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Abstract

In this paper, we are interested in addressing the prob-
lem of damage assessment for vehicles, such as cars. This
task requires not only detecting the location and the extent
of the damage but also identifying the damaged part. To
train a computer vision system for the semantic part and
damage segmentation in images, we need to manually an-
notate images with costly pixel annotations for both part
categories and damage types. To overcome this need, we
propose to use synthetic data to train these models. Syn-
thetic data can provide samples with high variability, pixel-
accurate annotations, and arbitrarily large training sets
without any human intervention. We propose a procedu-
ral generation pipeline that damages 3D car models and
we obtain synthetic 2D images of damaged cars paired with
pixel-accurate annotations for part and damage categories.
To validate our idea, we execute our pipeline and render
our CrashCar101 dataset. We run experiments on three
real datasets for the tasks of part and damage segmenta-
tion. For part segmentation, we show that the segmentation
models trained on a combination of real data and our syn-
thetic data outperform all models trained only on real data.
For damage segmentation, we show the sim2real transfer
ability of CrashCar101.

1. Introduction

Damage assessment is the task of determining the extent
of damage resulting from an accident or a disaster. Vehi-
cle damage is a common type that occurs from transporta-
tion and road accidents [42, 64, 65]. Damage assessment is
essential for response organizations, insurance businesses,
and rental agents. This is usually performed by experts who
manually check vehicles on-site and evaluate their damages.

Recently, there have been several attempts to build au-
tomatic damage assessment systems with computer vision
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Figure 1. Learning part and damage segmentation from syn-
thetic data. (Left) The standard approach of manually annotating
real car images with pixel annotations. (Right) We propose to use
synthetic 3D car models, destroy them using a procedural damage
generation pipeline, and obtain realistic 2D images that come with
pixel-accurate annotations for semantic parts and damages.

models [42, 63–65, 71]. However, automatically assessing
damages on vehicles is a challenging task. It requires not
only detecting and localizing the specific damages on the
vehicles but also accessing the extent of the damage de-
pending on the part of the vehicle which is damaged. From
a computer vision perspective, this means going beyond the
image-level classification problem and training a semantic
segmentation model able to produce per-pixel category pre-
dictions for both damage types and semantic parts in new
test images of vehicles. Training such a model requires
huge amounts of annotated images where humans draw de-
tailed outlines around every damage and part that appears
in an image [9, 17, 31, 47, 72]. This process is expensive
and prone to several erroneous labels especially when the
annotation task is challenging [38, 39, 49, 53].

In this paper, we propose to overcome these issues by
automatically generating realistic synthetic data to train a
damage assessment system (Fig. 1). Realistic synthetic im-
ages have been used successfully in several semantic seg-
mentation tasks [16, 26, 33, 46, 50]. Synthetic data can pro-
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Figure 2. Overview of our proposed procedural generation pipeline. We first acquire and annotate 3D model cars (Sec. 3.2 and 3.3),
and then we apply procedural generation to manipulate the texture and shape of the car to generate synthetic damage types (Sec. 3.4.
Subsequently, we place a camera into the scene and assign a scene environment and car color (Sec. 3.5). Finally, we render a 2D image
paired with perfect ground-truth pixel annotations for parts and damages. Given a set of 3D model cars with part annotations, this process
is fully automatic, allowing us to render an arbitrarily large amount of data (CrashCar101 dataset, Sec. 3.6).

vide samples with high variability and perfect automatically
generated pixel annotations. When they are generated via
a procedural generation pipeline, they can lead to arbitrar-
ily large sets of training data without any human interven-
tion [10,16,22,27]. We propose a novel procedural damage
generation pipeline that creates realistic damages of various
types on 3D car models [4] (Sec. 3). We focus only on cars
as the most common vehicle type, but a similar procedure
can be followed for other objects. We create damages by
manipulating either the 3D mesh geometry (dents) or the
physically-based material of the models (scratches, cracks,
shattered glass, broken lamps). By controlling the model
parameters, we can create damages at different scales, posi-
tions, shapes, and appearance variations.

Our procedural generation pipeline is shown in Fig. 2.
We start with a 3D car model [4] where we annotate sub-
meshes with semantic part labels. We apply our dam-
age generation pipeline to obtain damages into the 3D car
model. Then, we place the generated model into an urban
HDRI scene that provides realistic lighting and background
noise. Finally, we set the camera parameters in order to ob-
tain a 2D image. The final image is paired with two gener-
ated segmentation maps with pixel-accurate labels, one for
the car semantic parts and one for the damage types.

