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Abstract

Vision Transformers (ViTs) have recently become the
state-of-the-art across many computer vision tasks. In con-
trast to convolutional networks (CNNs), ViTs enable global
information sharing even within shallow layers of a net-
work, i.e., among high-resolution features. However, this
perk was later overlooked with the success of pyramid
architectures such as Swin Transformer, which show bet-
ter performance-complexity trade-offs. In this paper, we
present a simple and efficient add-on component (termed
GrafT) that considers global dependencies and multi-scale
information throughout the network, in both high- and low-
resolution features alike. It has the flexibility of branching
out at arbitrary depths and shares most of the parameters
and computations of the backbone. GrafT shows consis-
tent gains over various well-known models which includes
both hybrid and pure Transformer types, both homogeneous
and pyramid structures, and various self-attention meth-
ods. In particular, it largely benefits mobile-size models
by providing high-level semantics. On the ImageNet-1k
dataset, GrafT delivers +3.9%, +1.4%, and +1.9% top-
1 accuracy improvement to DeiT-T, Swin-T, and MobViT-
XXS, respectively. Our code and models are at https:
//github.com/jongwoopark7978/Grafting-
Vision-Transformer.

1. Introduction

Self-attention mechanism in Transformers [1] has been
widely-adopted in language domain for some time now.
It can look into pairwise correlations between input se-
quences, learning long-range dependencies. More re-

*Part of work was done while at MIT-IBM AI Watson Lab

cently, following the seminal work in Vision Transform-
ers (ViT) [9], the vision community has also started ex-
ploiting this property, showing state-of-the-art results on
various tasks including classification, segmentation and de-
tection, outperforming convolutional networks (CNNs) [2,
12, 15, 16, 28, 33]. Motivated by this success, many vari-
ants of vision Transformers (e.g., DeiT [34], CrossViT [4],
TNT [11]) emerged, inheriting the same homogeneous
structure of ViT (i.e., a structure w/o downsampling). How-
ever, due to the quadratic complexity of attention, such a
structure becomes expensive, especially for high-resolution
inputs and does not benefit from the semantically-rich in-
formation present in multi-scale representations.

To address these shortcomings, Transformers with pyra-
mid structures (i.e., structures w/ downsampling) such as
Swin [25] were introduced with hierarchical downsampling
and window-based attention, which can learn multi-scale
representations at a computational complexity linear with
input resolution. As a result, pyramid structures become
more suited for tasks such as segmentation and detection.
However, still, multiple scales arise deep into the network
due to stage-wise downsampling, meaning that only the lat-
ter stages of the model may benefit from them. Thus, we
pose the question: what if we can introduce multi-scale in-
formation even at the early stages of a Transformer without
incurring a heavy computational burden? In particular, can
CNN-based hybrid Transformers reap the benefits of GrafT
as they heavily rely on the local information from CNNs?

Previous work has also looked into the direction above,
both in CNNs [31] and in Transformers [3, 4]. However,
models such as CrossViT requires carefully tuning the spa-
tial ratio of two feature maps in two branches and Region-
ViT needs considerable modifications to handle multi-scale
training. To mitigate these issues, in this paper, we propose
a simple and efficient add-on component called GrafT (see
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Figure 1. We introduce GrafT, an add-on component that makes use of global and multi-scale dependencies at arbitrary depths of a
network. (a) An overview of how GrafT modules are branched-out (or grafted) from a backbone Transformer and generate multiple scales
of features. (b) Performance-complexity trade-off of integrating GrafT in various backbones incorporating hybrid or pure architectures,
homogeneous or pyramid structures, and various self-attention methods. GrafT shows consistent and considerable gains with a minimal
increment in complexity. DeiT-T+GrafT uses fewer FLOPs because local attention is used to adopt GrafT as explained in 3.1

Figure 1-(a)). It can be easily adopted in existing hybrid or
pure Transformers, homogeneous or pyramid architectures,
and various self-attenion methods, enabling multi-scale fea-
tures throughout a network (even in shallow layers) and
showing consistent performance gains while being compu-
tationally lightweight. GrafT is applicable at any arbitrary
layer of a network.

It consists of three main components: (1) a left-right
pathway for downsampling, (2) a right-left pathway for up-
sampling, and (3) a bottom-up connection for information
sharing at each scale. The left-right pathway uses a se-
ries of average pooling operations to create a set of multi-
scale representations. For instance, if GrafT is attached to
a layer with (56 × 56) resolution, it can create scales of
(28 × 28), (14 × 14) and (7 × 7). We then process in-
formation at each scale with a L-MSA block, a local self-
attention mechanism (e.g., window-attention)— which be-
comes global-attention in the coarsest scale, as window-
size becomes the same as the resolution. Next, the right-
left pathway uses a series of learnable and window-based
bi-linear interpolation (W-Bilinear) operations to generate
high-resolution features by upsampling the low-resolution
outputs of L-MSA— which contains global (or high-level)
semantics extracted efficiently, at a lower resolution. Such
upsampled features are merged with high-resolution fea-
tures of the branch-to-the-left, which contain lower-level
semantics, as also done in Feature Pyramid Networks [22].
Refer to Figure 2-(b) and Section 2.2 for more details.

