fξ, where θ represents the learnable
parameters and ξ is the exponential moving average of θ.
The encoders are backbone networks, e.g., ResNet [18], ap-
pended with two-layer multilayer perceptions (MLPs). The
MLPs are usually called projection heads. The fθ in BYOL
has an additional two-layer MLP called predictor, result-
ing in an asymmetric structure between the two encoders.
Moreover, MoCo-v2 feeds each view into either the on-
line or the target encoder to compute a loss Limg(x1,x2),
while BYOL sends each view to both encoders and sym-
metrizes the loss computation w.r.t. the two views, i.e.,
Limg(x1,x2) + Limg(x2,x1). Huang et al. [22] add to
MoCo-v2 the asymmetric encoder structure, where the on-
line encoder contains a predictor, and the symmetrized loss
with

Limg(x1,x2) = − log
exp(q·k+/τ)∑

k∈{k+}∪K

exp(q·k/τ)
, (1)

where q = fθ(x1)/∥fθ(x1)∥2 is the query feature and
k+ = fξ(x2)/∥fξ(x2)∥2 is the positive key feature. K is

Global Proj.
Backbone

Dense Proj.

Global Pred.

Dense Pred.

Global Proj.
Backbone

Dense Proj.

Figure 2. Both the online and the target encoders output two sets
of outputs: global image-level outputs (q,k) and dense outputs
(U,V). The dense outputs are of size S×S×C before flattening
the spatial dimensions. We leave out the visualization of global
features and dense features’ last dimension (C).

the set of fξ’s outputs from other images which are q’s neg-
ative key features stored in a fixed-length queue [16], and
τ is the temperature coefficient. Limg(x2,x1) is computed
by obtaining the query from x2 and the positive key from
x1. The loss in Eq (1) is usually referred to as the InfoNCE
loss [28]. In contrast, BYOL only aligns the positive fea-
tures by maximizing their cosine similarities [15].

Besides, BYOL also applies a momentum ascending
strategy for updating ξ and the synchronized batch normal-
ization [43] as opposed to the shuffling batch normaliza-
tion [16] in MoCo-v2. When MoCo-v2 is equipped with
these BYOL-style designs, it is called MoCo-v2+ in [22],
demonstrating similar linear probing and transfer learning
performance to that of BYOL but better than that of MoCO-
v2. Moreover, SimSiamese [6] is a simplified version of
BYOL, achieving better performance under similar training
settings. For simplicity, we refer to BYOL, MoCo-v2+, and
SimSiamese all as BYOL pipelines if not stated otherwise.

4. Proposed Method
Based on MoCo-v2+, we add another asymmetric pre-

diction structure to the backbone that outputs dense spatial
feature maps, or pixel-level2 features [36,40,45]. The online
encoder fθ now gives two sets of feature vectors q ∈ RC

and U ∈ RS2×C (after flattening the first two dimensions),
where C is the feature dimensionality, and S is the length
and width of the dense feature maps, which are set equal for
simplicity. Similarly, the target encoder fξ gives k ∈ RC

and V ∈ RS2×C . Figure 2 provides a schematic illustration
of the forward process. Based on this forward pipeline, we
propose different variants of a pixel-level contrastive learn-
ing framework, namely PixCon, with the loss function be-
ing

L(x1,x2) = Limg(x1,x2) + Lpix(x1,x2), (2)

where Lpix(x1,x2) is the pixel-level contrastive loss to be
defined. The final loss is symmetrized w.r.t. the two views,

2Pixels in this context refer to spatial components of dense feature maps
as opposed to those of the input RGB images.
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Figure 3. An illustration of different PixCon variants’ matching
schemes. The red bounding boxes indicate the intersected area
of the two views. Girds’ colors roughly indicate pixels’ associated
semantic classes for illustration purposes. We treat view 1 as the
query view and view 2 as the key view. PixCon-Sim’s match-
ing scheme is the similarity-based matching in Eq. (3). PixCon-
Coord uses the matching function in Eq. (5), and the involved in-
verse augmentation includes RoIAlign [17] and optional horizon-
tal flipping depending on if the input is flipped. PixCon-SR uses
similarity-based matching but applies the semantic reweighting in
Eq. (7). For the illustration of PixCon-SR, solid lines indicate
matches with query pixels in the red bounding box, dashed lines
represent the rest of the matches, and different line widths indicate
the magnitudes of semantic weights. The matches are drawn for
illustration purposes, and not all are drawn for clarity.

i.e., L(x1,x2) + L(x2,x1).