To validate our idea, we first annotate 99 car models
from ShapeNetCore [4] with part annotations and then we
execute our generation pipeline to obtain our CrashCar101
dataset that consists of 101,050 images paired with perfect
part and damage segmentation. We conduct experiments on
three real test datasets to show the usefulness of our syn-
thetic dataset. For damage segmentation, our results in a
few-shot learning scenario show that pre-training on Crash-

Car101 yields significantly better results (+6.3-17.9% mIoU
at 1-shot and +4.4-7.0% at 5-shot) compared to using a
pre-trained model on COCO [31] or ImageNet [11]. For
part segmentation, we show that the segmentation models
trained on a combination of real data and our synthetic data
outperform all models trained only on real data.

2. Related work

Synthetic data has been a valuable asset for addressing
several problems such as semantic segmentation for urban
landscapes [3, 45, 46], object recognition [19, 43, 59], face-
related tasks [66] and medical imaging [15]. Procedural
generation is an important field as it gives the ability to
generate millions of 3D scenes without any human inter-
vention [37]. Procedural generation is widespread in video
games [21, 52, 58], but it has also been used for synthetic
data generation [23, 26, 44]. For example, in [26] cities
and outdoor scenes are generated for semantic segmenta-
tion. In [44], a stochastic scene grammar from an indoor
dataset is learned to generate new scene layouts. In [23],
entire humans are generated and deep networks are fitted on
the resulting images to regress a dense set of annotations.
Semantic part segmentation is the task of segmenting
fine-grained parts within a target object such as cars [8, 33,
40], birds [48, 61], humans [8] or buildings [62]. Obtaining
annotations for semantic parts is expensive and challenging
since there is often no clear boundary to separate the ob-
ject parts. For these reasons, the research has been focused
on ways to reduce this manual annotation cost by training
weakly supervised models [73], unsupervised models [24]
or domain adaptation approaches on synthetic data [33].

4625



D
en

ts
Sc
ra
tc
h

C
ra

ck
G

la
ss

 s
ha

tte
r

B
ro

ke
n 

la
m

p

Stripped-down model versions Model damage variations

Figure 3. Damage models on toy 3D spheres. We show stripped-
down versions of each model (left) and examples of how the dif-
ferent values of the model parameters affect the appearance and
texture of the damage (right). The texture of the spheres resem-
bles the texture of the corresponding car parts (dents, scratches
and cracks on the body parts, glass shatters on the windows, and
broken lamp on headlights.

No large-scale dataset for part segmentation on cars ex-
ists. Pascal-Part [8] includes 613 images with 13 part cat-
egories. CGPART [32] has 31 fine-grained part categories
but only 40 images. In Sec. 4.1, we conduct experiments in
both datasets and we show performance improvements for
the task of part segmentation when using our synthetic data.
Damage detection is an essential problem for emergency
response especially in cases of natural disasters, destruc-
tive events, or accidents [18, 35, 42, 64, 65]. Several papers
have been published more closely related to our task, as
they delve into the task of classifying damage in cars [2,12,
13, 29, 41, 42, 56, 60, 63, 70]. However, with the exception
of [63], they all focus on image classification tasks. To the
best of our knowledge, there are only three publicly avail-
able datasets with labeled car damage [25,34,63]. [25] con-
tains only image-level labels, while [34] contains only 80
images where all damage types are annotated as one cate-
gory. The CarDD dataset [63], which was recently released,
contains 4,000 images with pixel annotations for six dam-
age types. In Sec. 4.2, we run experiments in CarDD show-
ing the usefulness of CrashCar101 for the task of damage

segmentation on real images.
Shape 3D models. The ShapeNet dataset [4] is a large col-
lection of 3D object models. ShapeNetCore [51] is a sub-
set of ShapeNet with models of 55 manually verified object
categories, including cars. ShapeNetCore has been used in
several computer vision applications such as aligning CAD
models [1], predicting object-level intrinsics [55] or gen-
erating shapes from natural language [5]. In [36], PartNet
extends a subset of ShapeNetCore [4] with fine-grained 3D
part segmentation over 24 object categories. However, none
of these categories include vehicles. In this paper, we an-
notate and provide fine-grained part segmentation for 27
semantic parts on 99 car models from ShapeNetCore [4]
(Sec. 3.3).

