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Abstract

We consider the hard-label based black-box adver-
sarial attack setting which solely observes the target
model’s predicted class. Most of the attack methods in
this setting suffer from impractical number of queries
required to achieve a successful attack. One approach
to tackle this drawback is utilising the adversarial trans-
ferability between white-box surrogate models and black-
box target model. However, the majority of the meth-
ods adopting this approach are soft-label based to take
the full advantage of zeroth-order optimisation. Un-
like mainstream methods, we propose a new practical
setting of hard-label based attack with an optimisation
process guided by a pre-trained surrogate model. Exper-
iments show the proposed method significantly improves
the query efficiency of the hard-label based black-box at-
tack across various target model architectures. We find
the proposed method achieves approximately 5 times
higher attack success rate compared to the benchmarks,
especially at the small query budgets as 100 and 250.

1. Introduction
Deep neural networks (DNNs) have become a most

successful back-bone technique adopted in many ma-
chine learning applications. Especially in the object
classification domain, DNN models can classify objects
in images with near human accuracy. However, such
models are in general vulnerable to adversarial attacks
which use maliciously modified input examples to mis-
lead a target model. [28].

Depending on the amount or type of information of
target models the attack methods can access, adver-
sarial attack methods are divided into two categories:
white-box and black-box attacks. White-box attacks
are carried out with full access to necessary informa-
tion of the target models, such as their weights and
structures, to efficiently conduct back-propagation and
calculate gradients [14,17]. In the black-box attack set-
tings, however, the attack methods can only monitor

the input examples and corresponding output informa-
tion from the target model [5,8,20]. The black-box ad-
versarial attacks are, therefore, considered to be more
practical attack methods compared to the white-box
attacks.

Carlini et al. [7] has emphasised the importancy of
black-box adversarial attack to evaluate the robustness
or security of applications running with DNN model.
The applicable black-box attack method was intro-
duced by Papernot et al. [27] in early 2016. Black-box
attacks are carried out without knowledge of the target
model, and rely on the target model’s output data ob-
tained through model querying. Therefore, such attack
methods utilise optimisation processes to approximate
gradients to generate adversarial examples. Depend-
ing on the method to approximate gradient, Black-box
attack methods are broadly categorised into transfer
based and query based attacks. Transfer based attacks
utilise surrogate models to generate gradients which are
directly used as the approximate gradient, since such
gradients are likely remain adversarial for the target
model due to their transferability [26, 27]. Although
various methods have been introduced to improve the
transferability [14, 31], the attack success rate (ASR)
is yet to be satisfactory. The reason is that there
lacks an adjustment procedure in transfer based at-
tacks when the gradient of the surrogate model points
to a non-adversarial region of the target model [13].
Query based attacks adopt various gradient-free op-
timisation processes, which search the optimal point
of the functions without using their derivative, to esti-
mate gradients [9,20,30]. Consider a DNN model which
classifies an input example into a class. The real-world
applications, which deal with the classification prob-
lem utilising the DNN, generate a predicted soft-label
and/or hard-label as the classification result. Accord-
ing to Galstyan et al. [16], a hard label is one assigned
to a member of a class where membership is binary,
and a soft label is one which has a score (probability
or likelihood) attached to it. Based on this definition,
the query based attacks subdivided further into soft-
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label based, and hard-label based attacks. As the tar-
get model’s classification probability distribution is not
observable to the attacks, hard-label based attacks are
generally considered to be more challenging task com-
pared with soft-label based attacks. Although query
based attack methods generally achieve a higher ASR
in comparison with the transfer based attacks, regard-
less of their categories they typically suffer from a large
number of queries required to perform a successful at-
tack.

In this report a novel method is introduced to tackle
the query in-efficiency of the hard-label based black-
box attack methods by proposing a black-box attack
method called Small-Query Black-Box Attack (SQBA).
SQBA integrates the transfer based attack to take ad-
vantage of the gradients generated from a surrogate
model, and applies gradient-free optimisation intro-
duced in [8]. In summary, the contributions of this
report are:

• A novel transfer based iterative gradient estima-
tion is proposed to guide gradient direction in the
black-box attack settings.

