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Abstract

Reflection removal (RR) is a technique to reconstruct
the transmitted scene behind the glass from a mixed im-
age taken through glass. In 360-degree images, the mixed
image region and the reference image region capturing the
reflected scene exist together, and the mixed image is of-
ten restored by using the information of reference image.
In this paper, we first propose a fully-automatic end-to-
end RR framework for 360-degree images which automat-
ically detects the mixed and reference image regions and
removes the reflection artifacts in the mixed image by us-
ing the reference information simultaneously. We devise a
transformer based U-Net architecture with horizontal win-
dowing scheme to capture the long-range dependencies be-
tween the mixed and reference images via the self-attention
mechanism and suppress the reflection artifacts by using the
reference information. We also construct a training dataset
of 360-degree images by synthesizing realistic reflection ar-
tifacts considering diverse geometric relation and photo-
metric variation between the mixed and reference images.
The experimental results show that the proposed method de-
tects the mixed and reference image regions reliably with-
out user-annotation and achieves better performance of RR
compared with the state-of-the-art methods.

1. Introduction

When we take a picture through reflective material (e.g.
glass), we obtain a mixed image M composed of two im-
ages: the transmission image T capturing the scene through
the glass and the undesired reflection image R capturing the
scene reflected on the glass. This is formulated as [27]

M(x) = Ω(x)T(x) + Φ(x)R(x), (1)

where M(x), T(x), and R(x) represent the intensities at
pixel x on the mixed, transmission, and reflection images,
respectively. Ω and Φ denote the refractive and reflective
amplitude coefficient maps [27] associated with the charac-
teristics of the glass.
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Figure 1. RR for 360-degree images. (a) An input 360-degree im-
age with reflection artifact, and (b) the RR result of the proposed
method. The attention maps highlighting (c) the mixed region M
and (d) the reference region R. (e) The input mixed image. The re-
constructed transmission images obtained by using (f) [27], (g) [9],
and (h) the proposed method, respectively.

Reflection removal (RR) [6,12,13,20,22,25] is a task to
reconstruct T from M, which is an ill-posed problem. Since
both of T and R capture natural scenes, it is quite ambigu-
ous to distinguish T from R. To overcome such content am-
biguity, RR usually employs the statistics of R, such as the
smoothness prior [15] and ghosting cue [18]. Recently, RR
for 360-degree images has been introduced [9–11], where
a 360-degree image contains both of the mixed region M
with reflection artifact and the reference region R capturing
the original reflected scene, as shown in Figure 1(a). With
the help of such reference information, we can effectively
remove the reflection artifacts from the mixed image region
in a single 360-degree image.
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However, there are two major challenges in RR of 360-
degree images. First, different from the ordinary images
where the reflection artifacts occur over an entire image area
in general, a 360-degree image includes both of the mixed
and reference regions together. Therefore, we should first
find the region M as well as the reference region R cor-
responding to M within a 360-degree image. Second, we
should reconstruct T from M by exploiting the reference
information in R. Note that the pair of the region detec-
tion and the transmission reconstruction is a chicken-and-
egg problem. As we detect more accurate region of R,
better reconstruction result of T is yielded. At the same
time, more faithful reconstruction result of T (and R ac-
cordingly) provides more informative clue to find R. Due
to these challenges, in the previous methods [9–11], M was
user-provided or assumed to lie in the center area of a 360-
degree image, and R was estimated around the opposite
direction of M in the 360-degree image. Also, they em-
ployed the features of R by matching the pixels of R and
M in heuristic manners, degrading the performances of RR.
In addition, it is impractical to construct a paired dataset of
360-degree images with and without reflection artifacts due
to the difficulty of annotation for M and R.