3. Procedural damage generation
In this section, we explain each step of our procedural

synthetic data generation pipeline (Fig. 2). All rendering,
texturing and 3D mesh manipulation is conducted in the
open-source software application Blender 1.

3.1. Overview

Fig. 2 presents an overview of our procedural genera-
tion pipeline. We first acquire a diverse set of 3D car mod-
els from the ShapeNetCore dataset [4] (Sec. 3.2) and we
manually label the sub-meshes of these models with fine-
grained part categories (Sec. 3.3). Then, we apply our pro-
posed method for procedural damage generation which is
presented in Sec. 3.4. After the damages are placed in the
3D car, we set the scene environment, and the car color and
we place the camera into the scene leading to 2D images
paired with pixel-accurate annotations for part categories
and damage types (Sec. 3.5). We execute this pipeline and
we obtain and render the CrashCar101 dataset which con-
sists of 101,050 images (Sec. 3.6).

3.2. 3D models

We use 3D vehicle models from ShapeNetCore [4]. Even
though the PartNet extends a subset of ShapeNetCore [4]
with 3D part segmentation over 24 object categories, none
of these categories include vehicles. As a result, in this pa-
per, we manually annotate the sub-meshes of 99 selected
3D car models from ShapeNetCore with fine-grained part
categories. We choose to use the part taxonomy from [33]
which consists of 31 part categories. We further combine
all four wheel categories into one and the two license plate
categories into one. This results in 27 part categories.

3.3. Part annotation

Manually annotating every sub-mesh of every car model
and mapping it to a part category is expensive. To make

1https://www.blender.org/

4626



this process more efficient, we follow a human-in-the-loop
approach. We start by manually annotating nine models
from ShapeNetCore. Then, we obtain eight images for
each annotated model from different viewpoints around the
car and we use them to train a DeepLabv3 segmentation
model [6, 20]. For each new car model from ShapeNet-
Core, we render the same eight viewpoints and predict the
semantic part segmentation using the trained model. The
meshes of the 3D cars are compared with the predictions
using mIoU computed across the 8 images. For each part
class, we rank the meshes using mIoU from least to most
likely. In order to utilize the ranking, we created an interac-
tive labeling tool and captured eight views of each car. By
employing the mIoU metric, the tool displays the eight most
likely meshes belonging to each part. A single car model in
ShapeNetCore can have thousands of sub-meshes [4], mak-
ing manual labeling expensive and tedious. According to
our time recordings, this human-in-the-loop interactive ap-
proach was about 3× faster than the fully manual one.

3.4. Procedural Generation for Synthetic Damage

The goal of our procedural generation pipeline is to cre-
ate realistic damages on 3D car models. We consider 5 dam-
age types: dents, scratches, cracks, broken lamps, and glass
shatters, which reflect the most common damage types [63].
In this section, we present damage generators that manipu-
late the shape and texture of the car. These generators apply
procedural rules that model damages in generality. Each
damage generator has interpretable input parameters that
control the damage and can be sampled from pre-defined
distributions to generate random variations of damages and
lead to a final dataset with high variability.

To better understand the damage generators, we apply
them on toy 3D spheres in Fig. 3. We show stripped-down
versions of each damage model (Fig. 3 (left)) and how dif-
ferent input parameters affect the appearance and texture of
the damage (Fig. 3 (right)). In the following ϵw, ϵvc

, ϵvd and
ϵp refer to Wave, Voronoi color, Voronoi distance and Perlin
noise implementations of noise generators in Blender.
Dents are generated using a function fD(x) : R3 → R3

that maps the vertex coordinates of an undamaged car to
perturbed coordinates that depict a damaged car. The dent
generator is implemented using Blender Geometry Nodes.
The function fD(x) consists of two components: l(x) and
d(x). l(x) ∈ R defines the length of the displacement vec-
tor, and d(x) ∈ R3 defines the direction. The direction com-
ponent d(x) is defined as n + ϵvc(x), where n is the normal
vector and ϵvc : R3 → R3 is a noise generator that simu-
lates a crumpling effect by adding noise to the displacement
direction. The effect is visualized in the second and third
spheres in Fig. 3 (first row). The length component l(x) is