• We design a hard-label based black-box attack
method, SQBA, which has an optimisation pro-
cess guided by the proposed transfer based gradi-
ent estimation.

• Through the experiments the improved query-
efficiency of SQBA attack method is demonstrated
in comparison with several state-of-the-art hard-
label based black-box attack methods.

2. Related works
In the black-box adversarial attack settings, the at-

tack methods need to generate adversarial examples
without gradient information from the target model,
as they have no or limited accessibility to the model.
A common choice to tackle this problem is to utilise an
approximate gradient instead for generating adversar-
ial examples. While the mainstream approach in gener-
ating the approximate gradients is to numerically esti-
mate them by the zeroth-order optimisation algorithms
[5, 8, 10, 20, 21], transfer based attacks take an advan-
tage of white-box attack method (surrogate model) to
estimate the gradients. Intuition in the transfer based
attack methods is that adversarial examples which suc-
cessfully attack a surrogate model are likely to remain
adversarial for the target model due to their transfer-
able characteristics [26].

Tramer et. al. demonstrated in their work [29]
that adversarial examples display a high level of trans-
ferability between models, which are trained for the

same task, but have different architectures. To exploit
this characteristic of the adversarial examples, trans-
fer based attack methods train substitute (surrogate)
models to achieve reasonably similar behaviour to the
target model, and then apply generic white-box attacks
to produce approximate gradients to attack the tar-
get model. In this report, however, it is assumed a
surrogate model which well clones the target model is
given, considering an easy access to the off the shelf
pre-trained models, whose network structures are dif-
ferent from the target model.

Adversarial examples generated from the surrogate
model are not always transferable to the target model,
although many efforts have been made to improve the
transferability of the adversarial examples by utilising
momentum guidances [14, 31], or transforming input
examples [15, 24, 32]. The failure of transferability is
often presented when the classification probabilities of
the models are different, and such discrepancy tends to
cause disagreement on gradient directions.

The query based attack methods commonly utilise
the iterative-querying approach adopting the zeroth-
order optimisation. In details, the approximate gra-
dient is estimated by finite difference [4, 9], random-
gradient estimation [30] and natural evolution strategy
(NES) [20, 21]. However, such attack methods suffer
from impractically large numbers of queries to achieve
successful attack. It is because they typically spend
many queries to find the intermediate adversarial ex-
amples as the nature of zeroth order optimisation be-
comes effective if and only if examples lie near the de-
cision boundary of the target model [5, 8, 10].

To overcome this drawback of the query based at-
tack methods, an approach to leverage transfer based
and query based methods have been adopted in re-
cent studies. Brunner et al. [6] integrated a white-
box attack method within Boundary Attack (BA)
method [5], and used adversarial example originated
from the gradient of the surrogate white-box model
to guide optimisation process. Yang et al. [33] im-
proved SimBA [18] query based attack and applied
on-line surrogate model updating algorithm in which
simulates both forward and backward process of target
model. Zhou et al. [34] systematically integrated the
surrogate model to generate a Jacobian matrix and im-
proved query efficiency adopting optimisation process
of SimBA. Dong et al. [13] obtained the gradient in-
formation from a surrogate model, and used it to ac-
celerate searching process. Huang et al. [19] generated
gradients from a surrogate model, and applied NES [20]
optimisation process to search adversarial examples.

Most of methods reviewed here utilise the optimi-
sation processes rely on the soft-label output of the
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target model, whereas [6] focuses on the similar attack
settings as SQBA method which uses the hard-label
optimisation process.

3. Problem Definition
Suppose F (x) is a model to deal with a k-class object

classification problem, and the output of the model is
denoted as f(x) → Rk to quantify classification prob-
abilities of the input example x ∈ Rm belonging to the
classes. The successful classification is represented as
fc†(x) = maxk[fk(x)], where c† is the true class of x.

The goal of the adversarial attack is to find a mod-
ified example x̃ such that fc̃(x̃) > fc†(x̃) and D(x, x̃)
is small enough, where c̃ is an adversarial class and D
is a dissimilarity metric. In hard-label based black-box
attack settings, the attack methods iteratively inquire
the target model with queries using purposely modi-
fied examples x′

t and only observe the predicted classes.
The parameters θ in the target model and the classi-
fication probabilities {f0(x′

t), f1(x′
t), ..., fk(x′

t)} are not
accessible to the attack methods.