In this paper, we propose an end-to-end reflection re-
moval network for 360-degree images, which reconstructs
T by detecting M and R in a fully-automatic manner. We
first devise the horizontal windowing scheme for the U-
Net structure with transformer blocks to capture the rela-
tionship between M and R in 360-degree images via the
self-attention mechanism of transformer, as shown in Fig-
ures 1(c) and (d). We also synthesize realistic reflection ar-
tifacts for 360-degree images to obtain a paired dataset for
training the network by simulating diverse geometric rela-
tion and photometric variation between M and R. The ex-
perimental results in Figure 1 demonstrate that the proposed
method automatically highlights the attention for M and R,
and successfully removes the reflection artifacts from M
outperforming the state-of-the art methods.

The contributions of this paper are as follows:

• We first propose a fully-automatic RR framework
for 360-degree images, that automatically detects
the mixed and reference regions without any user-
interaction and removes the reflection artifacts in the
mixed region by utilizing the information of the refer-
ence image.

• We devise a transformer-based U-Net architecture to
capture the long-range dependency between the mixed
and reference regions.

• We collect real 360-degree images for qualitative and
quantitative experiments and demonstrate that the pro-
posed method achieves better performance over state-
of-the-art reflection removal methods.

2. Related Works

Single image reflection removal. In general, the reflec-
tion images have different characteristics from that of the
transmission images that provide useful clues to resolve the
content ambiguity in RR. For example, the reflection im-
ages are more blurred than the transmission images [15].
The reflection images often have ghost contours due to thick
glasses [18]. Traditional methods exploited such charac-
teristics of the reflection images for single image RR. Re-
cently, data-driven priors are being popularly used with
deep-learning frameworks [6,12,13,23,25,27]. Fan et al. [6]
first applied the convolutional neural network to estimate
the edges of the reflection image to reconstruct the trans-
mission image. Yang et al. [23] proposed a cascade network
to predict the transmission and reflection images simulta-
neously. Kim et al. [12] synthesized realistic paired data
considering the lens effects and the angle between the light
direction and the glass plane to trace the reflection. Zheng
et al. [27] proposed a new image formation model consid-
ering the absorption effect depending on the incident angle
of rays on the glass plane.

Multiple images reflection removal. Several attempts
have been made to employ multiple images for RR [7,8,14].
Li et al. [14] utilized the SIFT-flow to align a set of multiple
images and classified the features of the transmission and
reflection images based on the magnitude of the disparity.
Guo et al. [7] exploited structural priors in multiple mixed
images to decompose the reflection and transmission im-
ages based on the augmented Lagrangian multipliers. Han
and Sim [8] decomposed the mixed image into the transmis-
sion and reflection layers based on low-rank matrix comple-
tion.

360-degree image reflection removal. Whereas the reflec-
tion artifacts occur on the entire image area for ordinary
images, the artifacts usually lie on local regions only in
real-world 360-degree images. Therefore, we need to first
find the mixed image region in a 360-degree image, how-
ever this is not a trivial task. The existing methods [9–11]
assume that the mixed and/or reference image regions are
given by user-interaction, and employ the reference in-
formation by using heuristic matching schemes. Hong et
al. [10] cropped the mixed and reference image regions by
multi-step user interaction which are then served as input to
single-image RR network. The subsequent method [11] still
requires one-time user interaction to acquire the mixed re-
gion. Han and Sim [9] proposed a zero-shot learning based
RR to overcome the difficulty to collect 360-degree images
with ground truth data. In this paper, we propose a fully-
automatic end-to-end network that performs RR for 360-
degree images based on transformer architecture without
any user-interaction.

1610



Output

Input

H-Win 
Transformer 

Blocks
Conv

Conv+

Down-
SamplingC

C

C Down-
SamplingC Down-

SamplingC C Down-
Sampling

Up-
Sampling

Laplacian Pyramid 
Generator

H-Win 
Transformer 

Blocks

H-Win 
Transformer 

Blocks

H-Win 
Transformer 

Blocks

H-Win 
Transformer 

Blocks

H-Win 
Transformer 

Blocks

H-Win 
Transformer 

Blocks

H-Win 
Transformer 

Blocks

H-Win 
Transformer 

Blocks

4x4 Convolution w/ stride 2, padding 1 C ConcatenationConv 3x3 Convolution w/ stride 1, padding 1 Up-
Sampling Transposed 2x2 Convolution w/ stride 2 + Element-wise AdditionDown-

Sampling

C Up-
Sampling C Up-

Sampling C Up-
Sampling

Figure 2. The overall architecture of the proposed end-to-end RR network based on the U-Net with transformer blocks. The horizontal
windowing scheme and the laplacian pyramids are used.
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Figure 3. Windowing schemes in transformer. (a) The conven-
tional square-shaped windowing scheme [21] and (b) the proposed
horizontal windowing scheme.

