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Abstract

Machine learning models for camera-based physiolog-
ical measurement can have weak generalization due to a
lack of representative training data. Body motion is one
of the most significant sources of noise when attempting to
recover the subtle cardiac pulse from a video. We explore
motion transfer as a form of data augmentation to introduce
motion variation while preserving physiological changes of
interest. We adapt a neural video synthesis approach to
augment videos for the task of remote photoplethysmogra-
phy (rPPG) and study the effects of motion augmentation
with respect to 1) the magnitude and 2) the type of mo-
tion. After training on motion-augmented versions of pub-
licly available datasets, we demonstrate a 47% improve-
ment over existing inter-dataset results using various state-
of-the-art methods on the PURE dataset. We also present
inter-dataset results on five benchmark datasets to show im-
provements of up to 79% using TS-CAN, a neural rPPG
estimation method. Our findings illustrate the usefulness
of motion transfer as a data augmentation technique for
improving the generalization of models for camera-based
physiological sensing. We release our code for using motion
transfer as a data augmentation technique on three publicly
available datasets, UBFC-rPPG, PURE, and SCAMPS,
and models pre-trained on motion-augmented data here:
https://motion-matters.github.io/

1. Introduction
Scalable health sensors enable frequent, opportunistic,

and more equitable access to vital information about the
body’s internal state. Cameras are some of the most ver-
satile and widely available sensors. Videos capture spa-
tial, temporal, and ultimately frequency-specific informa-
tion making them suitable for imaging dynamic processes,
even below the surface of the skin [28]. Camera-based mea-
surement of cardiac signals is one such application [20], in
which cameras are used to measure the pulse via light re-
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Figure 1. Motion augmentation improves rPPG. We present the
first neural motion augmentation pipeline for the task of remote
PPG estimation and empirically show it reduces error in heart rate
estimation by up to 79% in inter-dataset results using TS-CAN and
47% over existing results using SOTA methods on PURE.

flected from the body, a principle known as photoplethys-
mography (PPG) [2, 42]. The PPG signals can be used to
derive respiration [30], heart rate variability [30], arrhyth-
mia [31], and blood pressure [12]. As a result this technol-
ogy has the potential to turn webcams and smartphones into
meaningful health sensors.

However, unlike traditional medical sensors, extracting
physiological signals from a video requires more than fil-
tering and simple signal processing. The state-of-the-art
(SOTA) algorithms are supervised neural models [4, 15, 37,
50, 51]. Despite the prowess of these models, they are in-
herently limited by the diversity of the data used to train
them. Public datasets (e.g., UBFC-rPPG [3], PURE [38])
serve as an extremely valuable resource for the research
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community, containing videos and synchronized physio-
logical gold-standard measurements making them suitable
for training and testing models. Building datasets such as
these is challenging for two reasons: (1) collecting videos
with gold-standard signals from a medical-grade sensor is
time consuming and labor intensive, (2) it requires storing
and distributing privacy sensitive biometric data. Therefore,
more data efficient methods for training rPPG sensing mod-
els would be desirable.

Synthetic data are a powerful resource in machine learn-
ing. The two main sources of synthetic data are (1) para-
metric computer graphics engines and (2) statistically-based
generative machine learning models. Data created using
these approaches have been used successfully for many
computer vision tasks, including face detection, landmark
localization, face parsing and face recognition [21, 23, 47],
body pose estimation [33] and eye tracking [39, 48].

However, creating synthetic data that preserve the sub-
tle and nuanced peripheral pulse in a video is non-trivial.
McDuff et al. [24] released a large dataset (2,800 videos) of
avatars and cardiac signals; however, their computer graph-
ics pipeline had an extremely high computational overhead.
Wang et al. [46] used a learning based method to generate
synthetic videos given a reference image and target PPG
signal. Their creative approach successfully incorporated
PPG signals to produce videos that benefited training. How-
ever, the videos created lacked the visual fidelity of other
synthetics or real video datasets, and their pipeline involved
several relatively complex components.

We question whether existing motion transfer algorithms
can be used effectively for augmenting rPPG video data and
explore what steps need to be taken to achieve optimal re-
sults. Our main contributions are as follows:

• A systematic investigation of the impact of motion
augmentation on the physiological information within
rPPG videos.