defined as d
cos

(
π

a−||x−c+ϵp(x)||
a

)
+1

2 , where c is the center co-
ordinate of the dent, a is the area of the dent, d is the depth

and ϵp : R3 → R is a noise generator which adds noise
to the magnitude of displacement as illustrated on the first
and second sphere in Fig. 3 (first row). The cosine function
produces a gradual smooth transition into the dent. A car
paint shader Sp is applied to texture the car’s body, while a
glass shader Sg is used for the windows. The integration of
the remaining damage types is achieved through Blender’s
Mix Shader node, blending two input shaders based on a
probability factor. To facilitate this blending process, func-
tions f : R3 → [0, 1] are defined, mapping coordinates
on the car’s surface to a probability. This probability de-
termines the mixture of shaders, combining the undamaged
car shaders Sp and Sg with shaders containing damage ef-
fects. Let m(p, S1, S2) denote the Mix shader in Blender
where shader S1 and S2 are being mixed with probability p.
Scratches are generated by overlaying Sp with a scratch
shader Sd using generated scratch marks. To generate
scratch intensities we define

fr(x) = [a ≥ ∥x− c+ ϵvc(x)∥]
Sscratch = m(fr(x)ϵw(x), Sd, Sp)

where [P] denotes the Iverson bracket notation and it equals
1 if the statement P is true and 0 otherwise. fr(x) is used
to select the scratched region of the car, c determines the
center, a determines the area, and ϵvc(x) ∈ R3 adds noise
as seen on the first and third sphere in Fig. 3 (second row).
ϵw produces straight thin lines, which are manipulated us-
ing a distortion property as depicted on the first and second
sphere in Fig. 3 (second row).
Cracks are generated by mixing Sp with a transparent
shader Sα using generated crack masks. The crack mask
is a line with a combination of smooth and sharp devia-
tions. Let x1 and x2 be the first and second coordinates
of x. We define x̂1 = x1 + ϵvc1 , x̂2 = x2 + ϵvc2 as
noisy coordinates which produce deviation as shown on
the first two spheres of Fig. 3 (third row). We propose
fl(x) = 1 − max(1 − |x̂1 − x̂2|, 0) to produce a line and
fr(x) = max(0, a − ||c − x||) to select the crack region.

Scrack = m(fl(x)fr(x), Sα, Sp)

Glass shatter are generated by combining two shaders: a
glass shader Sg and a white non-transparent one Sw. Glass
often shatters with lines radiating from the place of inci-
dent, alongside concentric spread rings. Once again ϵvc is
used to produce sharp deviations (see the first two spheres
of Fig. 3(fourth row)). To produce concentric rings we use
fc(x) = sin(||s(x − c + ϵvc(x))||) < t where t defines
the thickness, and s defines the scale. For the radial lines,
we use the radial gradient texture in Blender ϵg and use
fr(x) = ϵvd (ϵg(x)) ||x|| < t, here ϵd is a noisy periodic
function, which we use to determine the number of gen-
erated lines and adding noise to the distances between the
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Figure 4. CrashCar101 Synthetic Dataset. (Left) Depicts a 3D damaged car model, including its normals and part labels, from which
we extract point cloud representations of material, parts, and damage. (Middle) Displays a subset of car models with labeled parts, while
(right) showcases diverse 2D images generated from the 3D models.

lines. The shatter shader is defined as

Sshatter = m([fc(x) or fr(x)], Sw, Sg)

Broken lamps are generated by making a fractured shader
Sf . To make Sf we mix a glass shader Sg with a white
shader Sw. Sf = m([ϵvd(x) < t], Sw, Sg) where t deter-
mines the thickness of the fractures, an example of Sf can
be seen at the first sphere of the last row in Fig. 3. A chunk
is removed by mixing in a transparent shader Sα as depicted
in Fig. 3 (second sphere, last row), to produce the final bro-
ken lamp shader Sbroken.

Sbroken = m([||ϵvp(x)|| < a], Sα, Sf )

Position of damage center. To select the center of the dam-
age c, we follow the following procedure: We first select
randomly one main damage among the 5 damage types.
Then, one of the car parts that can contain this damage is
selected with equal probability, and a random vertex with
coordinates cmain from the part is selected. We set the pa-
rameter c = cmain for the main selected type. All the other
parameters are sampled from a uniform distribution. The
minimum and maximum values are manually selected to be
the most extreme values seen in realistic cases.