3. Proposed Method
We explain the transformer-based end-to-end RR net-

work for 360-degree images. The overall architecture of
the proposed network is shown in Figure 2.

3.1. Transformer-Based End-to-End Network

The goals of the proposed end-to-end 360-degree im-
age RR network are to detect the regions of M and R as
well as to exploit the information from R to reconstruct
T in a fully-automatic manner. As the multi-head self-
attention mechanism (a.k.a. transformer) effectively cap-
tures the long-range dependencies between the tokens [19],
we expect that this capability is suited to capture the de-
pendencies between M and R within a single 360-degree
image where the reflection image R contains the relevant
information to the mixed image M. However, the mixed
image M also yields different characteristics from natural
single layer images. Based on the multi-head self-attention
mechanism of transformer, we implicitly estimate the re-
gions of M and R by calculating the dot-product similar-
ity between the tokens. Then the feed-forward network re-
constructs the transmission image T from M by exploiting
the information from the estimated R. We design the en-
coder and decoder based on the U-shaped hierarchical net-
work [21] using transformer blocks, since the hierarchical
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Figure 4. Illustration of the self-attention mechanism of trans-
former. Whereas the red colored dot product denotes the high
attention between m ∈ M and r ∈ R, the green colored dot
product denotes low attention between m ∈ M and a certain to-
ken in single layer image regions outside of R.

structure helps to increase the receptive field.
Horizontal windowing scheme. The square-shaped win-
dow based transformer is popularly employed for image
restoration [16, 21], however it is not suitable for RR of
360-degree images due to the large field-of-view and the ge-
ometric distortion between M and R. As illustrated in Fig-
ure 3 (a), M and R are usually located far from each other
in a typical 360-degree image, and thus the tokens from M
and R may not usually contained to a same window due to
the limited size of window. Enlarging the window size to
include both of M and R also brings the extra quadratic
computational complexity.
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To overcome this drawback, we redesign the window to
have horizontally elongated shapes by setting the window
size as n × W , where W is the width of 360-degree im-
age and n is a hyper-parameter. Figure 3 (b) shows the
proposed windowing scheme where we see that the tokens
from both of M and R are contained to a same window,
which are then considered to measure the similarity via the
self-attention mechanism of transformer.

Figure 4 illustrates the self-attention based region esti-
mation for M and R by using the horizontal windowing
scheme. Since the mixed image region exhibits different
characteristics from the regions of single layer image, the
attention between the tokens from inside and outside of M,
as depicted by the green colored dot product, would be high-
lighted and helps to estimate the region of M. On the other
hand, the features of R can be also observed in M, and thus
the attention between a certain token r ∈ R and the tokens
in M, as depicted by the red colored dot product, is boosted
by relatively high similarity and eventually detects R.
Laplacian pyramid. We also apply the Laplacian pyra-
mid to use the multi-scale high-frequency features. Due
to the photometric and geometric misalignment between
the reflection image R embedded in the mixed image and
the reference image extracted from R, it is challenging to
match M and R. Since the high-frequency components,
e.g., edges and contours, are useful for alignment, [9, 10]
used the image gradient to directly match the images. In
contrary, we implicitly align them based on deep semantic
features encoded by the U-Net structure. We use the output
of trainable convolutional neural network (CNN) initialized
by the Laplacian filter [5] to extract the high frequency com-
ponents.

