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Abstract

Given the inevitability of domain shifts during inference
in real-world applications, test-time adaptation (TTA) is
essential for model adaptation after deployment. However,
the real-world scenario of continuously changing target
distributions presents challenges including catastrophic
forgetting and error accumulation. Existing TTA methods
for non-stationary domain shifts, while effective, incur
excessive computational load, making them impractical for
on-device settings. In this paper, we introduce a layer-
wise auto-weighting algorithm for continual and gradual
TTA that autonomously identifies layers for preservation
or concentrated adaptation. By leveraging the Fisher
Information Matrix (FIM), we first design the learning
weight to selectively focus on layers associated with log-
likelihood changes while preserving unrelated ones. Then,
we further propose an exponential min-max scaler to make
certain layers nearly frozen while mitigating outliers. This
minimizes forgetting and error accumulation, leading to
efficient adaptation to non-stationary target distribution.
Experiments on CIFAR-10C, CIFAR-100C, and ImageNet-
C show our method outperforms conventional continual
and gradual TTA approaches while significantly reducing
computational load, highlighting the importance of FIM-
based learning weight in adapting to continuously or
gradually shifting target domains. 1

1. Introduction
Despite the recent advances in deep learning [9, 15–

17], deep neural networks (DNNs) frequently encounter
performance degradation when the source and target
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Figure 1. (a) Continual TTA Performance between gradual
layer tuning and Ours in CIFAR-C dataset. While heuristically
selecting layers to tune achieves favorable performance, our
method outperforms through layer-wise auto-weighting. (b)
Adaptation performance of CTTA methods on CIFAR-100C
benchmarks. The x− and y−axis are the FLoating point
Operations Per second (FLOPs) and mean error (%). Our method
outperforms others with a significantly less computational load.

domains are different [19,27,40]. For instance, a pre-trained
classification model suffers from this phenomenon when
tested on corrupted images due to sensor deterioration.
Among various efforts to address these domain shifts, test-
time adaptation (TTA) has recently received significant
attention, especially for its practicality [8, 38]. TTA aims
to adapt the pre-trained source model by learning from
unlabeled target data during inference where access to the
source data is no longer available. Since source data is
unavailable during inference due to privacy concerns or
legal constraints, TTA poses a realistic problem and is more
challenging than unsupervised domain adaptation. TTA can
also be conducted in online scenarios where revisiting the
past test samples is prohibited, adapting the model instantly
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using only the current test batch. This makes TTA more
applicable in on-device settings [11, 26, 40]

Existing TTA methods often tackle the domain shift
between the source and a fixed target domain by using
pseudo labels or entropy regularization [33, 38]. While
these self-training methods have shown effectiveness, their
improvements are demonstrated only in a single domain
shift scenario at a time. Since real-world target distribution
tends to change continuously, it is necessary to consider
the non-stationary target domain. [39] introduced continual
test-time adaptation (CTTA) where the model is adapted to
a sequence of domain shifts. The two challenges of CTTA
are error accumulation by miscalibrated pseudo labels [13]
and catastrophic forgetting by the gradual dilution of
knowledge from the source pre-trained model. To prevent
the error accumulation, pioneering attempts [8, 39] employ
augmentation-averaged pseudo labels and an exponential
moving averaged (EMA) model. For source knowledge
preservation, random parameter restore [39] and source
prototypes [8] are used. However, using these additional
processes requires an excessive computational load than the
original model as shown in Figure 1b. This makes the
methods less practical to use in on-device settings.

Despite the advancements in CTTA, previous works have
not considered the heterogeneity of layers: each layer has
a distinct role and captures different information [2, 12,
29, 43]. Recently, in the context of transfer learning, [23]
identified certain layers of a pre-trained model that are
already near-optimal for the target data through a heuristic
approach. They demonstrated that optimizing only the
remaining layers helps preserve useful information from
pre-training while enabling efficient learning for the target
distribution. In our preliminary CTTA experiment shown in
Figure 1a, tuning the subset of layers improved adaptation
capability compared to the vanilla or standard fine-tuning
of the entropy minimization [38]. We hypothesize that
there is potential for further improvement of adaptation
to continuously shifting target domains by identifying an
optimal combination of tuning layers.