3.5. Camera viewpoint and scene background

The following section describes how the 3D scene is ran-
domized to generate realistic synthetic 2D images. First, we
describe how the camera is placed, such that the damage is
visible and then, we describe how the car paint and back-
ground are randomized to generate realistic 2D images.
Viewpoint randomisation is done by randomising the
camera position v and the camera rotation θ. Having placed
the damage at some point cmain we now place the cam-
era position at cmain and then translating in the direction
of R (n̂yaw , θyaw)R (n̂pitch, θpitch)

v
∥v∥ by some distance d.

Where R (n̂, θ) is the rotation matrix when n̂ is the rotation

axis and θ is the rotation angle. Note that we wish to control
the pitch and yaw of the vector independently thus we select
n̂yaw = (0, 0, 1) and n̂pitch = (−cmain2

, cmain1
, 0). Finally

we obtain the camera coordinates v as:

v = cmain +R (n̂yaw , θyaw)R (n̂pitch, θpitch)
cmain

∥cmain∥
· d

Now that the camera is placed, we select θ such that cmain

is perfectly centered in the frame. We now randomly select
θ1 and θ2 in such a way that the main damage is jittered
with respect to the raster coordinates. Now that the primary
damage is determined we apply secondary damage. To en-
sure that the secondary damage is visible all vertices of the
parts that can contain damage are transformed to raster co-
ordinates, and only those that are contained in the frame are
kept. Only the vertices within a certain distance to the cam-
era are kept. Finally, a random vertex of one of the visible
objects is selected. This second damage is applied with a
probability of 0.5, thereafter 0.2 until no damage is applied.
Background randomization After completing the annota-
tion step, the scenes for which the vehicles are to be placed
are initialized. We collected a total of 338 urban scene
4K HDRIs from Polyhaven 2. The HDRI provides realis-
tic lighting and background noise. Further, to add variation,
we sampled realistic vehicle colors from GTA V 3.

3.6. CrashCar101 dataset

We execute our procedural generation pipeline and we
render the CrashCar101 dataset. CrashCar101 consists of
101,050 2D images paired with annotated damage and part
segmentation. Fig. 4 shows examples of CrashCar101. Our
procedural generators damage the car, from which we can
extract 3D and 2D modalities. From this, we produce
CrashCar101, a 2D image dataset containing both part and
damage segmentations. A subset of our dataset does not

2https://polyhaven.com/hdris/urban
3https://wiki.rage.mp/index.php?title=Vehicle Colors&oldid=21033
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Dataset Train Val Test Part Dmg
Pascal-Part [8] 490 61 62 ✓
UDAPART [33] - - 40 ✓
CGPART [32] 31,448 7,867 - ✓
CrashCar101-Part 14,175 1,575 1,575 ✓

CarDD [63] 2,638 768 349 ✓
CrashCar101 83,604 8,311 9,135 ✓ ✓

Table 1. Datasets used in our experiments. The top part of the ta-
ble shows the datasets for the part segmentation experiments while
the bottom part shows the ones for damage segmentation. The last
two columns “Part” and “Dmg” indicate the existence of part and
damage annotations in the dataset.

contain any damage, we refer to this subset as CrashCar101-
Part. It consists of 17,325 images (175 images per car
model) and we use it to train the part segmentation mod-
els in Sec. 4.1. We focus on 2D images, but generating 3D
modalities is a feature available in the synthetic data gen-
eration pipeline. This is intended to enable further studies
into the applicability of synthetic data in 3D research.

Regarding the damage categories, we show interesting
statistics of our obtained dataset (Fig. 5). In Fig. 5a, we
show the distribution of each damage size in terms of the
percentage of pixels they occupy in each image. As ex-
pected, we observe that cracks are usually tiny, while glass
shatter damages usually occupy much larger image parts.
The distribution of damage occurrence on each part is pre-
sented in Fig. 5c showing a good balance between damage
types. In Fig. 5b, we show the number of images contain-
ing each separate damage in CrashCar101. Note that dam-
ages can only occur on specific parts (e.g., dents, cracks,
and scratches on metallic parts, glass shatters on window
glasses, and broken lamps on head and tail lights).