4. Optimisation Framework
The output vector of model F (x) is a probability

distribution over the class set k = {1, ..., k}. The clas-
sification function of F (x) is denoted as C : Rm → k
which maps input example x to the class with highest
probability, and it is defined as [8]:

C(x) := arg max
c∈k

[fc(x)] (1)

Suppose a function H(x) is defined for the untargeted
attack to divert the true classification c† = C(x) to
any unknown class, which is an adversarial class, c̃ ∈ k
subject to c̃ ̸= c† as:

H(x+αµ) := lim
α→ϵ

(
fc̃(x+αµ)−max

c̸̃=c
[fc(x+αµ)]

)
(2)

where µ is a perturbation vector generated with an in-
tention to conduct adversarial attack, α is a scaling
factor, and ϵ ≤ 1 is a small positive value. For the
targeted attack, the adversarial class c̃ becomes a des-
ignated class. When H(x′) is positive, given modified
example x′ is clearly adversarial, while negative H(x′)
means x′ lies in the true class region. Especially when
H(x′) is zero, x′ is indicated to lie exactly on the de-
cision boundary between two classes, c† and c̃. The
examples which fall into this case are called boundary-
example [23].

In hard-label based attack setting, however, H(x′)
is not a linear function and observed as the Heaviside

step function since fc(x) is not accessible. Therefore,
H(x′) needs to be re-defined as:

H(x′) :=

 1, if fc̃(x′) > max
c̃ ̸=c

[fc(x′)]

−1, otherwise.
(3)

where x′ = x + αµ. When α is acceptably small, the
status change of H(x′) is observed if and only if x′ is
a direct neighbour of the boundary-example. In the
hard-label based attack settings, therefore, it is nec-
essary to keep the distance between x′

t and decision
boundary close enough in the search phase to guaran-
tee the successful attack with high quality adversarial
examples.

As shown in Equation (3), H(x′) is a boolean func-
tion, and therefore it is useful to indicate the successful
adversarial examples. With the boolean function, the
objective of the adversarial attacks can be seen as a
process to find an example which satisfies:

min
x′

D(x′, x), such that H(x′) = 1 (4)

where D is a distance metric to quantify the amount
of applied perturbation vector to modify the given ex-
ample. Typically lp-norm, such that p ∈ {0, 2, ∞}, is
utilised for this purpose. In this work, l2-norm distance
metric, D(x′, x) = ∥x′ − x∥2, is chosen.

Consider the objective of the adversarial attacks de-
fined in Equation (4) as an optimisation problem. Two
gradients are estimated in this work to solve such prob-
lem, and to effectively control the error in estimations.
The first gradient ∇Hw(x′) is estimated via following
process:

∇Hw(x′
t) := µi

t subject to min
µi

t

D(x, x′
t + δtµ

i
t) (5)

where µi
t = ∇JS(x + vi

t, c†) is a gradient generated
from a pre-trained surrogate model S(x), which well
clones the classification behaviour of the target model
F (x), vi

t is a vector to differentiate input example x,
and δt is a scaling factor for the iteration t. The gra-
dient µi

t is calculated through a white-box attack by
injecting modified example (x+vi

t) and true class c† of
x into the surrogate model S(x). Specifically, l∞ gra-
dient from Dual Gradient Method (DGM), which
is detailed in the Supplemental Material, is used for
this purpose. In each iteration n gradients are gen-
erated as, {µ0

t , µ1
t , ..., µn

t }, and a gradient which can
move current intermediate adversarial example x′

t to
the closest point to the input example x preserving ad-
versariality, is selected. This process is detailed fur-
ther in section Section 4.1 of this report. Boolean
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Algorithm 1 SQBA Adversarial Example Computa-
tion

input: classifier f, example x, true class c†,
surrogate mode S

output: adversarial example x̃

t = 0, β = 1, x′
t = sign

(
∇SJ (x, c†)