GrafT is unique in the sense that it can extract multi-scale
information at any given layer of a Transformer while also
being efficient. It relies on the backbone to do the heavy-

lifting, by using a minimal computation overhead within
grafted branches, in contrast to having completely-separate
branches as in CrossViT [4]. In our evaluations, we observe
that GrafT delivers gains to both hybrid (CNN + ViT) Trans-
formers (MobViT [26], MobViTv2 [27], MViTv2 [20]) and
pure Transformers (DeiT [34], Swin [25], CSWin [8]). In
particular, GrafT helps light-weight hybrid models become
high-performing general-purpose networks with a minimal
increase in parameters and FLOPs. For the light-weight net-
work MobViT-XXS, GrafT increases the top-1 accuracy by
+1.9% in classification as shown in Table 2 and improves
the mAP by +0.7% in object detection as shown in Table 3.
In addition, GrafT can be smoothly integrated with various
self-attention methods as it worked well with regular multi-
head self-attention (MHSA) in DeiT and MViTv2, shifted-
window self-attention in Swin, cross-shaped window self-
attention in CSWin, inter-patch self-attention in MobViT,
and separable self-attention in MobViTv2. We summa-
rize the performance of GrafT by grouping models into
homogeneous (ViT [9]) and pyramid (Swin-style [25] and
MobileNet-style [16]) architectures. On ImageNet-1K [7],
GrafT improves the top-1 accuracy by +3.9% for DeiT-T as
shown in Table 1, by +1.9% for MobViT-XXS by +1.4% for
Swin-T, and by +0.5% for CSWin-T as shown in Table 2.
We also observe significant gains in performance when
grafted models are used as feature backbones for object
detection and segmentation tasks. We believe multi-scale
high-level semantics from GrafT help models to identify ob-
jects in various sizes. On COCO 2017 [23], GrafT provides
+1.6 mAP for MobViT-XS, +1.1 APb and +0.8 APm for
Swin-T. On ADE20K [39] semantic segmentation, GrafT
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provides +1.0 mIOUss, +1.3 mIOUms with Swin-T+GrafT.
Figure 1-(b) shows the performance-complexity trade-off
when integrating GrafT in the backbone on ImageNet-1K.

2. Grafting Vision Transformers
Our goal is to provide multi-scale global information to

the backbone Transformer from the bottom layer so that
high-level semantics from GrafT can help the Transformer
to construct more efficient features. Since Graft is mod-
ular, it can be applied to various Transformer architec-
tures. We select backbones incorporating various archi-
tectural characteristics to show that GrafT is a general-
purpose module. The backbones cover hybrid and pure
Transformer, homogeneous (ViT [9]) and pyramid (Swin-
style [25], MobileNet-style [16]) structures, and different
types of self-attention methods.

2.1. Overall Architecture

The overview of how GrafT modules are branched-out
from a backbone Transformer is illustrated in Figure 1-
(a). We start with a backbone Transformer (i.e., ViT or
Swin) and simply attach GrafT to some vertical layers of
the backbone Transformer. The vertical dimension signi-
fies the axis along which the hierarchical transitions occur
within the pyramid Transformer. For an input image with
size of H × W × 3, the patch tokens to the first vertical
layer is H

4 × W
4 × C after the patch embedding.

GrafT is a horizontal pyramid structure which consists of
left-right pathway (series of GrafT downsampling), right-
left pathway (series of GrafT upsampling), and bottom-
up connection (multiple GrafT L-MSA) as shown in Fig-
ure 2-(b). The input feature to GrafT goes through left-right
pathway (downsampling), right-left pathway (upsampling),
bottom-up connection (L-MSA) and becomes a feature hav-
ing strong high-level semantics at multiple scales which
then gets fused into the backbone Transformer. Specifically,
for the GrafT attached to the vertical layer at Sth stage, the
input feature to the GrafT has the size of H

4rS−1 × W
4rS−1 ×C

where r = 2 for pyramid structure and r = 1 for homoge-
neous structure. Then, we fuse the feature from GrafT to
the original backbone, which will be described in the later
section.