4. Experimental results

This section presents our experimental results. We evalu-
ate the usefulness of our CrashCar101 dataset on two tasks:
semantic part segmentation (Sec. 4.1) and damage segmen-
tation (Sec. 4.2). For each task, we compare the segmenta-
tion models trained on our dataset to models trained on real
images and on combinations of real and synthetic data.
Implementation details. Unless stated otherwise, we use
the following settings for all models of our two tasks. All
models are trained with the focal loss function [30]. The fo-
cal loss is a modification of the standard cross-entropy loss
that assigns higher weights to hard-to-classify examples,
leading to improved performance on imbalanced datasets.
For damage segmentation, we use 6 output dimensions (5
damage types plus the background category). For the part
segmentation, we use either 28 or 12 output dimensions
(including background) depending on which real dataset

Dataset Augs UDAPART PASCAL-Part
Parts 11 27 11

DeepLabv3
(RN50)

Pascal-Part [8] ✗ 42.1 - 36.8
✓ 37.1 - 36.0

CGPART [32] ✗ 17.5 15.8 4.8
✓ 34.3 25.7 14.4

CrashCar101-Part ✗ 39.3 42.8 19.2
✓ 43.0 41.5 22.4

CrashCar101-Part + ✗ 43.1 - 36.0
Pascal-Part [8] ✓ 52.5 - 42.9

DeepLabv3
(RN101)

Pascal-Part [8] ✗ 40.9 - 36.8
✓ 40.0 - 37.3

CGPART [32] ✗ 17.8 15.6 5.6
✓ 38.1 30.1 13.5

CrashCar101-Part ✗ 40.4 47.6 20.0
✓ 50.1 47.2 26.4

CrashCar101-Part + ✗ 45.3 - 39.2
Pascal-Part [8] ✓ 52.3 - 44.2

Segformer
(b5)

Pascal-Part [8] ✗ 40.0 - 37.1
✓ 38.0 - 36.7

CGPART [32] ✗ 27.6 19.2 8.0
✓ 52.4 52.7 24.8

CrashCar101-Part ✗ 46.4 48.8 26.0
✓ 56.3 61.6 31.1

CrashCar101-Part + ✗ 45.1 - 41.3
Pascal-Part [8] ✓ 55.2 - 45.6

Table 2. Part segmentation mIoU results. We report the mIoU
performance for each experiment with and without augmentations.
For each test set (column) and model, we highlight in bold the best
performance.

we evaluate the part segmentation models (see Sec. 4.1 for
more details). The input images are resized to 256×256
for the task of part segmentation and 384×384 for the task
of damage segmentation. We use a batch size of 64 for all
models. For a fair comparison among all trained models,
we perform the same set of augmentations while training.
These are limited to random resize cropping, random rota-
tion, and color jitter. For part segmentation models, we also
train models without augmentations to evaluate the effect of
augmentations on our data compared to real data. We train
all models for 20 epochs using the Adam optimizer [28]
with an initial learning rate of 0.0002. The only excep-
tion is the model trained on Pascal-Part, which due to the
small size of the dataset was trained for 40 epochs. We per-
form early stopping based on the performance in the hold-
out validation set. Note that each different training set has
its corresponding validation set from the same domain. All
experiments were run on a single Nvidia V100 GPU.
Evaluation. We use the mean intersection-over-union
(mIoU) as our main evaluation metric for both tasks, as this
is standard for evaluating any image segmentation task.

4.1. Part segmentation

Datasets. We use three publicly-available datasets: Pascal-
Part [8], UDAPART [33] and CG-PART [32]. An overview
of these datasets can be seen in Tab. 1. Pascal-Part con-
tains part annotations for 15 object categories on the Pascal
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(a) The distribution of damage area
by damage type.

(b) The number of images contain-
ing each damage.

(c) Distribution of damage types appearing on car parts.

Figure 5. Damage statisics in CrachCar101. (a) The distribution
of damage area for each damage. We observe the minimal area of
cracks compared to the more extensive area of shattered glass. (b)
The number of images containing every damage. It demonstrates
a uniform initial damage selection, highlighting a subsequent pref-
erential selection of more suitable damage types on visible parts.
(c) The distribution of damage types on car parts. We observe a
size-dependent occurrence of damage on distinct parts, wherein
larger components exhibit heightened damage incidence.