)
x′

t+1 = Equation (9) ← x, x′
t

while queries ≤ query budget do
t = t + 1, δt = 10−2D(x, x′

t)
∇Hw = Equation (5) ← δt

∇Hb = Equation (6) ← δt

gt = Equation (7) ← ∇Hw,∇Hb, β
ẋt, β = Equation (8) ← x′

t, gt

x′
t+1 = Equation (9) ← x, ẋt

end while
x̃ = x′

t

function H(x′) provides an approximation of the gradi-
ent direction, which has been utilised in various black-
box attack methods [8, 10, 18, 20]. However, Equa-
tion (5) estimates ∇Hw(x′

t) including its likely direc-
tion. Therefore, the proposed attack method doesn’t
apply such approximation to ∇Hw(x′

t) for more effec-
tive attack process. The gradient estimation algorithm
used in HSJA attack method [8] is adopted in the pro-
posed attack method to estimate the second gradient
∇Hb(x′

t). The algorithm generates pt random exam-
ples µi

t which are uniformly distributed, where µi
t ∈ Rm

and i = {0, 1, ..., pt}. At every iteration, the number
of random examples is re-calculated. In the proposed
method smaller pt = 10

√
t + 1, compared with HSJA,

is sufficient as the optimisation has already been pro-
gressed with ∇Hw(x′

t). The second gradient is then es-
timated from the generated random examples via the
Monte Carlo method as:

∇Hb(x′
t) := 1

pt

pt∑
i=1

H(x′
t + δtµ

i
t)µi

t (6)

where µi
t ∼ N (O, I). δt is a scaling factor which is also

applied in Equation (5), and updated at every itera-
tion as δt = 10−2D(x, x′

t). With the estimated gradi-
ents ∇Hw(x′

t) and ∇Hb(x′
t), the iterate gradient gt is

approximated as:

gt ≈ βt
∇Hw(x′

t)
∥∇Hw(x′

t)∥2
+ (1 − βt)

∇Hb(x′
t)

∥∇Hb(x′
t)∥2

(7)

Gradient combining factor β is obtained from a boolean
function whose output is switched between {0, 1}. The
proposed method begins with β = 1 meaning ∇Hw(x′

t)
is solely used to approximate iterate gradients. When
∇Hw(x′

t) is indicated to be in a local minima, β is then
switched to 0 to start using ∇Hb(x′

t) instead. Con-
sider an iterative optimisation process which is given

access to the approximate gradient gt with an inter-
mediate adversarial example x′

t. The process performs
an update as ẋt = x′

t + αgt. The optimisation prob-
lem in Equation (4) becomes meaningful when ẋt is a
close neighbour to the boundary-example. Therefore,
a tuning process is necessary to move ẋt towards the
boundary such as:

ẋt = min
α

(x′
t + αgt) , such that H(ẋt) = 1 (8)

where α is a line search parameter. The tuning process
shall guarantee obtained ẋt to satisfy H(ẋt) = 1 and
also min D(x′

t, ẋt), so that the next iterate example lies
on the boundary. It can be noticed when an approxi-
mate gradient gt gets into a local or global minima, the
line search parameter α likely becomes small to find ẋt.
Therefore, α is used to switch the boolean function out-
put β in Equation (7). In practice α ≤ 1.0 is used for
this purpose.

The final step of the iterative optimisation is increas-
ing the correlation between input example x and cal-
culated intermediate adversarial example ẋt. A binary
search algorithm is applied for the improved correlation
as

x′
t+1 = lim

ζ→0
(ζx + (1 − ζ)ẋt) , such that H(x′

t+1) = 1
(9)

The process shown in Equation (9) is a simple and
greedy search algorithm, however it is useful enough to
be adopted in many hard-label based methods [8, 10].

4.1. Gradient from surrogate model

The transferability of gradients generated from the
surrogate model is mitigated when the decision bound-
ary of the surrogate model does not closely match the
target model. However, even when this is the case, the
decision boundaries of both models may still be rea-
sonably nearby [6]. To address this drawback, the pro-
posed SQBA attack utilises the multi-gradient method.

Figure 1. Illustration of the process to find iterate example
search direction.
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Figure 2. Change of Angle of the gradient vectors from surrogate model.