Inspired by this observation, we propose a novel
layer-wise auto-weighting algorithm that autonomously
identifies the layers that need preservation or concentrated
adaptation. The goal of this approach is to utilize
the knowledge gained during source pre-training and
efficiently adapt to the non-stationary target distribution.
To achieve this, we employ the Fisher Information Matrix
(FIM) to approximate the second derivative of the log-
likelihood [32]. We calculate the FIM-based learning
weight of each layer to measure the sharpness of the
log-likelihood-layer parameters surface on target data [7].
Since higher sharpness indicates parameter sensitivity, we
can identify layers to update or preserve. Moreover, we
introduce an exponential min-max scaler to amplify the

learning weight difference across layers. It makes certain
layers nearly frozen while mitigating distortion of learning
weights outliers. As a result, our method can selectively
focus on layers associated with log-likelihood changes in
the target domain while preserving the unrelated ones. Our
method outperforms conventional CTTA approaches while
significantly reducing computational load. Experiments
and ablation studies conducted on various benchmarks
and networks, such as CIFAR-10C, CIFAR-100C, and
ImageNet-C, prove the significance of the FIM-based
learning weight. Our key contributions are as follows:

• We propose the layer-wise auto-weighted learning
algorithm by leveraging the Fisher Information
Matrix (FIM) to autonomously identify layers needing
preservation or concentrated adaptation.

• We introduce an exponential min-max scaler
to amplify the learning weight difference while
mitigating distortion from outliers.

• We demonstrate comparable performance of our
method while reducing computational load, compared
to conventional approaches in both continual and
gradual TTA on various benchmarks and networks.

2. Related Work

Test-time adaptation. The goal of test-time adaptation
(TTA) is to adapt source pre-trained models to the unlabeled
target domain with no access to the source dataset.
Moreover, TTA can be considered an online manner where
the predictions are needed immediately and the model
is adapted using only the current test batch. It has
recently gained increasing attention [1, 4, 24, 26, 33, 38,
44]. The pioneering work, BN-1 [33] aligns the Batch
Normalization (BN) statistics to the target domain while
TENT [38] minimizes Shannon entropy [35] optimizing
only the BN parameters. Instead of updating only a portion
of the network, Adacontrast [3] leverages the memory
module with contrastive learning and updates the entire
network. Although previous TTA methods show significant
improvement, they are only demonstrated for a single
domain shift at a time.

Non-stationary Test-time Adaptation. Typically, TTA
operates under the assumption of a stationary scenario
without specific constraints, but the real-world domain
shifts are dynamic and constantly changing. In
this scenario, the non-stationary TTA settings can be
categorized into two branches: Continual Test-Time
Adaptation (CTTA) and Gradual Test-Time Adaptation
(GTTA). CoTTA [39], the pioneering work of CTTA,
was proposed to adapt continual domain shift in test-time.
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Figure 2. Layer-wise learning rate framework: The model is adapted to current test batch xT
t . Before updating the current model

parameter, the Fisher Information Matrix (FIM) is empirically obtained from log-likelihood w.r.t. current batch images and update domain-
level FIM. We further employ an exponential min-max scaler to mitigate the distortion of learning weights from outliers. Finally, we can
automatically update with adjusted learning weight and total objective L in Eq. (9)

They employ an exponential moving average (EMA) model
to prevent error accumulation from miscalibration [13]
and catastrophic forgetting. In addition, RMT [8]
leverages source prototypes for indirectly aligning the
source distribution. Moreover, gradual TTA [28] assumes
a gradual domain change in severity rather than an abrupt
shift. GTTA [28] employs style transfer to fill the gap
between intermediate distribution shifts. However, they
still suffer from heavy computational loads since using the
auxiliary part like the EMA models.