VOC 2010 images [14]. We crop cars around their bound-
ing boxes and keep those with at least 16,384 pixels and
less than 75% background. This results in 612 images. The
license plate category was removed due to the poor annota-
tion and the limited representation. The pixels correspond-
ing to this category are labeled as front or back category de-
pending on their location. For UDAPART and CG-PART,
we merge the four wheel classes to one and the two license
plates to one to align with our part definition.
Evaluation sets. For evaluating our models, we use two test
sets with real images: Pascal-Part [8] and UDAPART [33].
The Pascal-Part original test set consists of 62 test images
and we evaluate our models using the annotations with 11
semantic parts. UDAPART consists of 40 images and we
use the whole dataset for evaluating our models using the
annotations with 27 semantic parts. To enable the training
and testing across these datasets, we also evaluate models
on UDAPART by merging the 27 fine-grained categories to
the 11 coarser categories of Pascal-Part.
Training sets. We use four training sets to train our models:
(a) the Pascal-Part training set with 490 real images, (b)
the CGPART [32] training set with 31,448 synthetic images,
(c) our CrashCar101-Part training set with 14,175 synthetic

UDAPART (11) Pascal-Part (11)
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Figure 6. Qualitative part segmentation results. We show re-
sults from training on Pascal-Part and on CrashCar101+Pascal-
Part using DeepLabv3 with a ResNet101 backbone. Both models
were trained with augmentations (lines 10 and 16 in Tab 2). We
observe that by including our synthetic data to the real training set,
we obtain a model that yields better results.

images, and (d) the combination of the CrashCar101-Part
+ Pascal-Part training sets. We train 18 part segmentation
models in total using these sets. We train 12 models, three
for each training set, with 11 part categories. We also train
six more models with 27 part categories when the Pascal-
Part set is not used (i.e., using the sets (b) and (c)).
Segmentation models. We employ three semantic segmen-
tation models with and without augmentations. We uti-
lize DeepLabv3 [6] with ResNet50 and ResNet101 back-
bones [20], both pre-trained on ImageNet [11]. Addition-
ally, we use a B5-sized SegFormer model [67] pretrained
on Cityscapes [9]. This approach provides a comprehen-
sive evaluation of our dataset’s part segmentation potential
across diverse architectures and pre-training sources.
Results. We report the results of the 18 trained models
with augmentations and without on our evaluation sets in
Tab. 2. As expected, we observe that the augmentations
make a substantial difference in the results of synthetic data
(especially in the case of CGPART [32]). We observe that
our synthetic data outperforms CGPART, the other state-of-
the-art synthetic dataset in every instance. Even though the
CGPART training set is about double in size compared to
our training set (see Tab. 1), we show that our dataset is
much better and more realistic due to our rendering proce-
dure and the number of the different car models used (99
models in CrashCar101-Part vs. 6 models in CGPart).

Moreover, we observe that the most precise models
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are those trained on the combination of real and syn-
thetic data. Still, when utilizing the Segformer model,
our CrashCar101-Part dataset outperforms even the model
trained on the combination.

Interestingly, we observe that when evaluating on the
real images of UDAPart, the model trained only on our
synthetic data (third row for each respective model) sig-
nificantly outperforms the one trained on real images of
Pascal-Part (top row of each respective model). In the
case of Deeplabv3 using the ResNet101 backbone and
Segformer models, there’s a noticeable performance boost
(+9.2-16.3% mIoU). We find the effect of the augmenta-
tions to be particularly interesting here. The synthetic data
is not able to outperform real data without augmentations
for the DeepLabv3 models, but when the training images are
augmented, it outperforms even the real data trained without
augmentations. Meanwhile, using the Segformer synthetic
data performs better than real data outright. In Fig 6, we
show qualitative test examples on both real datasets.

4.2. Damage segmentation

Damage dataset and evaluation set. We use the recently
released CarDD dataset [63] which contains real images of
damaged cars annotated with object segmentation masks for
several damage categories. To align with the damage types
of our synthetic data, we remove the category flat tires. Im-
ages containing only flat tires are filtered out and the pixels
annotated as flat tires are set to background. An overview of
the dataset can be seen at the bottom part of Tab. 1. We eval-
uate our models in this section on the CarDD test set [63]
which consists of 349 manually annotated images.
Experimental setup. We evaluate the CrashCar101’s
sim2real transfer potential on damage segmentation using
few-shot segmentation (FSS). FSS aims to segment novel
objects with few annotations. Recent approaches [54,57,68,
69] mitigate limited data by freezing the backbone, leverag-
ing feature fusion and prototypes. For simplicity’s sake, we
perform FSS experiments in a similar fashion to the baseline
method in [7]. We start by training on a large source dataset,
namely COCO [31], ImageNet [11], or CrashCar101. We
then fine-tune the model on n · k images from the CarDD
training set and we use an internal validation set consisting
of n ·k to perform early stoppage. The parameter n denotes
the number of shots and k = 6 is the number of classes
(including background). The n · k images are selected such
that all class labels are present. We experiment with various
freezing strategies and we report results obtained without
freezing because these perform best. To quantify the reduc-
tion in domain gap, we compare the pre-training on Crash-
Car101 to the one on COCO and ImageNet respectively.
Damage segmentation models. To show that the efficacy
of CarCrash101 is architecture-independent, we perform
FSS experiments using SegFormer and DeepLabV3 frame-