2.2. Transformer+GrafT Blocks

In this section, we describe each operation in Figure 2-
(b). Let Xd,b as an input tensor at vertical layer d and
horizontal downsampling level b in GrafT with the shape:
Xd,b ∈ RHb×W b×C . Hb, W b, C is the height, width, chan-
nels of the feature map Xd,b at a horizontal level b respec-
tively.
Left-right pathway (downsampling): The left-right path-
way creates serial feature maps at several scales with

the downsampling rate r which follows the vertical pyra-
mid downsampling rate. For example, in the first stage
of Swin+GrafT, GrafT creates three downsampled feature
maps {X1, X2, X3} by downsampling the input feature
map X0 from the backbone with downsampling rate 2.
In left-right pathway, we use adaptive average pooling for
downsampling:

Xd,b+1 = A(Xd,b) = ρ(GELU(LN(Xd,b))) (1)

A is a lightweight downsampling function which con-
sists of LayerNorm (LN ), GELU , and adaptive average
pooling (ρ) , which is more cost-efficient than other down-
sampling methods such as cross attention and linear pro-
jection (see Table 6). It maps the input Xd,b to down-
sampled feature Xd,b+1: RHb×W b 7→ RHb+1×W b+1

where
Hb+1 < Hb,W b+1 < W b. Xb+1 is the input at the hori-
zontal downsampling level b + 1. Downsampling happens
sequentially over horizontal layers to progressively abstract
the fine information in coarse features.
Right-left pathway (upsampling): The right-left pathway
hallucinate serial higher resolution feature maps by upsam-
pling low resolution feature maps. These upsampled feature
maps are enhanced by feature maps from bottom-up con-
nection that retain spatially more accurate activations and
lower-level semantics. This enhancement process is similar
to FPN [22]. In right-left pathway, GrafT upsampling uses
learnable W-Bilinear (window-base bilinear) interpolation
which is more cost-efficient than other upsampling meth-
ods as shown in Table 6. Learnable W-Bilinear interpola-
tion solves the aliasing problem by embedding anti-aliasing
weights, the sigmoid of positional embeddings, in the fea-
ture maps. Anti-aliasing weights learns perturbations for
each grid in the feature map that can prevent aliasing ef-
fect. W-Bilinear interpolation is adopted to address the se-
mantics discontinuity between local regions. Finally, our
upsampling is defined as:

Z̄d,b+1 = Φ(Z̃d,b+1)

= Φ(Eaa ⊙ α(Zd,b+1))

= T (Zd,b+1)

(2)

Z̄d,b+1
um,vn = Φ(Z̃d,b+1

im,jn
) (3)

T is a lightweight upsampling function mapping the
representation back to the spatial resolution in the previ-
ous horizontal level. This function is designed to upsam-
ple output features from L-MSA. First, given the tensor
Zd,b+1, the output from L-MSA, channel mixing (α) is
applied to align channels before interpolation. α consists
of LayerNorm (LN ), GELU , and a linear layer. Next,
anti-aliasing embeddings (Eaa) are multiplied to resolve the
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Figure 2. An overview view of GrafT. (a): Here, we show the receptive field of attention mechanisms in each scale and how it changes
by merging with information from the corresponding lower-resolution scale (i.e., from branch-to-the-right). Multiple scale are created
with downsampling, processed with local attention (in L-MSA)— which becomes global attention in coarsest scale (GrafTd

B), and merged
back with upsampling. When a lower-resolution representation is upsampled and merged, the effective receptive field increases, essentially
giving access to efficiently-extracted global (or larger-local) information. (b): We present all the components and grafting/ merging points
in GrafT. We graft prior to self-attention block in the backbone, and merge prior to FFN so that we can reuse the heavy computations.
Downsampling (left-right pathway) uses light-weight average pooling to create a lower-resolution features, whereas upsampling (right-left
pathway) uses learnable window-based bi-linear interpolation (W-Bilinear) to upscale. The processing unit within a GrafT module is a
L-MSA block, which performs local-attention. When merging features to higher-resolution, we use element-wise addition.

aliasing problem. The proposed anti-aliasing embeddings
are the output of sigmoid function on position embeddings
Zj+1
pos ∈ RHj+1×W j+1×C . It learns to provide perturba-

tions in the spatial dimension that prevents interpolation
from suffering the aliasing problem. It is a simpler and
lighter method compared to 3x3 convolutions [22]. Lastly,
W-Bilinear interpolation (Φ) maps Z̃d,b+1 ∈ RHb+1×W b+1

to Z̄d,b+1 ∈ RHb×W b

. It can be described as mapping
the low resolution feature in each (m, n)th window Z̃d,b+1

im,jn

into high resolution feature in (m, n)th window Z̄d,b+1
um,vn

.
(im, jn) is a spatial position (i, j) in (m, n)th window
where i ∈ I, j ∈ J, m ∈ M, n ∈ N . (um, vn) is a spatial
position (u, v) in (m, n)th window where u ∈ rhI, v ∈
rwJ . rh, rw are the height and width ratio between feature
resolutions in two consecutive horizontal levels. Upsam-
pling happens sequentially over horizontal layers to pro-
gressively upscale spatial resolution of coarse features.