Let x̃ be an adversarial example generated from surro-
gate model S(x), and ṽ = ∇SJ (x, c†) be a perturba-
tion vector to transpose the input example x to x̃. The
examples that lie on ṽ are calculated by x′

i = x + ηiṽ,
where ηi ≤ 1 is a positive scaling factor which config-
ures the distance from input example, such as x′

i = x
subject to η = 0, and x′

i = x̃ subject to ηi = 1. As
illustrated in Figure 1, a set of gradients then can be
generated from S(x′

i) as:

µi = ∇SJ (x′
i, c†), where i = 0, 1, ..., n (10)

Many works have proven that the optimal search direc-
tion in hard-label based attack is perpendicular to ṽ [5,
8]. Suppose a function A(ā1, ā2) is defined to derive the
angle between two vectors as A(ā1, ā2) := cos∠(ā1, ā2),
where cos∠(ā1, ā2) = (ā1 · ā2)/∥ā1∥2∥ā2∥2. The angle

Dataset Model Accuracy

CIFAR-10

ResNet-18 93.07%
MobileNet-V2 93.90%
Inception-V3 93.74%
GoogLeNet 92.96%

ImageNet
EfficientNet-b3 83.58%

VGG-16 78.98%
ResNet-18 76.74%

Table 1. List of DNN Models and Classification Accuracies

Dataset Target Model Surrogate Model

CIFAR-10
ResNet-18 MobileNet-V2

GoogLeNet

MobileNet-V2 Inception-V3
ResNet-18

ImageNet
EfficientNet-b3 ResNet-18

VGG-16

VGG-16 EfficientNet-b3
ResNet-18

Table 2. Target and Surrogate models mapping

between ṽ and a gradient vector µi is then calculated
with A(ṽ, µi).

To exam the direction of gradients of the set of ex-
amples x′

i, i = 0, 1, ..., n, dedicated 500 examples to
each CIFAR-10 and ImageNet-100 datasets were taken,
and average direction of the gradients from various
DNN models were plotted in Figure 2. As one can
expect, when ηi is small, in other words, x′

i is close to
input example x, the direction of gradient vector µi is
near parallel to ṽ as A(ṽ, µi) ≈ 1. The direction of µi,
however, tends to be exponentially changed even at a
small increment in η, and rapidly saturated to the per-
pendicular direction to ṽ as A(ṽ, µi) ≈ 0. Regardless of
DNN models or dataset, the similar pattern of changes
is observed that is an example which lies at ηi ≈ 0.2,
and afterwards their gradients are almost saturated to
A(ṽ, µi) ≈ 0. The iterate approximate gradient, there-
fore, can be chosen from the calculated gradient vectors
such that ηi ≥ 0.2 and H(x̃ + 2δµi) = 1 as:

∇Hw(x̃) = µi where i = arg min
D

[D(x, x̃ + 2δtµi)]

(11)

5. Experiments
Experimental analysis carried out to evaluate SQBA

attack method is detailed here. The efficiency of SQBA
attack was compared with several state-of-the-art at-
tack methods which utilise the hard-label based adver-
sarial attack setting.

5.1. Benchmarks

SQBA attack method was compared with four state-
of-the-art black-box attack methods: HSJA Attack [8],
Sign-Opt Attack [10], BA Attack [5] and Biased-BA
Attack [6]. These attack methods commonly fall into
the hard-label based black-box adversarial attack set-
ting as they solely observe the predicted class against
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CIFAR-10: ResNet-18 at ρ(x̃) ≤ 0.10

Query Budget 100 250 500 750 1000

Attack
Methods

HSJA [8] 1.2% 9.7% 33.2% 46.9% 60.5%
BA [5] 2.9% 3.7% 4.0% 4.2% 4.5%
Sign-Opt [10] 8.5% 10.5% 11.4% 24.5% 32.1%
Biased-BA(GoogLeNet) [6] 3.0% 5.5% 13.7% 19.2% 30.3%
SQBA(MobileNet-V2) 38.4% 52.1% 66.1% 74.7% 82.0%
SQBA(GoogLeNet) 28.1% 40.4% 60.5% 73.0% 79.2%

Table 3. Query Budgets and ASR of hard-label based black-box attacks on ResNet-18 trained on CIFAR-10