Figure 7. Few-shot segmentation on damage segmentation us-
ing different model architecture. Left: DeepLabv3 and right:
SegFormer. Models pre-trained on CrashCar101 consistently out-
perform others regardless of the model architecture and without
using any domain adaptation techniques.

works, each utilizing MiT-b5 and ResNet-101 backbones
respectively. We adapt these models for damage segmenta-
tion by modifying the final layers to yield 6 channels, cor-
responding to distinct damage types.
Results. We report our FSS results in Fig. 7 where we show
the mIoU performance of all models. Our results show that
pretraining on CrashCar101 yields significantly better re-
sults (+6.3-17.9% mIoU at 1-shot and +4.4-7.0% at 5-shot)
compared to using a pre-trained model on COCO or Ima-
geNet. As expected, when the amount of real data increases
the performance gain decreases, nonetheless we still see
a marginal performance gain for the 10-shot experiments.
Both SegFormer and DeepLabv3 perform better when pre-
trained on CrashCar101, which suggests that the improve-
ment is independent of the model architecture. These results
show that there is a smaller domain gap between Crash-
Car101 and CarDD than there is between COCO/ImageNet
and CarDD. These results show the potential of the sim2real
transfer of our dataset on the task of damage segmentation.

5. Conclusion
We proposed a procedural generation pipeline that cre-

ates damages on 3D cars. We executed our pipeline and
rendered the CrashCar101 synthetic dataset. We showed
that without any special modification or any domain adap-
tation methods, our CrashCar101 dataset is useful for train-
ing a damage assessment system that performs damage seg-
mentation and semantic part segmentation on real images.
We hope that our work will enable more work in this direc-
tion and lead to a more powerful synthetic data generation
pipeline able to deal with a variety of different incidents
such as natural disasters and damage assessment models
that can operate on various objects beyond vehicles.
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[66] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian
Dziadzio, Thomas J Cashman, and Jamie Shotton. Fake it
till you make it: face analysis in the wild using synthetic
data alone. In ICCV, 2021. 2

[67] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M. Alvarez, and Ping Luo. Segformer: Simple and
efficient design for semantic segmentation with transform-
ers. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang,
and J. Wortman Vaughan, editors, Advances in Neural Infor-
mation Processing Systems, volume 34, pages 12077–12090.
Curran Associates, Inc., 2021. 7

[68] Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, and Yang Gao.
Mining latent classes for few-shot segmentation. CoRR,
abs/2103.15402, 2021. 8

[69] Gengwei Zhang, Guoliang Kang, Yunchao Wei, and Yi
Yang. Few-shot segmentation via cycle-consistent trans-
former. CoRR, abs/2106.02320, 2021. 8

[70] Qinghui Zhang, Xianing Chang, and Shanfeng Bian Bian.
Vehicle-damage-detection segmentation algorithm based on
improved mask rcnn. IEEE Access, 8:6997–7004, 2020. 3

[71] Wei Zhang, Yuan Cheng, Xin Guo, Qingpei Guo, Jian Wang,
Qing Wang, Chen Jiang, Meng Wang, Furong Xu, and Wei
Chu. Automatic car damage assessment system: Reading
and understanding videos as professional insurance inspec-
tors. In AAAI, 2020. 1

[72] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A.
Torralba. Scene parsing through ADE20K dataset. In CVPR,
2017. 1

[73] Yanzhao Zhou, Yi Zhu, Qixiang Ye, Qiang Qiu, and Jianbin
Jiao. Weakly supervised instance segmentation using class
peak response. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3791–3800, 2018. 2

4634