3.2. Reflection Synthesis for Training

We generate a 360-degree image I containing synthetic
reflection artifacts by using a pair of real 360-degree out-
door image Ĵo and indoor image Ĵi without reflection arti-
facts considering diverse geometric relation and photomet-
ric variation between the mixed and reference images within
a 360-degree image.
Geometric relation. The reflection artifacts locally occur
in a 360-degree image, and hence we first select the regions
of Mo and Mi at the same locations in Ĵo and Ĵi, respec-
tively. We also select the region Ro corresponding to Mo

at the opposite location to Mo with respect to the image
center of Ĵo. Then we take the transmission image T̂ from
Mi and the reflection image R̂ from Ro, respectively, fol-
lowing [9], and synthesize a mixed image M̂. However, [9]
puts a strong assumption that the direction from the camera
center to the glass center is orthogonal to the glass plane
such that R lies at the opposite direction to M with respect
to the image center. We mitigate this assumption to con-
sider more generalized geometric relations between M and

R by randomly trimming away the vertical sides of M and
the corresponding areas of R accordingly.
Photometric adjustment. In typical Low-Dynamic Range
(LDR) 360-degree images, the reference region usually ex-
hibits brighter pixel intensities than that of the mixed re-
gion or even saturated intensity values due to dynamic range
clipping. We consider this characteristics to synthesize the
mixed image M̂ in the linear image space following [11].
Using the transmission image T̂ and the reflection image R̂
in the linear image space, we revise the image formulation
model of M̂ as

M̂(x) = Ω(x)T̂(x) + Φ(x)R̂(x). (2)

We basically adopt the results of [27] to set the values of
Ω and Φ in (2) which were exhaustively surveyed using the
Monte Carlo simulation.

We then have a pair of the resulting 360-degree image Î
such that

Î(x) =

{
M̂(x), for x ∈ Mo,
Ĵo(x), for x /∈ Mo,

(3)

and its ground truth image and Ĵ without reflection artifacts
as

Ĵ(x) =

{
T̂(x), for x ∈ Mo,
Ĵo(x), for x /∈ Mo.

(4)

We apply the dynamic range clipping and the gamma cor-
rection to Î and Ĵ to generate the pair of training images I
and J in non-linear space, which are then used to train the
network in an end-to-end manner.

4. Experimental Results
4.1. Implementation Details

We construct about 28K pairs of 360-degree images by
using HDR outdoor 360-degree images [1] and LDR indoor
360-degree images without reflection artifacts [26]. Note
that, before synthesis, we transform LDR images into lin-
ear space by applying inverse gamma correction, following
[5,25]. Among them, we set aside 121 images as the valida-
tion dataset. We down-sample the images to 256× 512 size
due to memory consumption and computational complex-
ity. For inference, we use 60 real 360-degree images with
reflection artifacts captured in various scenarios including
the test images from [2, 9]. For the quantitative evaluation,
we additionally captured 19 pairs of real 360-degree im-
ages and the corresponding ground truth images by using a
portable glass pane.

We trained the network for 20 epochs using AdamW op-
timizer [17] with β1 = 0.9 and β2 = 0.999, and set the
weight decay as 0.02. We used the cosine decay strategy to
decrease the learning rate from 2 × 10−4 to 1 × 10−6, and
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Figure 5. Qualitative results of the proposed method compared with that of the state-of-the art RR methods. (a) Input 360-degree images
with reflection artifacts and (b) the reference image in R. The RR results of (c) ERRNet [22], (d) IBCLN [13], (e) ABS [27], (f) ZS360 [9]
and (g) the proposed method, respectively. We manually selected the reference images from R for visualization purpose

used the Charbonnier loss [3] with ϵ = 10−3. We set n = 1
and batch size as 4. We used the horizontal flip and shift for
data augmentation.

4.2. Comparison With Existing Methods

In Figure 5, we first qualitatively compare the results of
the proposed method with that of the three state-of-the art

single-image RR methods (ERRNet [22], IBCLN [13], and
ABS [27]) and the existing 360-degree image RR method
(ZS360 [9]). For fair comparison, we re-train the compared
methods by using our synthesized training dataset.