• Quantitative, empirical evidence that conveys the
meaningfulness of training with motion-augmented
data, including (1) the benefits of different kinds of
motion-augmented data, (2) consistent motion aug-
mentations across neural motion transfer algorithms,
(3) the benefit of naturalistic head motion over other
synthetic methods (e.g., SCAMPS), and (4) consistent
improvements using motion-augmented data regard-
less of a chosen rPPG estimation model.

• Our motion augmentation pipeline, using which in Ta-
ble 1 we demonstrate that our approach surpasses the
SOTA when compared to other methods that train on
UBFC-rPPG [3] and test on PURE [38]. We also pro-
vide comprehensive inter-dataset results (see Table 2)
that highlight the usefulness of motion augmentation
for improving the generalization of models for camera-
based physiological sensing.

We summarize the key findings of this paper about the
effectiveness of motion transfer as a data augmentation tool
in Section 5. We provide our code for augmenting datasets,
training using these data, and pre-trained models trained on
motion-augmented data (all assets are released with respon-
sible use licenses [5]).

2. Background
Generative Synthetics for Training Models: Statisti-

cal generative models [6, 9, 10, 13, 35] capture a probabilis-
tic representation of a dataset from which samples can be
drawn. These models are typically trained to mimic the dis-
tribution of the training set and can be trained without the
need for labels, allowing large sets of data to be used. Fa-
cial video generation using generative models has advanced
rapidly over recent years [14, 32]. Numerous image-driven
works have accomplished the ability to separate identity and
pose in source and driving images used for high quality, ro-
bust video generation using generative adversarial networks
(GANs) [11, 34, 44, 52]. Image-driven facial video gener-
ation methods attempt to preserve the identity of a given
source image while manipulating the pose based on a driv-
ing video to generate a new video. The identity from the
driving video is excluded with the help of a keypoint-based
motion transfer approach, where keypoints are predicted
for both a source image and a driving image in order to
model local motion using shifts in the corresponding key-
points [11,34,44]. Face video generation that is achieved by
using keypoints that take pose and expression into account
can be successful for the task of head video generation, but
can at times have a loss in source image identity and un-
wanted temporal artifacts [11, 34, 52]. Face-Vid2Vid [44]
utilizes canonical keypoints in addition to source and driv-
ing image keypoints in order to capture a target person’s ge-
ometry signature, which includes the shape of the target’s
face, nose, and eyes. This allows for improved head video
generation that minimizes source identity loss while effec-
tively transferring motion from a driving video.

rPPG Models: The principle that photoplethysmogra-
phy could be performed with a camera and without contact
with the body was established by Blazek et al. [2] and repli-
cated in a series of following experiments [40, 42]. The
application of more advanced signal processing methods
helped make measurement somewhat more robust under
real-world conditions [30,45], as did leveraging knowledge
of physiological and physical properties [45]. Yet, these
models were still very sensitive to body motions. Both task-
specific and multi-task neural, data-driven models currently
achieve SOTA results in most cases [4,15,17,26,50,51], but
are a function of the data used to train them. While intra-
dataset performance is generally strong, inter-dataset per-
formance is often substantively worse. In order to alleviate
the dependency on labeled data, several researchers have
proposed unsupervised learning procedures [8, 36, 43, 49].
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Figure 2. Motion augmentation and training pipeline. We augment frames of a source video with corresponding frames of a selected
driving video to create an augmented video with the identity of the source video and motion of the target driving video. We then train a
remote PPG estimation network on the augmented video with a mean squared error (MSE) loss.

However, most require fine-tuning on a labeled set and also
reveal that supervised learning still holds some additional
benefit. As an alternative or a complement, generative
methods have been suggested to “create” data [22, 46].

rPPG Datasets: As with many health applications,
those working in camera physiological measurement face
challenges associated with collecting and managing data.
Public datasets (such as UBFC-rPPG [3], PURE [38],
VIPL-HR [27]) are valuable resources. However, given the
challenging nature of the rPPG task researchers have col-
lected and released data under heavily constrained condi-
tions with very little physical motion. More recent datasets
(such as UBFC-PHYS [25] and MMPD [41]) contain larger
and more natural motions. However, the baseline results on
these datasets are not very strong.