4.1. PixCon-Sim

Let the backbone networks’ outputs be F ∈ RS2×C and
F′ ∈ RS2×C for the query and the key views, respectively,
the spatial positions of features in F are matched to those in
F′ by

l(i) = argmax
j

sim(F(i),F′(j)), (3)

where i, j ∈ [0, S2 − 1] and sim(a,b) = a⊤b/∥a∥∥b∥.
The similarity-based matching scheme aims to bootstrap
feature similarities, i.e., features with better semantic cor-
relation give more semantically meaningful matches, which
are in turn used to strengthen the correlation of such fea-
tures. Similar bootstrapping strategies are also applied in
region-level methods [21, 36, 41, 45].

With similarity-based matching, the pixel-level con-
trastive loss is then computed as follows

Ll
pix(x1,x2) = − 1

S2

∑
i

log
exp(ui·v+

l(i)/τ)∑
v∈{v+

l(i)
}∪V

exp(ui·v/τ)
, (4)

where ui = U[i] ∈ RC , v+
l(i) = V[l(i)] ∈ RC , and V

contains image-level negative key features from other im-
ages by following [35] for computational efficiency. The
negative keys are stored in a fixed-length queue.

However, the matching function in Eq. (3) hardly makes
sense at the beginning of training. As demonstrated in
DenseCL [35], jointly conducting image-level and pixel-
level learning can help mitigate the problem, as image-
level learning also encourages the emergence of semantic
relations among spatial features [4, 40]. Besides, image-
level learning is also commonly conducted along with dense
learning [23, 40, 41] and brings benefits. Therefore, by us-
ing Ll

pix(x1,x2) as the pixel-level loss in Eq. (2) and sym-
metrize the resulting loss w.r.t. the two views, we get the
final loss for PixCon-Sim, i.e., pixel-level contrastive learn-
ing with similarity-based matches. When using the MoCo-
v2 pipeline instead of MoCo-v2+ and not using the sym-
metrized loss, PixCon-Sim becomes DenseCL [35].

4.2. PixCon-Coord

Though similarity-based matching gives increasingly
better matches as the training proceeds [35], it still re-
trieves semantically inconsistent matches, especially at the
beginning of training. To further investigate its pros and
cons, we compare it with the coordinate-based matching
scheme [29, 36, 41], which matches two cross-view spatial
features only if they have (approximately) the same coor-
dinates when mapped back to the input image space, thus
guaranteeing the semantic consistency among the positive
matches.

Therefore, we propose another variant of PixCon using
coordinate-based matching based on the inverse augmen-
tation [36], which involves RoIAlign [17] and horizontal
flipping if the input image has been flipped. The schematic
illustrations of both the similarity-based matching and the
coordinate-based matching are provided in Figure 3.

By slightly overloading the notations U and V as the
pixel-level outputs from the inverse augmentation, we have
the corresponding pixel-level loss Lc

pix(x1,x2), which re-
places the matching function l in Eq. (4) with c that is de-
fined as

c(i) = i, (5)

which connects the same positions in the two views’ fea-
ture maps aligned by the inverse augmentation. By us-
ing Lc

pix(x1,x2) as the pixel-level loss in Eq. (2) and sym-
metrize the resulting loss w.r.t. the two views, we get the
final loss for PixCon-Coord, i.e., pixel-level contrastive
learning with coordinate-based matches.

4.3. PixCon-SR

As shown in Figure 3, the two augmented views of the
input multi-object image are semantically inconsistent, i.e.,
the panda only appears in the first view. Thus, similarity-
based matches for such view-specific objects’ pixels will
have different semantic classes.

While coordinate-based matching helps mitigate such
false matches, it only matches cross-view pixel-level fea-
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tures at (approximately) the same spatial location in the in-
put image. As a result, it fails to relate semantically related
but spatially distant features, whereas pulling such features
closer is crucial to learning regional semantics for better
transfer performance [20, 23, 36, 40].

We notice that although similarity-based positive
matches are cross-view features with maximal similarities,
their similarities can still be low, indicating weak semantic
correlations. However, some semantically related features
can also have low similarities, constituting hard positive
pairs that are important to leverage for better feature qual-
ity [42]. Therefore, we choose to fully trust a positive match
whose query pixel lies in the intersection of two views re-
gardless of the query-key similarity. We call such queries
the “in-box” queries as the intersection area is always a box.
The matched key for an in-box query is highly likely to
be meaningful as the query is guaranteed to have seman-
tic correspondences in the key view, e.g., the same pixel
itself in the key view in the worst case. We then reweight
the matches with “out-of-box” queries by their query-key
similarities readily available during the matching process.
A schematic illustration of the reweighting process is pro-
vided in Figure 3.