Layer-wise fine-tuning. In transfer learning, preserving
information from the source pre-training is important.
There are prominent approaches, such as partial parameter
freezing [10, 14, 22, 25, 30, 31], and leveraging layer
criticality refer to the loss surface [2, 29, 43]. Recently,
surgical fine-tuning [23] was proposed to heuristically find
already near-optimal layers to the target domain and fine-
tune only the remaining subset of all layers in the pre-
trained models. However, previous works addressed the
case that the ground truth of target data is available. In this
paper, we propose a layer-wise auto-weighted adaptation
method applicable to the unlabeled target data.

Fisher information matrix. The Fisher information matrix
(FIM) is a fundamental concept for defining intrinsic
structures and performing gradient-based optimization.
From this perspective, Tan et al. [37] claims that FIM can
achieve better results due to the adaptation of curvature
information since it is a kind of second-order derivative.
Therefore, by conducting FIM in DNNs, FIM could
adaptively adjust the step length throughout the training
process. In this regard, several works [20, 34] employ FIM
to contiual learning to prevent catastrophic forgetting via

adjusting the learning rate. Despite the advantage of FIM,
test-time adaptation with FIM, to the best of our knowledge,
has not been demonstrated so far. In this paper, we propose
a simple but effective approach to adjust the learning rate
by measuring the distribution shift via FIM.

3. Proposed Method
In real-world applications, the environment dynamically

changes. To effectively adapt to non-stationary test data,
we propose an algorithm that autonomously assigns weights
to layers needing preservation or concentrated adaptation.
Therefore, our method can adapt efficiently by preserving
the source knowledge. In this section, We revisit the
problem statement of TTA in Sec. 3.1 and introduce the
preliminaries and layer-wise weighted learning rate in
Sec. 3.2. We also introduce the exponential min-max
scaler that enables stable adaptation with main task loss
in Sec. 3.3. Finally, we show our overall framework with
consistency loss in Sec. 3.4. The overall procedure of our
method is illustrated in Figure 2.

3.1. Problem statement

The goal of continual and gradual test time adaptation
is to adapt the pre-trained model to a domain that is
consistently changing in an online manner without access
to the source dataset. Given the model fΘ0

where the pre-
trained parameter Θ0 trained on the source domain DS =
{XS ,YS}, our goal is to adapt the model to the unlabeled
target domain DT = {X T }, which consists of multiple
domains that change sequentially. At each time step t, the
model fΘt

adapts to the target domain samples xT
t ∈ X T ,

resulting in the updated model fΘt+1
. The model parameter

Θt is composed of parameters θlt for each layer l, such that
Θt = {θ1t , · · · , θlt, · · · , θLt }. Given the TTA loss function
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L, the optimization of θlt is as follows:

∆θlt =
∂L(xT

t ; Θt)

∂θlt
, θlt+1 := θlt − η ∗∆θlt. (1)

where η denotes the learning rate, which is typically set to
be consistent across all layers.

3.2. Layer-wise Learning Weight

Non-stationary domain adaptation aims to not only
optimize effectively the target domain but also prevent error
accumulation. To achieve these objectives, we present
the layer-wise learning weight to automatically adjust the
learning rate η depending on models and domain changes.
First, we have to infer the sharpness of the log-likelihood
and the layer parameter θlt surface by calculating the second
derivative of the log-likelihood [7]. We can get the value of
second derivatives through the Hessian matrix of the layer
parameter θlt. However, a direct computation of the Hessian
matrix often fails on some large models [17, 41, 42] since
the Hessian matrix increases quadratically R|θl

t| with the
number of model parameters |θlt| [37].

Approximation of the Hessian matrix. To mitigate
computational overflow, we employ the Fisher information
matrix (FIM). The Hessian matrix requires two steps of
derivatives. However, the FIM can approximate the Hessian
matrix of log-likelihood with one step of gradient [32]. This
distinction can help reduce the aforementioned problem,
computational load. To get FIM, we calculate log-
likelihood from predicted output pΘt

(xT
t ) of the current test

batch xT
t . Then we can get the layer-wise score function

s(θlt; ·) which is the gradient of layer parameter θlt from the
log-likelihood as follows:

s(θlt;x
T
t ) = ∇θl

t
log

(
pΘt

(xT
t )

)
(2)

Then, the layer-wise FIM can be formulated as follows:

I lt = ExT
t

[
s(θlt;x

T
t )s(θ

l
t;x

T
t )

⊤] . (3)

Note that the layer-wise FIM I lt is calculated for each
layer θlt with respect to the current test batch xT

t . In our
implementation, the layer-wise FIM is calculated based on
the gradient of the layer computed using the negative log
likelihood loss. We further propose domain-level FIM Ĩ lt
from layer-wise FIM I lt at time step t, inspired by [34]. The
domain-level FIM is formulated as:

Ĩ lt = Ĩ lt−1 + I lt. (4)

Since the domain-level FIM Ĩ lt is derived by accumulation
rather than solely utilizing the current FIM, it includes more
information about domain and model characteristics. With

the domain-level FIM, layer-wise learning weight can be
obtained by taking a trace of FIM as follows:

wl =

√
Tr(Ĩ lt). (5)

Layer-wise learning rate. Based on the domain-level FIM
in Eq. (4), we computed the learning weight wl for each
layer. The simplest way of layer-wise weighting is as
follows:

ηl = η ∗ wl. (6)

Using this sharpness-based [7] auto-weighting framework,
the model efficiently adapts to the varying target domain by
distributing layer-wise learning rates ηl.

3.3. Exponential min-max scaler

However, the calculated learning weights are
unbounded, which can deteriorate stable adaptation.
To realize this, we design an exponential min-max scaler to
bound learning weights within the range of 0 and 1. The
exponential min-max scaler is employed by as follows:

ηl = η ∗ w̄l, w̄l =

(
wl − wl

min

wl
max − wl

min + ϵ

)τ

, (7)

where τ is the exponential hyperparameter to mitigate the
adverse effect of the outlier. We set τ = 1 when the learning
weights are scaled in a proper way. With this scaler, we
can amplify the learning weight difference across layers
making certain layers nearly frozen. Moreover, it is more
robust about the outlier value of the FIM than the vanilla
min-max normalization. Because when τ is greater than
1, it reduces the over-scaled learning weights due to an
excessively small minimum. Conversely, as τ is lower than
1, the under-scaled learning weights owing to a relatively
large maximum can be boosted. We can also mitigate
the distortion of learning weights from outliers resulting in
stable adaptation.

3.4. Overall Update

Consistency Loss. Although layer-wise auto-weighted
learning via FIM can reduce error accumulation on
differential updates, there still exists the miscalibrated
problem. This miscalibration represents the difference
between the information inherent in the data and the
information the network acquires, due to inaccessibility to
labels. To address this problem, inspired from [3, 36], we
employ a self-training scheme in which the prediction of
the original input batch xT

t is considered as the pseudo
label for the augmented batch x̂T

t . We further propose
consistency loss Lconsistency to regularize the network and
prevent degradation from miscalibrated information. The
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consistency loss Lconsistency is formulated via conventional
cross-entropy loss such that:

Lconsistency = −ExT
t

[
C∑

c=1

σ(yTt ) log σ(ŷTt )

]
, (8)

Where yTt , ŷTt are the corresponding logits and σ(·) is the
sigmoid function.

Loss function. Building upon negative log-likelihood,
we compute the Fisher Information Matrix (FIM)
and determine layer-wise weighted learning rates ηl.
Optimization operates batch-wise with derived learning
rates. Our overall loss function is composed of Shannon
entropy loss Lentropy from the TENT [38] and consistency
loss such that:

L = Lentropy + λLconsistency, (9)

where Lentropy and Lconsistency are the sum of each term
for all samples in a batch, and the λ controls the stability
originated from the number of the class.

Weighted Update. Our full optimization framework is
briefly visualized with Figure 2 and Algorithm 1. The
layer-wise auto-weighted learning procedure is summarized
as follows: (1) In the scenario of non-stationary test-time
adaptation, the parameters of the previously trained network
remain unchanged for the subsequent optimization phases.
The log-likelihood is computed using the predicted logits
based on the prior of the previous model’s parameters. (2)
Gradient computation is performed for each layer based
on the log-likelihood and using the computed gradients,
the empirical FIM is approximated as an estimation of the
Hessian. FIM is calculated online as a domain-level FIM
according to Eq. (4). (3) The layer importance, determined
by characterizing the trace of the FIM, is used to adaptively
adjust the learning rate for each parameter. (4) According
to the previously mentioned exponential min-max scaler
Eq. (7), we updated each layer of our model with the
gradient ∆θlt with respect to the loss function L in a layer-
wise manner, as follows:

θlt+1 := θlt − ηl ∗∆θlt. (10)

This allows for the separation of the importance of each
learnable parameter embedded in each layer, enabling
optimization with different step sizes.