CIFAR-10: MobileNet-V2 at ρ(x̃) ≤ 0.10
Query Budget 100 250 500 750 1000

Attack
Methods

HSJA [8] 3.9% 23.4% 67.6% 78.4% 85.6%
BA [5] 9.3% 10.0% 11.9% 13.1% 16.1%
Sign-Opt [10] 26.8% 32.0% 37.3% 61.3% 68.9%
Biased-BA(Inception-V3) [6] 11.9% 28.0% 56.3% 68.0% 73.8%
SQBA(Inception-V3) 71.9% 80.2% 89.4% 91.9% 95.6%
SQBA(ResNet-18) 72.0% 83.6% 91.1% 95.6% 97.6%

Table 4. Query Budgets and ASR of hard-label based black-box attacks on MobileNet-V2 trained on CIFAR-10

the given example. Especially Biased-BA is taking the
similar approach as SQBA which embeds a transfer
based algorithm within the base line hard-label based
attack method. Model parameters or model output
logits are not accessible to the attack methods used
in the experiments. All the benchmark methods were
configured to perform the untargeted attack scenario.
In the untargeted attack scenario, an attack becomes
successful if the target model predicts a different class
from the true class of the given example. Note that
Biased-BA attack was initialised with a random noise
instead of a target example to conduct such an attack
scenario. Attack strategies of the benchmark methods
commonly have three stages: First, they find an ini-
tial adversarial example (starting point); Second, they
iteratively search a path towards a further optimised
example, which is closer to the original example but
still maintains the adversariality; and finally, they stop
searching when the optimisation process satisfies stop-
ping criteria which is given the query budget.

5.2. Datasets and Models

The experiments were conducted over two standard
image datasets: CIFAR-10 [22] and ImageNet-100 [11].
CIFAR-10 dataset is composed of RGB image exam-
ples in the 3 × 32 × 32 dimensional spaces. It has 10
classes with 6,000 examples per class. ImageNet-100
is a subset of ImageNet-1k dataset. It consists of ran-
dom 100 classes out of 1K classes of the full dataset,
and each class has 1,350 examples. All the models used
in the experiments are listed in Table 1. The models
were off the shelf, which were not re-trained nor mod-

ified, obtained from publicly available libraries, such
as Zenodo [1] for CIFAR-10 and Pytorch torchvision
library [3] for ImageNet-1K models. All the examples
were transformed as instructed by the libraries. For ex-
ample, examples in ImageNet-100 dataset were rescaled
to 3×256×256 dimensional space, and centre cropped
to 3 × 224 × 224 dimensional RGB examples. From the
validation split of each dataset, dedicated subsets were
created with the examples correctly classified by the
target models to avoid artificial inflation of the success
rate. 1000 examples were randomly down sampled fur-
ther from the subsets to be used in the evaluation. As
the objective dataset, ImageNet-100, is a direct sub-
set of ImageNet-1K dataset, DNN models trained on
ImageNet-1K dataset are naturally ready for the objec-
tive dataset. In the rest of the report, ImageNet-100
dataset is presented as ImageNet unless otherwise spec-
ified.

For fair and easy comparison, the DNN models,
which are publicly well known and pre-trained with
the datasets described above, were chosen for the
experiments. Specifically, for the experiments with
CIFAR-10 dataset, two DNN models, ResNet-18 and
MobileNet-V2 were used as the target models. SQBA
attack method conducted two attacks on each target
model utilising different surrogate models, whose ar-
chitectures are different from others, to demonstrate
the generalisation of the method. To attack ResNet-18
target model, MobileNet-V2 and GoogLeNet were cho-
sen for the surrogate model, while Inception-V3 and
ResNet-18 were used to attack MobileNet-V2. For
the experiments with ImageNet dataset, VGG-16 and
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ImageNet: EfficientNet-b3 at ρ(x̃) ≤ 0.10

Query Budget 100 250 500 750 1000

Attack
Methods

HSJA [8] 1.7% 5.2% 12.0% 19.3% 24.6%
BA [5] 2.7% 3.0% 3.0% 3.2% 3.4%
Sign-Opt [10] 5.5% 7.5% 7.2% 7.5% 7.3%
Biased-BA(VGG-16) [6] 2.0% 3.4% 7.5% 15.6% 21.6%
SQBA(ResNet-18) 33.8% 38.2% 46.8% 49.4% 55.2%
SQBA(VGG-16) 30.4% 37.4% 45.0% 48.7% 53.2%