3. Motion Augmented rPPG Video Pipeline
We propose neural motion transfer as a data augmenta-

tion technique to train machine learning models for predict-
ing physiological measurements, specifically photoplethys-
mography (PPG) signal, from facial videos. First, we de-
scribe our proposed pipeline to augment facial videos with
naturalistic human head motion and expression in Sec-
tion 3.1. Neural motion transfer algorithms often use gener-
ative models to synthesize new videos of a person by trans-
ferring the rigid head motion and non-rigid facial expres-
sions from a driving video of another person. Since these
models generate image pixels from scratch, it is possible
that images generated by neural motion transfer algorithms
can destroy the underlying physiological signal. Thus, in
Section 3.2, we provide qualitative evidence to prove that

neural motion transfer algorithms do not destroy the origi-
nal PPG signal, and the original heart rate is preserved. This
allows us to effectively use neural motion transfer as a data
augmentation technique for training rPPG networks. We
provide additional quantitative evidence to highlight preser-
vation of the underlying physiological signal through the
signal-to-noise ratio (SNR) metric and after rPPG signal ex-
traction using TS-CAN in Table 6.

3.1. Motion Augmentation Pipeline

In a camera-based physiological sensing (e.g., rPPG)
task, a machine learning model is trained on facial videos
with time-aligned physiological labels. These may take the
form of continuous waveforms (e.g., a gold-standard PPG
or a respiration wave) or vital statistics (e.g., heart or breath-
ing rates). In this project, we consider video labels in the
form of a PPG signal. The goal of designing a data aug-
mentation strategy is to apply more naturalistic motion to
the facial videos without changing the PPG labels.

To apply naturalistic motion to these facial videos, we
consider neural talking-head video synthesis models that
transfer more naturalistic motion from a driving video of
a person to the source video associated with a PPG signal
label. Our goal is to find a neural motion transfer algorithm
that can: (a) inject a large variety of rigid and non-rigid head
motions into the source video, (b) not introduce any arti-
facts that significantly degrade the generated video quality,
and (c) maintain the key properties of the underlying PPG
signal in terms of frequency information indicating physio-
logical signals like heart rate.

Our pipeline takes in a source video with a PPG signal
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Figure 3. Preserving physiological signals in motion augmented videos. We show that applying neural motion transfer preserve the
physiological signal corresponding to the heart-rate present in the peak of the frequency spectrum of the source and the augmented video.

label from the training data, S, and a driving video, D, ran-
domly selected from a curated driving video set as inputs
for motion augmentation. Both S and D can be represented
as a sequence of frames, respectively {s1, s2, ..., sn} and
{d1, d2, ..., dn}. Motion is transferred from driving video
D to source video S on a frame-by-frame basis, such that an
output video Y represents the motion-augmented sequence
of frames {y1, y2, ..., yn}. Thus we search for a motion
transfer algorithm M(·; θ), such that yt = M(st, dt; θ).

We choose Face-Vid2Vid [44], a neural talking-head
synthesis model for transferring motion from a driving
video to a source video. The original Face-Vid2Vid pa-
per was intended for teleconferencing applications where a
motion-augmented video is generated from a single source
image using a driving video. In contrast, we re-purpose
the same core algorithm such that each frame of the source
video is augmented with motion from the corresponding
frame of the driving video. The motion-augmented video
Y, along with the original PPG signal label, is ultimately
used as training data for various deep learning-based cam-
era physiological measurements. This pipeline is shown in
Figure 2 and is further described in our supplementary ma-
terials, alongside provided code that will be open-sourced.
Source Video Datasets: We utilize the UBFC-rPPG [3]
and PURE [38] rPPG video datasets as source videos. The
UBFC-rPPG dataset contains videos with a very minimal
amount of both rigid motion and non-rigid motion, mak-
ing them ideal for motion augmentation. The PURE dataset
contains videos of various tasks with a variety of con-
strained rigid and non-rigid motion.
Driving Video Datasets: The driving video datasets