4. Experiments
We present the experimental results to introduce the

effectiveness and efficiency of our proposed method. We
compare our method with state-of-the-art methods in
different settings of non-stationary test-time adaptation:

Algorithm 1: Layer-wise auto-weighed learning
Require: The encoder f , pretrained parameter Θ0,

unlabeled target domain test dataset X T

1 for each time step t do
2 Draw an i.i.d. batch xT

t ∈ X T ,
3 Compute score function s(θlt;x

T
t ) according to

Eq. (2),
4 Compute layer-wise Fisher Information Matrix

I lt per layer according to Eq. (3),
5 Update domain-level FIM according to Eq. (4),
6 Compute the learning weight of each layer using

a trace of domain-level FIM according to
Eq. (5),

7 Apply exponential min-max scaler to learning
weight wl according to Eq. (7),

8 Update learning rate according to ηl ← η ∗ w̄l,
9 Calculate gradient with objective function L in

Eq. (9),
10 Update Θt to Θt+1 by gradient descent with

layer-wise learning rate in Eq. (10)

continual test-time adaptation (CTTA) and gradual test-time
adaptation (GTTA), which results are presented Sec. 4.2,
4.3 respectively. Then, we provide the results of extensive
ablation studies and analysis in Sec. 4.4.

4.1. Experimental Settings

Datasets and metrics. We evaluate the non-stationary test-
time adaptation of our proposed method on CIFAR-10C,
CIFAR-100C, and ImageNet-C, which are reconstructed
from CIFAR-10 [21], CIFAR-100 [21], and ImageNet [6]
with prior shift corruption counterparts [18]. Each dataset
contains an image set of 15 corruption style including
gaussian noise, shot noise, impulse noise, defocus blur,
glass blur, motion blur, zoom blur, snow, frost, fog,
brightness, contrast, elastic, pixelated, and jpeg. We follow
common protocol in [8,39], evaluate on and report averaged
classification error.

Implementation details. For each dataset, we employ
a different network, paired as follows: CIFAR-10C to
WideResNet-28 [42], CIFAR-100C to ResNeXt-29 [41],
and ImageNet-C to ResNet-50 [17]. The networks are
optimized in an online manner with batch sizes 200, 200,
and 64 and base learning rates 1e − 3, 5e − 5, 2e − 4,
respectively. In our approach, we use the same Adam
optimizer with β = (0.9, 0.999) in all experiments. Hyper-
parameter (λ, τ) is set to (0.1, 1.0) in CIFAR10-to-10C,
(1, 0.6) in CIFAR100-to-100C and (10, 1.0) in ImageNet-
to-ImageNet-C.
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Table 1. Classification error rate (%) for the CIFAR-10C, CIFAR-100C and ImageNet-C online continual test-time adaptation task on the
highest corruption severity level 5. For CIFAR-10C the results are evaluated on WideResNet-28, for CIFAR-100C on ResNeXt-29, and for
Imagenet-C, ResNet-50 is used. For a fair comparison, we recorded the performance of a single update or no update for all approaches.
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BN-1 [33] ✓ - 85.0 83.7 85.0 84.7 84.3 73.7 61.2 66.0 68.2 52.1 34.9 82.7 55.9 51.3 59.8 68.6 172.26

TENT-cont. [38] ✓ 1 81.6 74.6 72.7 77.6 73.8 65.5 55.3 61.6 63.0 51.7 38.2 72.1 50.8 47.4 53.3 62.6 8.24
CoTTA [39] ✓ 1 84.7 82.1 80.6 81.3 79.0 68.6 57.5 60.3 60.5 48.3 36.6 66.1 47.2 41.2 46.0 62.7 280.3