L-MSA in GrafT: The local self-attention method from
the backbone Transformer limits the self-attention in a lo-
cal region, which causes the discrepancy of semantics at
the boundary of local regions. Therefore, bilinear inter-
polation is applied in each local region multiple times in-
stead of the entire feature map at once. The bottom-up

connection merges lower-level feature maps enhanced by
L-MSA and higher-level feature maps upsampled by W-
Bilinear interpolation by element-wise addition. The merg-
ing process iterates until it generates the high-level feature
map that has the same spatial size as the input feature map
X0 from the backbone. In the example above, the coarsest
feature map X3 goes through L-MSA and becomes Z̄3, a
feature map having the highest-level semantics. Z̄2 is gen-
erated by merging upsampled Z̄3 with output feature from
L-MSA which applies local self-attention on X2. This pro-
cess iterates until the finest feature map Z̄0 which has the
same spatial size of the X0 is produced. Z̄0 is then fused
into the output feature map from L-MSA in the backbone
Transformer and proceed to FFN block.

Zd,b+1 = Xd,b+1 + [L-MSA(LN(Xd,b+1)) + Z̄d,b+2]

(4)

It is a simple and light block that fuses multi-scale
features. It uses a standard window-based MSA from
Swin [25] to encode fine features Xd,b+1. It uses simple
element-wise addition to fuse this fine feature and coarse
feature Z̄d,b+2 ∈ RHb+1×W b+1

coming from one deeper
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horizontal level. Lastly, Skip connection is added to pro-
duce output Zd,b+1 ∈ RHb+1×W b+1

Bottom-up connection with multiple high-level seman-
tics: In GrafT, L-MSA uses local self-attention to en-
hance downsampled feature maps but it limits receptive
field within each local region. It is important to exchange
information among local regions so that feature can em-
bed not only local structure but also global structure. In
Figure 2-(a), the features at the bottom are the output of
GrafT L-MSA where receptive field is limited to each local
region. The feature map at b+ 2 level Z̃b+2 has a receptive
field, a blue color line, that covers the entire feature map.
The feature map at b+ 1 level, Z̃b+1, originally suffers the
information discrepancy between local regions due to lo-
cal receptive field. When Z̃b+2 is merged into Z̃b+1, Z̃b+1

inherits a receptive field from Z̃b+2 and this newly added
global receptive field provides higher-level semantics that
can understand the relation between local regions. Z̃b, the
feature map at b level, also originally suffers the information
discrepancy between local regions. When Z̃b+1 is merged
into Z̃b, Z̃b inherits receptive fields from both Z̃b+1 Z̃b+2

and this newly added receptive fields provides multi-scale
high-level semantics that can understand the relation be-
tween local regions in multiple aspects. Multi-scale recep-
tive fields which are progressively generated from multi-
scale features resolve the drawback of local receptive field
formed by L-MSA in the backbone Transformer. The L-
MSAin the original backbone Transformer is defined as:

Y d,0 = Xd,0 + [L-MSA(Xd,0) + Z̄d,1] (5)

L-MSA is the local multi-self attention that the Trans-
former in the main branch is using to encode fine fea-
ture Xd,0 ∈ RH0×W 0×C . The encoded fine feature
is element-wise added with coarse feature Z̄d,1 from the
GrafT. Lastly, skip connection is added to produce output
Y d,0 ∈ RH0×W 0×C . It is interesting that a simple element-
wise addition successfully fuse the fine feature in the main
branch and the coarse feature from GrafT. Thanks to the
power of GrafT upsampling method for the robust fusion of
the multi-scale features encoded by various MSA. Then, we
use the same FFN in the backbone transfomers:

Xd+1,0 = Y d,0 + MLP(LN((Y d,0))) (6)

It is a standard Transformer block performing channel
mixing via LayerNorm (LN ) and MLP on the output of L-
MSA block and adds the skip connection to generate output
Xd+1,0 which is the input to the next vertical layer.
Computation complexity: Average pooling and bilinear
interpolation runs in Θ(HW ) and L-MSA in GrafT follows
the complexity of L-MSA in the backbone Transformer.

Table 1. Performance of GrafT with homogeneous architectures
on ImageNet-1K [7]. DeiT-T+GrafT outperforms DeiT-T [34] by
+3.9% and even surpasses PVT-T [35] (a pyramid structure).