used include a self-captured, constrained driving video set
(CDVS) and the TalkingHead-1KH [44] dataset. The CDVS
contains 90 self-captured videos by 5 subjects with heavily
constrained, unnatural motion used only for ablation studies
to understand the impact of augmenting data with various
degrees of rigid and non-rigid motion. The CDVS will be
released in the future for research purposes. Talkinghead-
1KH is a publicly available, large-scale talking-head video
dataset used as a benchmark for Face-Vid2Vid [44] and en-
tirely sourced from YouTube videos. It contains 180K un-
constrained videos of people speaking in a variety of real-
world contexts, leading to a rich diversity in both rigid and
non-rigid motion.
Deep Networks for estimating PPG signal: For our exper-
iments, we focus on using TS-CAN [15] to predict the 1st-
order derivative of the PPG signal after training on videos
augmented with motion. We also use DeepPhys [4] and
PhysNet [50] to highlight the consistent benefits of motion
augmentation across different neural models.

3.2. The Effect of Motion Transfer on PPG

Neural Motion Transfer algorithms are based on gener-
ative models where every pixel of the generated image is
synthesized by a neural network. While these algorithms
succeed in producing photorealistic facial images that are
indistinguishable from real images, it is not obvious if the
synthesized videos can preserve the underlying PPG signal.

In an ideal world, a motion transfer algorithm is expected
to perturb the PPG signal since head motion will induce
certain changes in raw pixel intensities. However, the fre-
quency domain analysis of the PPG signal should preserve
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the peaks related to the heart rate of the patient. It is highly
unlikely that the peak frequency of head motion and heart
rate will be exactly the same.

Thus, our goal is to first analyze if the motion trans-
fer algorithm of Face-Vid2Vid [44] can preserve the peak
heart rate indicated in the frequency domain analysis of the
PPG signal extracted from the source video and the syn-
thesized video. In Figure 3, we qualitatively analyze the
time-domain and frequency domain PPG signals extracted
from the source and the synthesized (augmented) video. We
choose a simple unsupervised algorithm, POS [45], for ex-
tracting the PPG signal from all the facial videos to focus
more on the original signal contents in the videos. We ob-
serve that the most prominent frequency peak, correspond-
ing to the heart rate, is the same for the source video and
the augmented video. This appears to also hold true across
different appearances and motion conditions, both in the
source videos and the driving videos. Again, we also pro-
vide quantitative evidence to support our observation in Ta-
ble 6. We also present additional qualitative results and
information about prior works analyzing the presence of
physiological signals in deep fake videos in the supplemen-
tary material. Thus, we can effectively claim that keypoint-
based motion transfer algorithms like Face-Vid2Vid [44] do
preserve the underlying physiological signal, like heart rate,
and they can be a very effective tool for large scale aug-
mentation of training videos for rPPG estimation tasks. Our
quantitative experimental results show that deep neural net-
works for camera physiological measurement can take ad-
vantage of this to significantly improve model performance
by training on motion-augmented data.

4. Experiments
We consider five datasets for training and evalua-

tion, UBFC-rPPG [3], PURE [38], UBFC-PHYS [25],
AFRL [7], and MMPD [41] (see supplementary materials
for more details). They consist of facial videos and corre-
sponding gold-standard PPG signal labels. We use some of
these datasets for augmentation with neural motion transfer
and training the rPPG models, and use the rest to evalu-
ate different aspects of the effectiveness of neural motion
augmentation. To our knowledge, we perform the most ex-
Table 1. Comparison to SOTA for PURE dataset. We compare
our approach to other SOTA methods using the same source data,
the UBFC-rPPG dataset. The best result is shown in bold.

Method MAE↓

EfficientPhys-C [16] 5.47
SiNC [36] 4.02
PhysNet [50] 3.81
Physformer [51] 1.99
Dual-GAN [19] 1.81
Ours (Motion Augmented) 0.96

OURS VS. BEST BASELINE +46.96%
MAE = Mean Absolute Error in HR estimation (Beats/Min)

tensive inter-dataset evaluation of rPPG estimation to date,
testing on five independent test datasets.