We term the consequent reweighting strategy semantic
reweighting, with which the pixel-level loss becomes

Ll,w
pix (x1,x2) = −

∑
i

w(i)

A
log

exp(ui·v+
l(i)/τ)∑

v∈{v+
l(i)

}∪V

exp(ui·v/τ)
, (6)

where A =
∑
i

w(i) is the the normalization factor. Let Y

be the set of indices of the in-box query features, which can
be easily obtained during data augmentation, we compute
w(i) by

w(i) =

1, if i ∈ Y .
norm(max

j
sim(F(i),F′(j)))α, otherwise. (7)

where norm(x) = (x−min
j /∈Y

w(j))/(max
j /∈Y

w(j)−min
j /∈Y

w(j))

guarantees the continuity of weights and enlarges their con-
trast, and α is for further sharpening the contrast and is
set to 2 by default. Note that the formulation of Eq. (6) is
not involved with the inverse augmentation, which is more
computationally expensive, i.e., U and V are dense outputs
from fθ and fξ. By using Ll,w

pix (x1,x2) as the pixel-level
loss in Eq. (2) and symmetrize the resulting loss w.r.t. the
two views, we get the final loss for PixCon-SR, i.e., pixel-
level contrastive learning with semantic reweighting.

PixPro [41] also simultaneously utilizes spatial informa-
tion and feature similarities. However, they use spatial in-
formation to retrieve positive matches, whose quality highly
depends on the pre-defined size of a spatial neighborhood.

We impose no spatial constraint on the positive matches at
all and only bootstrap feature similarities. Due to the use
of spatially close positive matches, they need to use self-
attention maps to relate spatially distant pixels, whereas
we merely rely on pixel-level features together with default
random cropping and the inherent uncertainty of similarity-
based matching to achieve this purpose.

5. Experiments

5.1. Experimental Settings

Datasets. For pre-training, as we are mainly interested in
pre-training with real-world scene images containing di-
verse and complex contents, we use the training set of MS
COCO [24], which contains ∼118k images and is broadly
used for scene-level pre-training. COCO is also widely used
for benchmarking dense prediction tasks such as object de-
tection, instance segmentation, and semantic segmentation.
Moreover, a COCO image contains 7.3 objects on aver-
age, which is in stark contrast to meticulously curated Im-
ageNet [10] images, for which the number of objects per
image is 1.1 [35].
Architecture. We follow the architecture of MoCo-V2+
[22]. Following [35], we add dense learning branches to the
global learning branches. Specifically, the online encoder
has a ResNet50 [18] backbone, which is appended with a
global projection head and a dense projection head. The
former has two fully connected layers, while the latter has
two 1× 1 convolutional layers. Both heads have batch nor-
malization followed by ReLU in between the two layers.
For both heads, The hidden dimensionality and the output
dimensionality are 2048 and 128, respectively. The global
and dense heads are appended with their respective predic-
tors, which have the same architectures as the heads with
an input dimensionality of 128. The target encoder has the
same architecture as the online encoder except that it does
not have predictors.
Data Augmentation. The pre-training data augmentation
follows [15], where each image is randomly cropped into
two views which are then resized to 224×224, followed by
random horizontal flipping, color distortion, Gaussian blur,
and solarization. Crops without overlapping are skipped.
Pre-training setup. Following [35], the negative-storing
queues for both global learning and dense learning are of
length 65536. The momentum for updating the target en-
coder is initially set to 0.99 and increased to 1 at the end
of training [15]. Synchronized batch normalization [43] is
used for all batch normalization layers [15]. The tempera-
ture τ is set to 0.2. We use the SGD optimizer with an initial
learning rate of 0.4 and a cosine learning rate decay sched-
ule. We set the weight decay to 0.0001 and the momentum
for the optimizer to 0.9. We train each model for 800 epochs
on COCO with 4 GPUs and a total batch size of 512. The
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Table 1. Main transfer results. All self-supervised models have been pre-trained for 800 epochs on COCO, except that DetCon has been
trained for 1000 epochs. Among all the methods, MoCo-v2 and DenseCL are based on the MoCo-v2 pipeline, while the others are based
on the BYOL pipeline. Refer to Section 4 for more details on the differences between the pipelines. We also categorize the methods into
different types based on their training strategies, including image level, region level, and pixel level. Refer to Table 2 for more information
about region- and pixel-level methods. On all the benchmarks, our method shows strong transfer performance. We use boldface to indicate
single best results but underline multiple best results that have the same value. (†: re-impl. w/ official weights. ‡: full re-impl.)