Table 5. Query Budgets and ASR of hard-label based black-box attacks on EfficientNet-b3 trained on ImageNet

ImageNet: VGG-16 at ρ(x̃) ≤ 0.10

Query Budget 100 250 500 750 1000

Attack
Methods

HSJA [8] 2.2% 10.2% 24.0% 31.2% 40.8%
BA [5] 5.0% 6.0% 6.8% 6.2% 9.0%
Sign-Opt [10] 11.4% 13.6% 14.4% 15.8% 15.7%
Biased-BA(ResNet-18) [6] 6.3% 9.0% 22.7% 34.4% 40.6%
SQBA(Inception-V3) 57.6% 62.8% 68.4% 72.4% 75.8%
SQBA(ResNet-18) 65.5% 69.2% 73.3% 78.0% 80.9%

Table 6. Query Budgets and ASR of hard-label based black-box attacks on VGG-16 trained on ImageNet

EfficientNet-b3 were attacked by the methods. SQBA
attack method utilised ResNet-18 and EfficientNet-b3
models to perform attacks on VGG-16 target model.
ResNet-18 and VGG-16 models were used as the sur-
rogate models to attack EfficientNet-b3 target model.
Each group of models used in the experiments are de-
tailed in Table 2.

5.3. Adversarial Attack Budgets

In order to generate meaningful adversarial exam-
ples, it is necessary to impose reasonable constraints to
the attack. An unconstrained attack perhaps achieve
a successful attack by, for example, disturbing target
model with tremendous number of queries, or intro-
ducing large and brutal perturbations to an input ex-
ample that would alter its semantics [7]. Since such
attacks are not considered to satisfy the goal of adver-
sary, which is an adversarial example shall have human-
imperceptible perturbation, two restrictions were intro-
duced in the experiments. In the rest of this report, the
restrictions are called attack budgets.

The first attack budget used in order to quantify
the performance of the attack methods is a metric used
in [12] as:

ρ(x̃) := ∥µ∥2

∥x∥2
(12)

where µ is the perturbation vector added to the original
example x to achieve a successful adversarial attack.
This metric was originally used to measure the average
robustness. In this report, however, ρ(x̃) is used as the
perturbation budget to determine the successfulness of
an individual attack. ρ(x̃) in fact indicates the distance

between x and x̃, therefore the lower value means the
higher robustness.

As the second attack budget, the number of queries
that an attack method can use is also restricted by
the five different budgets such as {100, 250, 500, 750,
1000}. The highest allowed number of queries 1000
may seem to be in-efficient. However, some object clas-
sification applications which utilise modern techniques
such as GPU or FPGA accelerated systems are already
capable of processing more than 1000 images per sec-
ond [2].

5.4. Attacks on CIFAR-10 Dataset

In this section the results of black-box adversarial at-
tacks with CIFAR-10 dataset are reported. Pre-trained
ResNet-18 and MobileNet-V2, which achieves 93.07%
and 93.90% classification accuracies respectively, were
chosen for the target models. All the attacks were lim-
ited with the perturbation budget ρ(x̃) < 0.1, and to at
most the five query budgets as described in Section 5.3.
Any successful attack achieved with queries or pertur-
bation which exceeded the budgets was reported as a
failed attack.

As shown in Table 2, Two SQBA with different sur-
rogate models performed black-box attacks to each tar-
get model, and their performance was compared with
four state-of-the-art hard-label based attack methods
listed in Section 5.1. The attack results over ResNet-
18 target model is presented in Table 3. SQBA with
both MobileNet-V2 and GoogLeNet surrogate mod-
els outperformed benchmark methods across all the
query budgets, specifically SQBA with MobileNet-V2
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CIFAR-10: ResNet-18-AT at ρ(x̃) ≤ 0.10

Query Budget 750 1000

Attack
Methods

HSJA [8] 16.5% 22.1%
Sign-Opt [10] 8.6% 9.5%
Biased-BA(GoogLeNet) [6] 3.0% 5.9%
SQBA(GoogLeNet) 18.0% 22.5%