Implementation Details: The predicted PPG signals
were filtered using a band-pass filter with cut-offs 0.75 Hz
and 2.5 Hz. The heart rate was calculated based on the pre-
dicted PPG signal using the Fast Fourier Transform (FFT),
with a measurement window of the video length. All net-
works were trained using an NVIDIA RTX A4500 and Py-
Torch [29] implementations in a publicly available toolbox
for the rPPG task [18]. A cyclic learning rate scheduler was
utilized with 30 epochs, a learning rate of 0.009, and a batch
size of 4 for both training and inference.

4.1. Training with Motion Augmented Data

In Table 1, we compare our approach with TS-CAN and
motion-augmented source data to other SOTA methods us-
ing the same source data, the UBFC-rPPG dataset. The
PhysNet [50] result was obtained from [36], and differs
from our reproduced PhysNet result in Table 7 due to pre-
processing and implementation differences. We achieve a
47% improvement over SOTA results on the PURE dataset
with our data augmentation strategy using neural motion
transfer. In Table 2, we comprehensively compare the per-
formance of a supervised PPG estimation network, TS-
CAN [15], trained on existing video datasets and motion-
augmented versions of those datasets. We also show the
performance of unsupervised methods for comparison. For
the sake of space and clarity, the aforementioned tables
only show limited metrics such as the MAE or MAPE in
heartrate estimation. Equivalent tables with additional met-
rics, including root mean squared error (RMSE) and Pear-
son correlation metrics can be found where applicable in
the supplementary material. The driving videos used for
augmentation in Table 2 contain significant amounts of un-
constrained motion – both rigid and non-rigid.

We observe that training TS-CAN on augmented videos
produces SOTA performance in most cases. Additionally,
we observe that in most cases, the augmented versions out-
perform the non-augmented versions, with a gain in per-
formance up to 79% and an average gain of 26%. How-
ever, when comparing the performance of MAPURE versus
PURE when tested on UBFC-PHYS, we note a minor drop
in performance rather than an improvement due to the dif-
ficulty in effectively augmenting the PURE dataset. This
is because the PURE dataset already contains significant
amounts of rigid motion, and when augmented, it may pro-
vide training data with artifacts that make the learned rPPG
task less useful in the face of a highly unconstrained dataset
with natural rigid and non-rigid motion.

Details: We utilize all downloadable videos from the
TalkingHead-1KH [44] dataset as our driving videos for
augmenting various rPPG video datasets with motion. We
analyze the videos using OpenFace [1] to obtain the inten-
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Table 2. Evaluation across all datasets. We motion-augment two training datasets, UBFC-rPPG and PURE, to create MAUBFC-rPPG
and MAPURE, respectively. We observe that the motion-augmented versions produce significant improvements (shown in bold).

Testing Set
UBFC-rPPG PURE UBFC-PHYS AFRL MMPD

Training Set Method MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓ MAE↓ MAPE↓

Unsupervised

Green 19.82 18.78 10.09 10.28 13.45 16.00 7.01 9.24 16.27 20.09
ICA 14.70 14.34 4.77 4.47 8.00 9.48 6.77 8.96 13.10 16.33

CHROM 3.98 3.78 5.77 11.52 4.68 6.20 5.41 7.95 8.85 11.93
POS 4.00 3.86 3.67 7.25 4.62 6.29 6.93 10.00 8.18 11.12

UBFC-rPPG TS-CAN - - 4.55 4.67 5.56 7.25 4.24 5.84 8.74 10.51
MAUBFC-rPPG TS-CAN - - 0.96 1.13 3.93 5.24 2.67 3.65 6.80 7.97
PURE TS-CAN 1.34 1.55 - - 4.43 5.89 2.63 3.51 8.96 10.33
MAPURE TS-CAN 1.03 1.17 - - 4.39 5.90 2.37 3.26 8.08 9.54