Method Type
VOC detection COCO detection COCO instance seg. City. Seg. VOC Seg.

AP AP50 AP75 APbb APbb
50 APbb

75 APmk APmk
50 APmk

75 mIoU mIoU

Random init. [35, 36] - 32.8 59.0 31.6 32.8 50.9 35.3 29.9 47.9 32.0 65.3 39.5

MoCo-v2 [5]
Image

54.7 81.0 60.6 38.5 58.1 42.1 34.8 55.3 37.3 73.8 69.2
BYOL‡ [15] 55.7 81.8 61.6 39.5 59.4 43.3 35.6 56.6 38.2 75.3 70.2
MoCo-v2+‡ [22] 54.6 81.4 60.5 39.8 59.7 43.6 35.9 57.0 38.5 75.6 71.1

ORL† [40]

Region

55.8 82.1 62.3 40.2 60.0 44.3 36.4 57.4 38.8 75.4 70.7
PixPro [41] - - - 40.5 60.5 44.0 36.6 57.8 39.0 75.2 72.0
DetCon [20] - - - 39.8 59.5 43.5 35.9 56.4 38.7 76.1 70.2
UniVIP [23] 56.5 82.3 62.6 40.8 - - 36.8 - - - -
Odin‡ [21] 56.9 82.4 63.3 40.4 60.4 44.6 36.6 57.5 39.3 75.7 70.8
DenseSiam [45] 55.5 81.1 61.5 - - - - - - - -
SlotCon† [36] 54.5 81.9 60.3 40.8 61.0 44.8 36.8 58.0 39.5 76.1 71.7

DenseCL [35]

Pixel

56.7 81.7 63.0 39.6 59.3 43.3 35.7 56.5 38.4 75.8 71.6
PixCon-Sim (ours) 57.3 82.4 63.9 40.5 60.5 44.2 36.6 57.5 39.2 76.1 72.6
PixCon-Coord (ours) 57.2 82.6 63.4 40.3 60.3 43.9 36.5 57.4 39.2 75.8 72.3
PixCon-SR (ours) 57.6 82.8 64.0 40.8 61.0 44.8 36.8 57.9 39.6 76.6 73.0

training is conducted under the MMSelfSup framework [8].
Evaluation settings. To evaluate feature transferability,
we follow previous work [3, 16, 23, 35, 36] to fine-tune the
pre-trained models on target downstream tasks and evalu-
ate the resulting models by reporting the metrics used in the
corresponding tasks, including VOC object detection [12],
COCO object detection, COCO instance segmentation [24],
VOC Semantic segmentation [12], and Cityscapes semantic
segmentation [9].

For VOC object detection, We fine-tune a Faster R-CNN
with a C4-backbone. The training is done on the VOC
trainval07+12 set for 24k iterations. The evaluation is
done on the VOC test2007 set. Both training and evalu-
ation use the Detectron2 [37] code base.

For COCO object detection and instance segmentation,
we fine-tune a Mask R-CNN with an FPN backbone on
COCO’s train2017 split with the standard 1× schedule
and evaluate the fine-tuned model on COCO’s val2017
split. Following previous work, we synchronize all the
batch normalization layers. Detectron2 is used to conduct
the training and evaluation.

We strictly follow the settings in [36] for VOC and
Cityscapes semantic segmentation. Specifically, an FPN
is initialized with the pre-trained model, fine-tuned on the
train aug2012 set for 30k iterations, and evaluated on
the val2012 set. For Cityscapes, we conduct fine-tuning
on the train fine set for 90k iterations and evaluate the

Table 2. Comparisons between region- and pixel-level meth-
ods. While most of the region-level methods require object pri-
ors, multi-stage training, or prototype learning, pixel-level meth-
ods need none of them.

Method Scheme
Obj.
Prior

Multi-
stage

Proto.