The reflection artifacts are bright and strong in M1 and
M2 increasing the content ambiguity. The strong edges
are observed as reflection artifacts in M3. M4 has a rel-
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(a) Input (b) Output (c) Residual (d) Attention on M (e) Attention on R

Figure 6. Region detection performance of the proposed 360-degree image RR. (a) Input 360-degree images with real reflection artifacts.
(b) The RR results of the proposed method. (c) The residual maps between (a) and (b). The intermediate attention maps highlighting (d)
M and (e) R, respectively.

atively dark transmission image T. The single image RR
methods [13,22,27] almost fail to remove the strong reflec-
tion artifacts due to the lack of the reference information, as
shown in M1 and M2. In contrary, ZS360 [9] utilizes the
reference R and alleviates the reflection artifacts of M1 and
M2. However, it tends to blur the details of the transmis-
sion image and still remains some amount of the reflection
artifacts. On the other hand, the proposed method not only
removes the reflection artifacts but enhances the visibility
of the transmission image, e.g., the interior walls, bread
shelves, and curtain, outperforming the compared meth-
ods. Similarly, while the existing methods also fail to work
on for M3 and M4, the proposed method effectively sup-
presses the reflection artifacts and clearly reconstructs the
transmission images, as shown in the green box in M3 and
the red box in M4. More experimental results can be found
in the supplementary material.

Next, we quantitatively compare the performance of the
proposed method with that of the existing methods using
the 19 pairs of test images. We measure the PSNR, SSIM,
LPIPS [24], and DISTS [4] for evaluation. Note that the
proposed method achieves the best performance and sur-
passes the existing methods, as shown in Table 1.

4.3. Detailed Results of the Proposed Method

Performance of region detection. We feed the entire 360-
degree image to our network without any annotation or user
interaction to specify M and R. As shown in Figures 6 (a)
and (b), the proposed method successfully alleviates the re-
flection artifacts, even when the glass regions are not fixed

Metric
Methods

ERRNet [22] IBCLN [13] ABS [27] ZS360 [9] Ours

PSNR (↑) 24.294 22.524 23.940 16.501 27.028

SSIM (↑) 0.9275 0.9384 0.9450 0.7020 0.9634

LPIPS (↓) 0.1436 0.1029 0.0905 0.3359 0.0620

DISTS (↓) 0.1039 0.0920 0.0788 0.1107 0.0493

Table 1. Comparison of quantitative performance of RR in terms
of PSNR, SSIM, LPIPS and DISTS evaluated on our quantitative
test dataset. The best scores are in bold.

to the image center. Note that only the mixed region of M
is changed when we measure the difference between the in-
put and output, as shown in Figure 6 (c). It means that the
proposed method reliably detects the region of M. To fur-
ther analyze the RR performance of the proposed method,
we plot the intermediate attention maps of the transformers.
We found that some of the head of the transformer block
highlight the mixed region M (Figure 6 (d)), while the oth-
ers focus on the reference region R (Figure 6 (e)). This
shows that the self-attention-based detection for M and R
works as we expected in the proposed network.
Performance with arbitrary locations of M. We evalu-
ate the performance of RR with different locations of M
in 360-degree images. We see that the sky and the struc-
ture of the trees are removed while the indoor structures are
more vividly reconstructed, as shown in the first two rows
in Figure 7 (d). Next, we also test our method on a more
challenging case where the mixed region of M is separated
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(a) (b) (c) (d) (e)

Figure 7. Results of RR with various locations of M within 360-degree images. (a) Input 360-degree images with real reflection artifacts.
(b) The outputs of the proposed method. We show the images cropped from (c) M of input, (d) M of output, and (e) the reference image
in R, respectively.