MAUBFC-RPPG VS. UBFC-RPPG - - +78.90% +75.08% +29.32% +27.72% +37.03% +37.50% +22.20% +24.17%

MAPURE VS. PURE +23.13% +24.52% - - +0.90% -0.17% +9.89% +7.12% +9.82% +7.65%
MAE = Mean Absolute Error in HR estimation (Beats/Min), MAPE = Mean Absolute Percentage Error in HR estimation

sity (0 to 5) of 17 Facial Action Units (AUs) and the head
pose rotations Rx, Ry , and Rz in radians (rad). To generate
MAUBFC-rPPG, we choose driving videos from a pool of
60 driving videos with a range of mean standard deviation
in head pose rotations from 0.10 to 0.14 rad to augment as
much rigid motion as possible into a source video dataset
that has very little of both rigid and non-rigid motion. We
do not constrain for non-rigid motion in this case, so we
observe a wide range of mean standard deviation in facial
AUs from 0.15 to 0.5 intensity. To generate MAPURE, we
choose driving videos with a range of mean standard de-
viation in facial AUs from 0.45 to 0.55 intensity to aug-
ment as much non-rigid motion as possible into a source
video dataset that has very little non-rigid motion. We do
not constrain for rigid motion in this case, so we observe a
wide range of mean standard deviation in head pose rota-
tions from 0.03 to 0.14 rad.

4.2. Effect of Motion Types

A key question in designing a motion augmentation strat-
egy is deciding what type of motion should be applied to
obtain the best performance on a certain evaluation dataset.
To answer this question, we separately analyze two types
of motion: rigid and non-rigid, by augmenting training data
with different magnitudes of motion. Rigid motion refers
to head pose rotation, while having minimal change in fa-
cial action units or expressions. Non-rigid motion refers to
changes in facial expression, i.e. motion in facial action
units for various tasks like talking, while having minimal
head pose rotation.

Rigid Motion: For rigid motion, we consider UBFC-
rPPG as training data, which has very little head motion
and AFRL as test data which has large variations in rigid
head motion. We classify videos in the AFRL dataset into
different rigid head motion categories: ’very small motion’,
’small motion’ (10 deg rotation per sec), and ’large motion’

(30 deg rotation per sec). Based on this categorization, we
also select driving videos from our captured CDVS to have
’small motion’ and ’large motion’ using the mean standard
deviation in estimated head pose rotations across all the
frames of a video. Specifically, for ’small motion’ we used
mean standard deviation between 0.03 to 0.07 rad and for
’large motion’ between 0.10 to 0.14 rad. These parameters
are chosen to roughly match the distribution of head pose
rotation in ’small motion’ and ’large motion’ categories of
AFRL. We then use these videos from the CDVS dataset to
augment the source videos of UBFC-rPPG to create 3 sepa-
rate categories of augmented videos for ’very small motion’
(which is the original UBFC-rPPG dataset), ’small motion’,
and ’large motion’ respectively. We then train TS-CAN on
augmented data in each category and test on the same cat-
egories of the AFRL dataset. We present these results in
Table 3.

We observe that when the test data of AFRL has ’very
small motion’ or ’small motion’, augmenting UBFC-rPPG
with small motion performs the best. In fact, augmenting
with large motion worsens the result by 19% in this case.
However, when testing on the ’large motion’ split of AFRL,
UBFC-rPPG augmented with ’large motion’ outperforms
’small motion’ by 13.5% and ’very small motion’ by 52%.

Non-rigid Motion: For non-rigid motion, we also con-
sider UBFC-rPPG as training data since it has very little
motion, and the speech task of the PURE dataset [38] as the
test data which has significant non-rigid head motion. We
also augment the UBFC-rPPG dataset with non-rigid head
motion from our captured CDVS with ’small’ and ’large’
non-rigid motions and minimal rigid motion. For this ex-
periment, we define small non-rigid motion to have a range
of mean standard deviation in facial action units from 0.15
to 0.25 intensity and large non-rigid motion to have a range
of mean standard deviation in facial action units from 0.45
to 0.55 intensity. We train TS-CAN on ’small’ and ’large’
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motion augmented versions of UBFC-rPPG and test it on
the speech task of PURE, in which recorded participants
are asked to talk while avoiding head movements as much
as possible. We present these results in Table 4. We observe
that augmenting UBFC-rPPG with ’large’ non-rigid motion
improves over ’very small motion’ (original UBFC-rPPG)
by 89.2% and over ’small’ non-rigid motion by 37%.
Table 3. Effect of Motion Types – Rigid. We augment UBFC-
rPPG with various types of rigid head motions and test on
AFRL [7]. The best results are shown in bold.