ORL [40]

Region-level

✓ ✓ ×
PixPro [41] × × ×
DetCon [21] ✓ × ×
UniVIP [23] ✓ × ×
Odin [21] × ✓ ×
DenseSiam [45] × × ✓
SlotCon [36] × × ✓

DenseCL [35]
Pixel-level

× × ×
PixCon-∗ × × ×

fine-tuned model on val fine. The training and evalua-
tion are conducted using MMSegmentation [7].

The results, including ours and reproducible previous
methods’, are reported as the average of 5, 3, 3, and 5 in-
dependent runs for VOC detection, COCO detection and
instance segmentation, Cityscapes segmentation, and VOC
segmentation, respectively.
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5.2. Main Results

As discussed in Section 4.1, PixCon-Sim boils down to
DenseCL [35] when not applying the BYOL pipeline,
which is, however, invariantly used by the region-level
methods in Table 2. As per Table 1, PixCon-Sim out-
performs DenseCL across all the benchmarks. Besides,
with a simple pixel-level learning algorithm, PixCon-Sim
is already competitive compared to region-level methods
across all the benchmarks. PixCon-Coord, with a geometric
matching scheme, is also competitive.

For all four tasks, PixCon-SR brings consistent perfor-
mance boosts to its image-level baseline MoCo-v2+ and
surpasses previous region-level methods as well as the other
two PixCon variants. Though PixCon-SR’s performance
on COCO detection and instance segmentation is similar
to that of UniVIP [23] and SlotCon [36], it has better per-
formance in terms of the other three tasks. It achieves this
without relying on any region-mining algorithms, most of
which resort to complex preprocessing or computationally
expensive multi-stage training. Specifically, for prototype-
based methods, i.e., DenseSiamese [45] and SlotCon [36],
their transfer performance on VOC detection is conspicu-
ously lower than that of the other methods. This is likely
caused by the fact that the dense features are trained to clus-
ter around a fixed number of prototypes, which may cause
the features to be overfitted to the prototypes and thus may
hurt the transfer performance due to overly small intra-class
variances [46]. The pre-training based on a specific number
of prototypes also struggles to serve multiple downstream
tasks equally well [36]. Overall, Table 1 sufficiently indi-
cates the potential of pixel-level learning and the effective-
ness of PixCon-SR.

5.3. Ablation Study

In this section, we provide detailed quantitative and qual-
itative analyses of the key components in our PixCon frame-
work, namely the two pixel-level feature matching schemes
as well as the semantic reweighting strategy. We also ex-
plore how the additional blocks that build MoCo-v2 into
MoCo-v2+ affect the transfer performance of PixCon in the
supplementary material.
Similarity-based matching encourages learning regional
semantics. Compared to similarity-based matching used
for PixCon-Sim, the coordinate-based matching of PixCon-
Coord guarantees the semantic consistency between the
positive matches, as the matches represent the same patch in
the image, which undergoes different augmentations. How-
ever, such strict geometric matching does not encourage re-
lating spatially distant pixels associated with the same ob-
ject and is thus limited in learning regional semantics.

Though similarity-based matches do not always enjoy
such geometric proximity, their semantic consistency be-
comes increasingly better as training proceeds if the query

MoCo-v2+ PixCon-Sim PixCon-Coord PixCon-SR SlotCon

Figure 4. Visualizations of self-attention maps. For each row, the
first image is the original image, with the red dot highlighting the
pixel whose feature is used to calculate the cosine-similarity-based
self-attention maps. The subsequent images are self-attention
maps using different models’ features. See main texts for anal-
yses.

feature has semantic correspondences in the key view [35].
For query pixels not lying in the intersection of two views,
i.e., out-of-box queries, their matches in the key view are
guaranteed to be spatially apart from them. When such
matches are semantically related, they could strengthen the
correlation of spatially distant pixels belonging to the same
semantic group. A qualitative investigation in the form of
self-attention maps is provided in Figure 4, where seman-
tically related but spatially distant pixel features are more
holistically correlated for PixCon-Sim than for PixCon-
Coord and MoCo-v2+. Moreover, Table 1 shows that
PixCon-Sim delivers better transfer performance compared
to PixCon-Coord, which may be attributed to the better
regional semantics made possible by the similarity-based
matching.
Semantic reweighting helps learn better regional seman-
tics. The semantic reweighting strategy of PixCon-SR
in Section 4.3 aims to discount the influence of inaccu-
rate matches caused by semantically inconsistent views of
scene images while utilizing as many semantically consis-
tent matches as possible. Therefore, we expect the result-
ing features to be less correlated when they are associated
with different semantic classes and have better intra-class
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Figure 5. Visualizations of semantic weights. The first row shows
the raw images with the blue bounding boxes indicating the query
views and yellow bounding boxes the key views. The second row
shows the heatmap of semantic weights for the query pixels (in
the blue bounding box), where the red bounding boxes indicate
the intersection between query and key views. All images and
heatmaps are resized to the same size for visualization purposes.