(a) Input (b) Output (c) M of (b)

(d) Input w/ blur on R (e) Output w/ blur on R (f) M of (e)

Figure 8. Analysis on the utilization of R for RR. (a) An input
360-degree image with reflection artifact and (b) the result of the
proposed method. (c) A zoomed-in image on M of (b). (d) An
input 360-degree image with Gaussian blurring on R and (e) the
result of the proposed method. (f) A zoomed-in image on M of
(e).

toward the two ends of the image, as shown in the third row
of Figure 7. Surprisingly, we see that the proposed method
removes the sky, tree, and building effectively, while recon-
structing the transmission images clearly.
Utilization of reference information. We validate whether
the proposed method utilizes the reference information in
R to remove the reflection artifacts in the mixed image M,
which is the main motivation of 360-degree image RR to re-
solve the content ambiguity. We applied the Gaussian blur-
ring with 3 × 3 kernel to the outside of M to suppress the
information in R. The first row in Figure 8 represents the
input/output of the proposed method without blurring, while

the second row shows the performance degradation due to
the Gaussian blurring. As shown in Figures 8 (c) and (f),
the proposed method alleviates the reflection artifacts but it
fails to reconstruct T faithfully when R is degraded. This
implies that the proposed RR method actually utilizes the
information R for reflection removal.

4.4. Ablation Study

Transformer. We validate the effect of the transformer
module in the proposed design. We test four cases: (1)
without the self-attention mechanism (w/o transformer), us-
ing the square-shaped window with the size of (2) 8×8, (3)
16× 16 and (4) the horizontal-shaped window with n = 2,
respectively. Note that all the test cases yield low perfor-
mance qualitatively and quantitatively compared to the pro-
posed method, as shown in Figure 9 and Table 2.
Laplacian pyramid. We validate the effect of the Lapla-
cian pyramid. Although we remove the Laplacian pyra-
mid from the proposed method, it achieves high quantitative
scores as shown in Table 2. However, it fails to remove the
high-frequency components of reflection, remaining the re-
flection artifacts as shown in Figure 10 (c). This implies that
the Laplacian pyramid helps to employ the high frequency
features for 360-degree RR.

5. Conclusion
In this paper, we proposed a fully-automatic 360-degree

image reflection removal method without requiring any
user-annotation. Considering the mechanism of 360-degree
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(c) (e) (f)(a) (d) (g)(b)

Figure 9. Ablation study on the transformer module. The cropped images of (a) the input mixed image and (b) the reference image in R.
The RR results (c) without the self-attention mechanism, (d) with the 8 × 8 square-shaped windowing scheme [21], (e) with the 16 × 16
square-shaped windowing scheme [21], (f) with the horizontal-shaped windowing scheme (n = 2), and (g) the proposed method.

(a) (c) (d)(b)

Figure 10. Ablation study on the Laplacian pyramid. The cropped
image from (a) the input mixed image and (b) the reference image
in R. The RR results (c) without the Laplacian pyramid and (d)
with the Laplacian pyramid, respectively.

image reflection removal, we adopted the U-Net with trans-
former employing the horizontal-shaped windows to cap-
ture the long-range dependency between the mixed and ref-
erence regions. We additionally applied the laplacian pyra-
mids to use multi-scale high frequency features. To obtain
the training data, we synthesized the reflection artifacts on
360-degree images considering the geometric relation and
photometric variation between the mixed and reference re-

Metric
Architecture

w/o trans. 8× 8 win. 16× 16 win. n = 2 w/o Lap. Prop.

PSNR (↑) 24.578 24.160 24.677 26.854 26.963 27.028

SSIM (↑) 0.9507 0.9499 0.9508 0.9611 0.9631 0.9634

LPIPS (↓) 0.0771 0.0745 0.0739 0.0646 0.0621 0.0620

DISTS (↓) 0.0642 0.0627 0.0604 0.0521 0.0501 0.0493

Table 2. Ablation study on the architecture design. We evaluate
PSNR, SSIM, LPIPS, and DISTS on our quantitative test dataset.
The best scores are in bold.

gions. The experimental results demonstrated that the pro-
posed method automatically highlights the mixed region
and the reference region, and removes the reflection arti-
facts in the mixed region faithfully by using the information
of the reference region, outperforming the state-of-the-art
RR methods qualitatively and quantitatively.
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