Testing Set
No Small Large All

Motion Motion Motion Motion

Training Set Rigid Motion MAE↓ MAE↓ MAE↓ MAE↓

UBFC-rPPG Very Small 1.00 2.28 7.59 4.72
MAUBFC-rPPG Small 0.84 1.44 4.21 3.19
MAUBFC-rPPG Large 1.00 1.78 3.64 3.39

OURS VS. BASELINE +16.0% +36.8% +52.0% +32.4%

Table 4. Effect of Motion Types – Non-rigid. We augment
UBFC-rPPG with various types of non-rigid motions (expressions)
and test on the speech task, in PURE [38]. The best results are
shown in bold.

Testing Set
Non-rigid Motion Task

Training Set Non-Rigid Motion MAE↓ MAPE↓

UBFC-rPPG Very Small 10.84 11.40
MAUBFC-rPPG Small 1.86 2.94
MAUBFC-rPPG Large 1.17 1.55

OURS VS. BASELINE +89.2% +86.4%

4.3. Naturalistic versus Synthetic Head Motion

In order to further evaluate the impact of motion transfer
as a data augmentation technique, we explore whether data
augmented with natural head motion using a neural motion
transfer algorithm is better than synthetic data with mo-
tion generated using parametric motion animation, as used
in the SCAMPS dataset [24]. The SCAMPS dataset con-
sists of synthetic human heads that can be rigged to induce
parametric motion. We consider 200 such samples from
Table 5. Naturalistic versus Synthetic Head Motion. We eval-
uate the effect of adding head motions to SCAMPS and UBFC-
rPPG. The best results are shown in bold.

Testing Set
PURE AFRL

Training Set MAE↓ MAPE↓ MAE↓ MAPE↓ Synth. Time

SCAMPS-200 (No motion) 10.29 11.09 7.75 10.54 37.00s
SCAMPS-200 (Motion) 5.38 5.42 7.25 10.20 37.00s
UBFC-rPPG 4.55 4.67 4.72 6.59 -
MASCAMPS-200 4.67 4.22 5.00 6.69 1.20s
MAUBFC-rPPG 0.96 1.13 3.24 4.37 2.39s

MASCAMPS VS. SCAMPS +13.2% +22.1% +31.1% +34.4% +96.8%

MAUBFC VS. UBFC-RPPG +78.9% +75.8% +31.4% +33.7% -

Avg. Synth. Time = time (in seconds) to synthesize a frame

the SCAMPS dataset that consist of significant syntheti-
cally generated rigid and non-rigid head motion. We then
take instances from the SCAMPS dataset with no head mo-
tion and augment them with naturalistic head motion to pro-
duce MASCAMPS-200. Further details on this experiment,
including comparisons to additional results using Wang et
al.’s [46] synthetic rPPG video data, are included in the sup-
plementary materials.

We train TS-CAN on both SCAMPS-200 (Motion) and
MASCAMPS-200, and evaluated its performance on PURE
and AFRL, as shown in Table 5. We observed that adding
naturalistic motion improved performance by 13.2% on
PURE and 31.1% on AFRL compared to synthetically gen-
erated motion. It is worth noting that the average time taken
to add synthetic motion to each frame of a sequence is 37
seconds, compared to only 1.2 seconds for adding natu-
ralistic motion using the neural motion transfer algorithm.
For comparison, we also included real-world training data,
UBFC-rPPG, which showed that having real images signif-
icantly improved performance over synthetic images. Fur-
thermore, the only way to augment real images is to use the
neural motion transfer algorithm, as parametric rigged head
motion cannot be applied to real data.
4.4. Effect of Neural Motion Transfer Algorithms

It is important to decouple any data augmentation tech-
nique from additional factors that affect its usefulness for a
given set of training data. One such factor is the neural mo-
tion transfer algorithm used for motion augmentation. In
Table 6, we evaluate two additional neural motion transfer
methods in addition to face-vid2vid [44] - FOMM [34] and
DaGAN [11]. MAE and SNR are calculated using predic-
tions from TS-CAN and the ground truth label. These re-
sults show that most motion transfer algorithms can serve as
an effective data augmentation tool as long as they utilize a
keypoint-based approach for transferring motion toward ap-
plications such as neural talking head synthesis.
Table 6. Effect of Motion Transfer Methods. We compare nu-
merous SOTA neural motion transfer methods on UBFC-rPPG [3].