CIFAR-10: MobileNet-V2-AT at ρ(x̃) ≤ 0.10

Query Budget 750 1000

Attack
Methods

HSJA [8] 24.5% 27.6%
Sign-Opt [10] 12.1% 13.5%
Biased-BA(Inception-V3) [6] 10.5% 25.1%
SQBA(Inception-V3) 25.2% 31.9%

Table 7. Comparison of black-box attacks on defended models for CIFAR-10 dataset

showed the best attack performance achieving 82.0%
ASR at 1000 query budget. Especially in the very
small query scenarios, where queries are limited with
100 and 250 at most, SQBA attacks performed ap-
proximately 4 and 5 times higher ASR respectively
compared with the best performing benchmark. Ta-
ble 4 details attack performances on MobileNet-V2 tar-
get model. SQBA attacks also outperformed bench-
marks in this experiment. At 100 query budget, both
SQBA attacks with Inception-V3 and ResNet-18 sur-
rogate models achieved over 70.0% ASR while other
bench mark methods didn’t show meaningful attack
performances yet.

5.5. Attacks on ImageNet Dataset

This section details the performances of black-box
adversarial attacks conducted against target-models
trained on ImageNet dataset. For the experiments,
pre-trained EfficientNet-b3 and VGG-16 DNN models
were chosen for the target models, and they respec-
tively achieve 83.58% and 78.98% classification accura-
cies over ImageNet-100 dataset. Surrogate models used
in SQBA attacks are detailed in Table 2. The bench-
mark methods and attack budgets used in CIFAR-10
experiments were also applied in this series of experi-
ments to evaluate the performance of the SQBA meth-
ods.

Table 5 and Table 6 show the performances of the
attack methods over ImageNet models, EfficientNet-b3
and VGG-16 respectively. While it is a general ob-
servation that SQBA attacks outperformed all other
methods, in detail SQBA attacks achieved approxi-
mately 5 times higher ASR compared with the bench-
marks at small query budgets 100 and 250, interest-
ingly all methods struggled to achieve successful at-
tacks to EfficientNet-b3 model. At 1000 query budget,
HSJA [8] performed 40% degraded ASR compared to
the same attack to VGG-16 target model, while SQBA
with ResNet-18 achieved 32% degraded ASR compared
with the attack on VGG-16.

5.6. Attacks on Defended models

Attack methods were further evaluated with the
defended models. ResNet-18-AT and MobileNet-V2-

AT models have identical architectures to the original
models used in Section 5.4. They were trained with
CIFAR-10 dataset using the PGD adversarial train-
ing method [25] to achieve 67.24% and 68.49% stan-
dard classification accuracies respectively. Table 7
show the comparison of black-box attacks on both de-
fended models. In these experiments, two query bud-
gets, 750 and 1000, were considered, and BA attack
method which didn’t show meaningful ASR in the pre-
vious experiments was not included. GoogLeNet and
Inception-V3 were chosen for the surrogate models to
attack ResNet-18-AT and MobileNet-V2-AT respec-
tively. It can be observed that the defended mod-
els successfully reduced the ASR of all the attack
methods to approximately 70.0% less than their at-
tacks on the original models. Although SQBA attacks
showed the improved performances compared with the
benchmarks, their performance was also heavily de-
graded achieving 22.5% on ResNet-18-AT and 31.9%
on MobileNet-V2-AT target models at 1000 query bud-
get, which were 71.5% and 66.6% respectively less ASR
compared with the same attacks on the original mod-
els.

6. Conclusion

SQBA method which combines transfer based and
hard-label based adversarial attacks was introduced.
SQBA is designed to generate likely adversarial exam-
ples for an unknown classifier whose predicted class is
only accessible. The method takes an advantage of
the transfer based algorithm for the rapid search of
an initial convergence point which is followed by the
guided optimisation procedure. Through the exper-
iments it was demonstrated that SQBA is capable of
achieving higher ASR with smaller query budgets com-
pared with the benchmarks. One drawback of black-
box attack methods which utilise transfer based algo-
rithms degrades the performance when gradients from
the transfer based algorithms disagree with the target
model, and SQBA is not immune from this problem.
Future work may focus on improving the adversarial
transferability in the SQBA method to address this is-
sue.
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