Model Structure Params ↓ FLOPs ↓ Acc. ↑
(M) (G) (%)

DeiT-T [34] Homoge. 5.7 1.3 72.2
DeiT-T+GrafT Homoge. 7.9 1.2 (+3.9) 76.1
CrossViT-9 [4] Homoge. 8.6 1.8 73.9
PVT-T [35] Pyramid 13.2 1.9 75.1

Since L-MSA is more complex than Θ(HW ), the complex-
ity of Transformer+GrafT is equal to the complexity of the
pure backbone Transformer. For example,

Ω(Swin) = Ω(Swin+GrafT) = 12HWC2 + 2M2HWC

(7)

where H,W is the width and height of feature map and M is
the size of window.

3. Experiments
3.1. ImageNet-1K Classification

We integrate GrafT in various models to show that it is gen-
erally applicable. We observe consistent gains by attach-
ing GrafT on models that are hybrid or pure Transformers,
have homogeneous or pyramid structures, and exploit var-
ious self-attention methods. We train our models on the
ImageNet-1K with the standard settings in [8, 8, 9, 25–27].
Additional details are incorporated in the appendix.
Homogeneous or pyramid structures: Table 1 shows
the models that has homogeneous structures (i.e., with a
constant spatial resolution, or #tokens) . DeiT-T+GrafT
achieves +3.9% boost over DeiT-T. Even though DeiT un-
derperforms CrossViT (-1.7%), DeiT-T+GrafT outperforms
it by +2.2% as it receives high-level semantics from GrafT.

When implementing DeiT-T+GrafT, we replace global
attention in the backbone with window local attention with-
out shifting to adhere to our proposed design (refer Fig-
ure 2-(b)). We confirm that this slightly-modified DeiT
(prior to applying GrafT) underperforms the original DeiT
by 2%. Thus, overall, GrafT delivers +5.9% performance
gain (from 70.2% to 76.1%).

Table 2 contains models that adopt a pyramid structure.
GrafT consistently boosts performance in MobViT(+1.9%
in -XXS, +1.4% in -XS, +0.8% in -S), MobViTv2(+1.4% in
-v0.5, +1.0% in -v1.0), Swin(+1.4% in -T), CSWin(+0.6%
in -XT∗, +0.5% in -T), and MViTv2-T(+0.7%) with mini-
mal increase in parameters and FLOPs and the ∼25% de-
crease in throughput under the conditions of a batch size of
128. Models with SOTA accuracies at each scale are high-
lighted in bold. These results show that GrafT generalizes
well.
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Table 2. Performance of GrafT with pyramid architectures on
ImageNet-1K [7]. Graft shows consistent gains across various ar-
chitectures (Pure/Hybrid), model sizes and attention mechanisms.

Model Type Params ↓ FLOPs ↓ Acc. ↑ Thrput
(M) (G) (%) (FPS)

MobViT-XXS [26] Hybrid 1.27 0.42 69.0 3771
MobViT-XXS+GrafT Hybrid 1.43 0.44 (+1.9) 70.9 2646
MobViTv2-0.5 [27] Hybrid 1.37 0.48 70.2 3996

MobViTv2-0.5+GrafT Hybrid 1.53 0.49 (+1.4) 71.6 2791

MobileFormer-52 [5] Hybrid 3.5 52M 68.7 -
MobViT-XS [26] Hybrid 2.32 1.05 74.8 2134

MobViT-XS+GrafT Hybrid 2.65 1.10 (+1.4) 76.2 1592

MobViT-S [26] Hybrid 5.58 1.99 78.4 1691
MobViT-S+GrafT Hybrid 6.38 2.13 (+0.8) 79.2 1274

MobViTv2-1.0 [27] Hybrid 4.90 1.84 78.1 2023
MobViTv2-1.0+GrafT Hybrid 5.52 1.90 (+1.0) 79.1 1391

ViL-Tiny-RPB [38] Transformer 7 1.3 76.7 -
CSWin-XT* [8] Transformer 6 1.2 77.4 2675

CSWin-XT+GrafT Transformer 8 1.3 (+0.6) 78.0 2240

PVT-M [35] Transformer 44 6.7 81.2 -
PoolFormer-S36 [36] Transformer 31 5.2 81.4 -

T2Tt-14 [37] Transformer 22 6.1 81.7 -
TNT-S [11] Transformer 24 5.2 81.5 -

ViL-S-RPB [38] Transformer 25 4.9 82.4 -
RegionViT-S [3] Transformer 31 5.3 82.6 -

Swin-T [25] Transformer 29 4.5 81.3 1357
Swin-T+GrafT Transformer 34 5.1 (+1.4) 82.7 969
CSWin-T [8] Transformer 23 4.3 82.7 1168

CSWin-T+GrafT Transformer 29 4.7 (+0.5) 83.2 905
MViTv2-T [20] Hybrid 24 4.7 82.3 695