AdaContrast [3] ✓ 1 82.9 80.9 78.4 81.4 78.7 72.9 64.0 63.5 64.5 53.5 38.4 66.7 54.6 49.4 53.0 65.5 20.6
Ours ✓ 1 80.4 73.8 71.2 77.5 72.9 63.9 54.1 57.9 59.8 46.3 35.5 67.2 48.5 44.9 47.2 60.1±0.14 32.98

GTTA-MIX [28] ✗ 1 80.5 74.7 72.4 77.8 75.7 64.3 54.0 57.0 58.6 44.6 33.9 67.5 49.4 44.7 49.3 60.3 32.98
RMT [8] ✗ 1 77.3 73.2 71.1 73.1 71.2 61.2 53.7 54.3 58.0 46.1 38.2 58.5 45.4 42.3 44.5 57.9 1096.44

Table 2. Classification error rate (%) for the CIFAR-10C, CIFAR-100C, and ImageNet-C online gradual test-time adaptation tasks. We
present the performance results in two ways: by calculating the average performance across all severity levels (from level 1 to 5) and by
calculating the average performance solely for the highest severity level (level 5). The number in brackets indicates the difference compared
to the continual benchmark. For a fair comparison, we recorded the performance of a single update or no update for all approaches.

Source BN-1 TENT-cont. AdaCont. CoTTA Ours GTTA-MIX RMT

source-free ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
Updates - - 1 1 1 1 1 1

CIFAR-10C @level 1-5 24.7 13.7 20.4 12.1 10.9 9.6 10.5 8.1
@level 5 43.5 20.4 25.1 (+4.4) 15.8 (-2.7) 14.2 (-2.0) 11.4 (-4.3) 15.0 (-2.2) 9.4 (-4.5)

CIFAR-100C @level 1-5 33.6 29.9 74.8 33.0 26.3 26.1 24.3 23.6
@level 5 46.4 35.4 75.9 (+15.0) 35.9 (+2.5) 28.3 (-4.2) 28.2 (-2.7) 27.6 (-2.8) 24.3 (-3.2)

ImageNet-C @level 1-5 58.4 48.3 46.4 66.3 38.8 38.6 39.3 37.8
@level 5 82.0 68.6 58.9 (-3.7) 72.6 (+7.1) 43.1 (-19.6) 41.6 (-18.5) 51.8 (-8.5) 40.2 (-17.7)

4.2. Continual test-time adaptation

Experimental settings. Similar to TTA setting used in
TENT [38], continual test-time adaptation (CTTA) departs
from the source pre-trained model. However, while the TTA
setting resets the model with source domain parameters
after an adaptation to a single target domain, the CTTA
considers multiple target domains and has the assumption
that does not know when the domain changes. Therefore,
the model is adapted to a sequence of test domains in an
online manner. Following the CTTA benchmark in [5, 8],
the sequence of corruptions consists of the highest severity
level 5 of all 15 corruption domains.

Experimental results. Table 1 shows the results for
corruption datasets in the continual setting with online
measurement. The results show that our FIM-based
method achieves comparable and better performance than
the prior BN-based approach such as BN [33], and
TENT-continual [38] with significant improvement. Our
proposed method shows more competitive performance
and outperforms most prior works [3, 39]. The
comparison to the most recent works [8, 28], our method
shows comparable performance despite our method being
completely inaccessible to the source domain. Specifically,
RMT approach managed to alleviate this augmentation-
induced bottleneck, but the computational overhead still
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exists due to the intricacies of the training framework itself,
involving the use of source prototypes or the source replay
process. Moreover, GTTA-MIX introduced intermediate
domain mixup methods and showed promising results on
CTTA benchmarks, but they still need source datasets
for acquiring additional information. To sum up, our
proposed approach, requiring no additional frameworks
and source information, enables optimization within a
singular encoder. Notably, our proposed method achieves
results of 15.7%, 30.9%, and 60.1% for CIFAR-10C,
CIFAR-100C, and ImageNet-C, respectively. These results
are comparable to those obtained with computationally
intensive methods such as CoTTA [39] and demonstrate
performance on par with GTTA-MIX and RMT in non-
source-free settings. For additional experimental results on
model variation, please refer to Supplementary Sec. A.