coherence. Indeed, Figure 4 shows that PixCon-SR’s self-
attention maps have better localization of semantic objects
compared to PixCon-Sim (less attention on features of dif-
ferent semantic classes) while guaranteeing a sufficient cov-
erage of the whole objects (better intra-class cohesion) even
when compared to the region-level method SlotCon [36].
Moreover, as shown in Table 1, PixCon-SR achieves better
transfer performance compared to PixCon-Sim and PixCon-
Coord as well as previous region-level methods, which fur-
ther indicates the efficacy of the semantic reweighting strat-
egy in helping learn decent regional semantics crucial for
better transfer performance. Figure 5 provides visualiza-
tions of the semantic weights for the query features, where
we can observe that the semantic contents not shared by
the two views are given small weights and out-of-box query
pixels with semantic correspondences in the key view are
assigned with nontrivial weights.
Designs of semantic reweighting. In Eq. (7), spatial infor-
mation is used to fully utilize matches with better guaran-
tees for their semantic consistency regardless of their fea-
ture similarities, as their queries, i.e., in-box queries, are
present in the two views’ intersected part and thus always
have semantic correspondences in the key view. Besides,
feature similarities are used to reweight the matches with
out-of-box queries to diminish the effect of semantically in-
consistent ones while exploiting those that are still informa-
tive. Table 3 ablates the impact of these two tools. Inter-
estingly, when using similarity-based matches with in-box
queries alone, PixCon-SR (Spa.) achieves slightly better
performance than PixCon-Coord, which also merely uti-
lizes matches having in-box queries but with coordinated-
based matching. This indicates that similarity-based match-
ing provides matches with sufficient semantic consistency.
While only using either spatial information or feature simi-
larities does not give apparent performance gain, combining

Table 3. We ablate the influence of the tools used to formu-
late the semantic weights in Eq. (7). PixCon-SR (Spa.) means
only matches whose query features lie in two views’ intersected
parts are accepted, and other matches have weights 0. Here
only the spatial information is used for formulating the semantic
weights. PixCon-SR (Sim.) means only the similarities between
the matched features are used as semantic weights regardless of
whether the query features exist in the two views’ intersected area.
PixCon-SR (full) utilizes both tools. The effect of the sharpening
factor α in Eq. (7) is also investigated here.

Method α
COCO VOC Seg.

APbb APmk mIoU

PixCon-Sim - 40.5 36.6 72.6
PixCon-Coord - 40.3 36.5 72.3
PixCon-SR (Spa.) 2 40.5 36.5 72.5
PixCon-SR (Sim.) 2 40.3 36.4 72.3
PixCon-SR (Full) 2 40.8 36.8 73.0
PixCon-SR (Full) 1 40.5 36.5 73.2
PixCon-SR (Full) 4 40.5 36.6 73.0

them, i.e., PixCon-SR (full), offers immediate benefits to
the transfer performance, indicating the importance of suf-
ficiently leveraging informative positives and mitigating the
influence of false positives simultaneously.
Effect of the sharpening factor α. As shown in Table 3,
the sharpening factor α does not cause drastic fluctuations
in the transfer performance, but a value of 2 helps strike a
good balance between detection and semantic segmentation
tasks, which is then applied as the default value.

6. Conclusion

In this paper, we revisit pixel-level contrastive pre-
training on scene images. We show that pixel-level learning
can be further exploited to match the transfer performance
of more sophisticated region-level methods. Moreover, we
find that pixel-level learning with similarity-based match-
ing [35] already learns regional semantics that region-level
methods are after. Finally, we propose a simple and effec-
tive semantic reweighting strategy to deal with the problem
of semantically inconsistent crops of scene images, which
helps pixel-level learning outperform or rival SOTA region-
level methods on various transfer tasks. We believe pixel-
level learning still has undiscovered potential yet with an
attractively simple design, and we will keep exploring its
possibility in future work.
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[21] Olivier J Hénaff, Skanda Koppula, Evan Shelhamer, Daniel
Zoran, Andrew Jaegle, Andrew Zisserman, João Carreira,
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