MViTv2-T+GrafT Hybrid 28 5.6 (+0.7) 83.0 488

Hybrid or pure Transformer: One research direction fol-
lows pure Transformers, whereas another follows hybrid
models (i.e., CNNs+Transformers). GrafT performs well
in both pure Transformers (eg: +1.4% in Swin-T+GrafT)
and hybrid models. In particular, its efficiency is height-
ened when applied in powerful, light-weight hybrid models
(eg: +1.9% MobViT-XXS+GrafT).
Various self-attention methods: As shown in Figure 2-(b),
GrafT inherits the self-attention operation from the back-
bone that it is applied in. Therefore, we explore whether
GrafT works with different self-attention mechanisms. For
instance, DeiT-T and MViTv2-T (w/ global MSA) gain
+3.9%, +0.7% whereas Swin-T (w/ shifted-window lo-
cal MSA) obtains +1.4%. CSWin-T utilizes cross-shaped
MSA and gains +0.5%. In MobViT-XXS (w/ inter-path
MSA) and MobViTv2-0.5 (w/ separable MSA), GrafT gives
+1.9% and +1.4% boosts. We observe that GrafT pro-
vides consistent gains by inheriting the specific type of self-
attention in each backbone.

3.2. Object Detection and Segmentation

We benchmark GrafT on object detection and segmenta-
tion, showing its capabilities as a general-purpose model.
We consider various backbones such as pyramid structures,
hybrid architectures an pure Transformers, each having dif-
ferent self-attention mechanisms.
Experiments on object detection and instance segmen-
tation: We run single shot and two-stage object detection
on the COCO 2017 [23] by following a standard settings in

Table 3. Performance of GrafT with mobile backbones on a single
shot object detection task on the COCO 2017 [23]. GrafT consis-
tently improves the detection performance of MobViT [26].

Model Type Params ↓ FLOPs ↓ Acc. ↑
(M) (G) (%)

MobViT-XXS [26] Hybrid 1.7 0.90 19.9
MobViT-XXS+GrafT Hybrid 1.9 0.91 (+0.7) 20.6

MobileNetv1 [16] CNN 5.1 1.3 22.2
MobileNetv2 [28] CNN 4.3 0.8 22.1
MobileNetv3 [14] CNN 5.0 0.6 22.0
MobileViT-XS [26] Hybrid 2.7 1.89 24.8
MobileViT-XS+GrafT Hybrid 3.1 1.98 (+1.6) 26.4

MobileViT-S [26] Hybrid 5.7 3.48 27.7
MobileViT-S+GrafT Hybrid 6.5 3.65 (+1.1) 28.8

Table 4. Performance of GrafT on two-stage object detection and
instance segmentation on COCO 2017 [23]. GrafT outperforms
Swin [25]. Here, 1× (SS) corresponds to 12 epochs with single
scale, 3× (MS) corresponds to 36 epochs with multi-scale.

Model Params↓ FLOPs↓ 1x (SS) 3x (MS)
APb↑ APm↑ APb↑ APm↑

PVT-S [35] 44 245 40.4 37.8 43.0 39.9
Swin-T [25] 48 264 42.2 39.1 46.0 41.6

43.3 39.9 47.0 42.5Swin-T+GrafT 53 275 (+1.1) (+0.8) (+1.0) (+0.9)
RegionViT-S [3] 50 171 42.5 39.5 46.3 42.3
VIL-S-RPB [38] 45 277 – – 47.1 42.7
CSWin-T [8] 42 279 46.7 42.2 49.0 43.6

Table 5. Performance of GrafT on semantic segmentation on
ADE20K [39]. GrafT outperforms Swin [25].

Model Params ↓ FLOPs ↓ mIOU ↑ mIOU ↑
(M) (G) (SS) (MS)

Swin-T [25] 59 945 44.5 45.8
Swin-T + Graft 66 955 (+1.0) 45.5 (+1.3) 47.1

MobViT [24,26] and Swin [25]. The detailed settings are in
the appendix. In Table 3, we show the benefit of GrafT in
single-shot object detection. In MobViT-XS, it gains +1.6%
mAP while only increasing parameters by 12% and FLOPs
by 5%. It even outperforms MobileNetv3 by 4.4% with a
60% model-size. GrafT helps the mobile-size Transformers
to detect various sizes of objects by providing multi-scale
features as shown in Fig 3. The results of MobViTv2 are
placed in the supplementary.