Table 3. Comparison between AutoRGN and our method for
mean classification error (%). The number in brackets denotes
the performance difference compared to TENT continual [38].

Method CIFAR-10C CIFAR-100C ImageNet-C

TENT cont. [38] 20.7 60.9 62.6
AutoRGN [23] 18.06 (-2.64) 33.16 (-27.74) 62.24 (-0.36)

Ours 15.74 (-4.69) 30.91 (-29.99) 60.07 (-2.53)

Comparison with AutoRGN. We further compare our
approach with AutoRGN [23] using the same backbone on
CTTA benchmark datasets to ensure a fair comparison. The
quantitative results are presented in Table 3. AutoRGN
outperforms TENT in the layer-wise learning approach
of CTTA, achieving accuracy rates of 18.06%, 33.16%,
and 62.24% for CIFAR-10C, CIFAR-100C, and ImageNet-
C. Although AutoRGN improves CTTA’s performance
compared to the baseline, our approach maintains a lower
mean error.

4.3. Gradual test-time adaptation

Experimental settings. We also evaluate our proposed
method on the gradual test-time adaptation (GTTA)
benchmarks with mean classification error for CIFAR-10C,
CIFAR-100C, and ImageNet-C datasets. While the CTTA
online setting encounters the highest corruption domains
sequentially, GTTA online setting encounters gradually
increasing severity sequentially as follows:
· · · → 2→ 1︸ ︷︷ ︸

Domain t − 1

domain−−−−→
shift

1→ 2→ · · · → 5→ · · · → 1︸ ︷︷ ︸
Domain t, gradually changing severity

domain−−−−→
shift

.

Experimental results. We present the mean classification
error results for GTTA in Table 2, encompassing all severity
levels from 1 to 5, as well as reporting specifically on level
5. Previous approaches, including TENT-continual [38] and
AdaContrast [3], exhibit degradation on specific datasets.
Although EMA baselines like CoTTA [39] and RMT [8]

demonstrate performance enhancements for GTTA [28], the
computational complexity and source dependency become
bottlenecks during test-time adaptation. Our method,
which employs layer-wise learning rates to update each
parameter, yields competitive results with these approaches
and notably outperforms the TENT continual baseline.
Furthermore, our method shows improvement in mean error
for severity level 5, with 11.4% on CIFAR10-to-10C, 28.2%
on CIFAR100-to-100C and 41.6% on ImageNet-C datasets,
compared to CoTTA and GTTA-MIX.

4.4. Ablation study and Analysis

To further analyze and validate the components of
our method, we conduct ablation experiments on three
benchmark datasets in the continual test-time adaptation
(CTTA) setting. Additionally, to demonstrate the impact of
the Fisher information matrix across various domain shifts,
we provide a graph depicting layer-wise learning weight.

Contributions of objective. We conduct additional
experiments to validate the effect of the loss function in
Eq. (9) and its corresponding hyper-parameter λ, i.e., λ ∈
{0, 0.01, 0.1, 1.0, 10, 100}. In Table 4, we report the mean
classification error rates on three corruption datasets with
CTTA setting. As we can see, the best performance is
achieved at different values of λ, indicating that entropy
minimization loss should be balanced with respect to the
number of classes. In the case where λ = 0, entropy
minimization is solely used as an optimization function and
still shows improvement. For CIFAR-10C, solely optimized
with entropy minimization and FIM learning weight
improves performance about 3.5% and with hyperparameter
tuning, the best setting (λ = 0.1) improves performance
about 4.9% from the baseline [38]. In the case of CIFAR-
100C, solely optimized with entropy minimization and
FIM learning weight shows remarkable improvement in
performance about 28.6% and with hyperparameter tuning,
the best setting (λ = 1.0) improves performance about
30.0% from the baseline [38]. And for ImageNet-C, solely
optimized with entropy minimization and FIM learning
weight improves performance about 0.2%, and with
hyperparameter tuning, the best setting (λ = 10) improves
performance about 2.4% from the baseline [38]. Here
it indicates that our proposed FIM-based learning weight
method shows improvements in all datasets even without
the consistency loss in Eq. (8) and with hyperparameter
tuning for consistency loss function, we can further improve
performance.