Table 4 presents two-stage object detection and instance
segmentation settings. Swin-T+GrafT shows consistent
gains in both 1× and 3× schedules. Even though Swin-
T underperforms RegionViT-S, our Swin-T+GrafT outper-
forms it, showing an overall gain of +1.1 APb +0.8 APm in
1x(SS), +1.0 APb, +0.9 APm in 3x(MS). This implies that
GrafT is applicable as a general-purpose model.
Experiments on semantic segmentation: For semantic
segmentation, we train Swin-T on ADE20K [39] while fol-
lowing a standard training procedure similar to Swin [25]
We provide implementation details in the appendix. Table 5

1150



MobileViT MobileViT+GrafT MobileViT+GrafTMobileViT

Figure 3. Object detection results of MobViT-XS [26] and MobViT-XS+GrafT on the COCO 2017 [23] validation set. In the left figure,
GrafT correctly detects cake, cup, and wine glass correctly in contrast to the baseline. In the right figures, GrafT correctly detects surfboard
and handbag. It shows to be capturing multi-scale information better.

Table 6. Different upsampling (US) and downsampling (DS) ap-
proaches considered in GrafT, evaluated on ImageNet-1K [7]. We
fix the upsampling method when ablating downsampling methods,
and vice-versa. Learn. W-Bilinear interpolation and avg. pooling
are the best methods.

Fixed Varied Params ↓ FLOPs ↓ Thr. ↑ Acc. ↑
sampling sampling (M) (G) (im/s) (%)

Linear proj.
Nearest nei. (US) 8.4 1.3 2890 74.8
Cross att. (US) 8.7 1.3 2392 74.4

Learn. bilin. (US) 8.5 1.3 2260 75.2

Learned bilin.
Linear proj. (DS) 8.5 1.3 2260 75.2
Cross att. (DS) 7.9 1.2 2834 75.4
Avg. pool. (DS) 7.9 1.2 3143 76.1

shows that Swin+GrafT outperform Swin in both single-
scale (by +1.0%) and multi-scale (by +1.3%) settings. The
multi-level semantics from GrafT has enabled our model to
capture better pixel-level details.

3.3. Ablations on ImageNet-1K

We conduct the following experiments to better under-
stand the design decisions of GrafT. Here, we consider
Swin-T and Deit-T backbones.
Downsampling & upsampling in GrafT:. Table 6 shows
the performance of DeiT-T+GrafT with different horizontal
downsampling and upsampling approaches. We fix down-
sampling to be a linear projection when ablating upsam-
pling approaches. Note that, in Cross attention, the finer-
level features (in backbone) are used as as query while
coarser-level features (in GrafT) acts as key/value. We also
explore Nearest neighbor interpolation as the simplest up-
sampling method. Learnable Bilinear (i.e., Window-based
Bilinear) interpolation uses anti-aliasing weights, and is ap-
plied in each local region separately. The results show that
Learnable W-Bilinear interpolation achieves the highest ac-
curacy with a reasonable complexity and speed.

We fix upsampling to be Learnable W-Bilinear when ab-
lating downsampling approaches. Linear projection basi-
cally concatenates neighboring tokens and applies a linear

layer (similar to Patch Merging in Swin). Cross attention
first creates a coarser-level feature by average pooling a fine
feature in the backbone (as query), using the backbone fea-
ture as key/value to perform cross attention. Average pool-
ing simply creates a coarser feature by pooling. The re-
sults show that the simple average pooling achieves a better
trade-off. Therefore, we adopt learnable W-Bilinear inter-
polation as upsampling and average pooling as downsam-
pling in GrafT, by default.
#Scales in GrafT: In GrafT, we explore a horizontal pyra-
mid structure where multi-scale low-resolution features are
created. Here, we try to understand whether such multi-
ple high-level semantics are useful, going beyond a single-
scale. In Swin, we consider a maximum of 8× horizontal
downsampling (in 3 scales), similar to its original vertical
downsampling. Table 7a shows that higher the #scales, the
better. Swin-T+GrafT with 3-scales gives +1.4% with a lit-
tle overhead compared to single-scale. Here, at the first
stage of Swin (where inpiut resolution is 56 × 56), GrafT
creates additional features of (28 × 28), (14 × 14), (7 × 7)
resolutions to deliver multi-scale global information, even
at the start of the network.
#Branches in GrafT: Table 7b shows that the accuracy
consistently increases with #Grafts in DeiT. Therefore, we
attach GrafT to entire layers after the first layer (11×). It
is not attached on the first layer to encode enough represen-
tations before being used to create coarser features through
GrafT.
Supplementary Ablation The examination of upsampling
elements and the replacement of GrafT with existing con-
volution modules have been incorporated in the appendix.

4. Related Work
Vision Transformers: Convolution neural networks
(CNNs) have been widely adopted as it have shown promis-
ing performance [6,12,16–19,28,30,32,33] on small-scale
dataset such as ImageNet-1K [7]. Inductive biases such
as translation invariance and locality from CNNs are the
key reasons to be trained well from scratch in small-scale
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Table 7. Considering (a) the different number of scales within a
GrafT at each layer, and (b) the different number of GrafTs along
vertical layers, evaluated on ImageNet-1K [7].