Table 4. Mean classification error (%) with varing λ.

λ 0 0.01 0.1 1.0 10 100

CIFAR-10C 17.22 16.65 15.74 17.76 19.04 17.93
CIFAR-100C 32.29 32.40 32.23 30.91 31.66 31.74
ImageNet-C 62.38 62.33 62.24 61.08 60.07 60.95
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Figure 3. Results of ablation are presented, illustrating the normalized layer learning weight discrepancy between the dataset domain and
each model. The first row displays the effects of Gaussian noise corruption at severity level 5, while the second row depicts Defocus blur
corruption at severity level 5. The first column represents the CIFAR10-C dataset, the second column the CIFAR100-C dataset, and the
last column the ImageNet-C dataset.

Exponential min-max scaler. Also, we report
the image classification error rate in Table 5
according to the scaler hyperparameter τ , i.e.,
τ ∈ {0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2}. From the results,
we demonstrate that we can achieve remarkable progress
in performance in each dataset by simply applying τ
to learning weight in Eq. (7). For CIFAR-10C and
ImageNet-C, τ = 1.0 shows the best performance, which
indicates that the original learning weight with min-max
normalization is sufficient. Meanwhile for CIFAR-100C,
τ = 0.6 shows the best performance. We present additional
τ variation results in Supplementary Sec. B.2.

Table 5. Mean classification error (%) with varing τ .

τ 0.6 0.7 0.8 0.9 1.0 1.1 1.2

CIFAR-10C 39.55 19.96 17.74 16.72 15.74 15.97 16.20
CIFAR-100C 30.91 31.42 32.16 32.42 32.76 33.03 33.30
ImageNet-C 77.29 69.89 63.44 61.08 60.07 61.21 61.65

Layer-wise learning weight in domain shifts. In
Figure 3, we show two corruption domains (gaussian
noise, defocus blur) and their corresponding layer-wise
learning weights using Eq. (7) with τ = 1. The
learning weights differ across layers based on corruption
types and networks. Considering frequency components
in corruption domains, variations appear in deeper layers
of a hierarchical deep neural network (DNN). Domains
with reduced high-frequency components, like defocus
blur, tend to concentrate weights in initial layers. In
contrast, noise-type domains, retaining higher frequency
components, show more evenly distributed weights across
network layers. These tendencies are apparent in domain-
specific weight distributions. These results demonstrate our
method’s robustness for test-time adaptation across diverse
domains. In Supplementary Sec. B.3 and Sec. B.4, we
provide visualizations of the diagonal FIM and additional
discussion regarding layer-wise learning weights.

5. Conclusion and Future Work

This paper proposes a simple yet effective layer-wise
auto-weighting algorithm that enhances non-stationary
Test-Time Adaptation (TTA) performance. With
considerably less computational load, our method is
more suitable for edge devices requiring online adaptation.
First, we leverage the Fisher Information Matrix (FIM) to
autonomously identify the layers that need preservation
or concentrated adaptation. Second, we introduce an
exponential min-max scaler to amplify the differences in
learning weights across layers. This approach results in
certain layers becoming nearly frozen while mitigating
the distortion of learning weight outliers. As a result, our
method selectively focuses on layers associated with log-
likelihood changes in the target domain while preserving
the unrelated ones, minimizing catastrophic forgetting and
error accumulation. Our FIM-based weighted learning
leads to more efficient adaptation to non-stationary target
domains. Through extensive experiments and ablation
studies on various benchmarks and networks, we have
demonstrated that our method outperforms conventional
CTTA approaches while significantly reducing the
computational load. In this context, we believe that our
work contributes to making test-time adaptation for edge
devices more feasible in practice and hope that it will
inspire further research in this area.

We also intend to employ our method in diverse
recognition tasks, including segmentation and object
detection, where a higher level of output granularity is
needed.
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