(a)

Model #Scales Params ↓ FLOPs ↓ Acc. ↑
(M) (G) (%)

Swin-T [25] 0 29 4.5 81.3

Swin-T + GrafT
1 33.5 5.0 (+1.0) 82.3
2 33.9 5.1 (+1.2) 82.5
3 34.0 5.1 (+1.4) 82.7

(b)

Model #Grafts Params ↓ FLOPs ↓ Acc. ↑
(M) (G) (%)

DeiT-T [34] 0 5.7 1.3 72.2

4 6.5 1.2 (+2.2) 74.4
8 7.3 1.2 (+3.4) 75.6DeiT-T + GrafT
11 7.9 1.2 (+3.9) 76.1

dataset. Recently, Transformers (e.g., ViT [9] or DeiT [34])
achieved comparable results to CNNs. The first type is a
pure Transformer with a homogeneous structure like ViT
where the number of tokens and channels do not change
over the vertical layers. T2T [37] proposes a progressive
tokenization method where spatial structures are preserved.
CrossViT [4] creates two branches to formulate both local
and global information and exchange information. The sec-
ond type is a pure Transformer with a pyramid structure
such as PiT [13] and PVT [35] where vertical layers are di-
vided into multiple stages, and the number of tokens is pro-
gressively decreased while the channel size increases over
stages. Swin [25] introduces shifted-window self-attention
where self-attention is performed in each window and shift-
ing window mechanism exchanges information among win-
dows in a pyramid structure. RegionViT [3] creates two
branches to formulate local tokens and global tokens like
CrossViT and assign each global token to local tokens in
the same region to exchange information. CSWin [8] intro-
duces cross-shaped window self-attention where half of the
channels are used to create vertical stripes as local regions,
and the other half is used to create horizontal stripes as local
regions. The third type is a light-weight hybrid Transformer
with a pyramid structure. Researchers have designed a hy-
brid Transformer where CNNs are combined with a Trans-
former [5,21,26,27] to compete with the well-studied light-
weight CNNs [12, 14, 16, 28]. For example, MobViT [26]
places light-weight MobileNet blocks in the early stages
to capture local features and exploits Transformer blocks
in the late stages to capture global features. This process
successfully incorporates spatial inductive biases through
CNNs in Transformers. As a result, the model size is sub-
stantially reduced while stability and performance are im-
proved.

In this paper, we propose GrafT, a simple and cost-

efficient add-on that provides rich global information to
backbone Transformers where there is a lack of communi-
cation between local regions because of local self-attention.

Exploiting multi-scale global tokens: In pyramid structure
Transformers (e.g., Swin [25], CSWin [8] MViTv2 [20],
iFormer [29], and CMT [10]), the scale of features varies
across different stages, and high-level semantics are intro-
duced at the final layers. In contrast, GrafT enables the
generation of multi-scale features at each layer, capturing
objects of different sizes/scales even at the initial layer,
thereby enhancing the efficiency of representations.

Some Transformers such as CrossViT [4], TNT [11], Re-
gionViT [3] keep two branches to encode low-level seman-
tics and high-level semantics from the early stage. However,
having two separate branches is detrimental to throughput
and requires careful design of choosing which layers to ex-
change local and global information and the right size ratio
of low-resolution and high-resolution features as mentioned
in CrossViT [4]. ViL [38] creates global tokens through
random initialization but they do not contain good inductive
bias of multi-scale local tokens. GrafT is unique in the sense
that it delivers multiple high-level semantics by exploiting
horizontal pyramid structure and uses simple element-wise
addition to fuse global information to the backbone Trans-
former. It is applicable to Transformers with both homo-
geneous structure and pyramid structure and improves the
performance of Transformers without increasing the com-
putation complexity due to the light-weight components as
described in 2.2. We provide additional related work and
the differences from the prior work in the appendix.

5. Conclusion

In this paper, we introduced GrafT: an add-on compo-
nent that can easily be adopted in hybrid and pure Trans-
formers, homogeneous and pyramid structures, and var-
ious self-attention methods, enabling multi-scale feature
fusion in arbitrary depths of a model. The proposed
GrafT branches are designed to be efficient, relying on
the backbone to perform heavy computations. In fact, it
gives consistent gains at a minimal computation burden.
We also observe its effectiveness across multiple backbones
and various benchmarks, including classification, detec-
tion, and segmentation. In the current work, GrafT is ap-
plied to three well-known Transformers: DeiT, Swin, and
CSWin and three well-known hybrid Transformers: Mob-
ViT, MobViTv2, and MViTv2. In particular, GrafT largely
benefits mobile-size models because global information is
crucial to understand the scenes at that accuracy level. Go-
ing forward, we hope that GrafT becomes a generally used
component for introducing multi-scale features in Trans-
formers.
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