Method MAE↓ SNR ↑

Baseline (No Augmentation) 3.93 4.72
FOMM [34] 0.92 8.64
DaGAN [11] 1.23 8.37
face-vid2vid [44] 0.96 8.70

4.5. Effect of rPPG Estimation Models

It is important to decouple any data augmentation tech-
nique from additional factors that affect its usefulness for
a given set of training data. One such factor is the neural
network model used for training and evaluation. Thus, in
addition to TS-CAN, we evaluate two more rPPG models -
DeepPhys and PhysNet - in Table 7. We utilize MAUBFC-
rPPG as training data and evaluate on PURE. We observe

5939



that the results are reasonably consistent across neural rPPG
models.
Table 7. Generalization to Different rPPG Models. We train dif-
ferent PPG estimation networks on UBFC-rPPG and MAUBFC-
rPPG and evaluate on PURE. The best results are shown in bold.

Testing Set
PURE

Training Set Method MAE↓ MAPE↓

UBFC-rPPG DeepPhys [4] 5.14 4.90
MAUBFC-rPPG DeepPhys 1.24 1.56
UBFC-rPPG PhysNet [50] 8.06 13.67
MAUBFC-rPPG PhysNet 2.38 2.44
UBFC-rPPG TS-CAN [15] 4.55 4.67
MAUBFC-rPPG TS-CAN 0.96 1.13

5. Discussion
Can motion augmented videos achieve SOTA results?
We conducted a set of systematic empirical validation

studies that show that these videos can be used to effec-
tively train rPPG models that generalize to independent
benchmark datasets (see Table 2). Cross-dataset experi-
ments show a 23.1% reduction in HR MAE on UBFC-rPPG
when using the motion-augmented PURE datasets for train-
ing and a 79% reduction in HR MAE on PURE when us-
ing the motion-augmented UBFC-rPPG dataset for train-
ing. Other than PURE, the largest gains were observed
training on MAUBFC-rPPG and testing on videos with
large rigid and/or non-rigid head motions (UBFC-PHYS:
29.32%, AFRL: 37.03% and MMPD: 22.20% reduction in
HR MAE). In Table 1, we also demonstrate, using UBFC-
rPPG as a source dataset, the effectiveness of our method
in contrast to other SOTA methods using the same source
dataset to test on PURE.

What type of motion is best to augment? In learning
tasks, designing training data that matches the distribution
of the testing data is advantageous. Does augmenting mo-
tion in the training set that is similar to that in a testing set
lead to optimal results? Our experiments show that this is
the case for both rigid (see Table 3) and non-rigid (see Ta-
ble 4) head motions. Furthermore, if the motions have a
larger magnitude, then including larger magnitude motions
in the training set empirically seems to have a benefit.

Does the type of motion transfer algorithm or the
type of PPG estimation model matter?

It’s important to decouple other factors that may signif-
icantly affect performance such as the neural motion trans-
fer algorithm or the type of rPPG estimation model. As per
Table 6 and Table 7, it is clear that our motion augmenta-
tion strategy provides significant improvements 1) regard-
less of the core neural motion transfer algorithm utilized
and 2) despite differences (e.g., 2DCNN versus 3DCNN) in
neural rPPG estimation models. This in turn shows great
promise in motion augmentation as a general data augmen-

tation strategy for rPPG videos.
Is natural motion augmentation best? Finally, there

are different methods for synthesizing motion in video
data. SOTA synthetic datasets are generated using para-
metric computer graphics, but they require a large amount
of computational resources. As a result, if the motions
present in those datasets are sub-optimal, it is costly to
remedy. Can motion augmentation add motions to these
datasets ”cheaply” and still obtain the performance bene-
fits of graphics approaches? Our results in Table 5 suggest
that the motion in the SCAMPS dataset is sub-optimal when
tested on PURE and AFRL. We were able to obtain a per-
formance gain by using our simple motion augmentation.

What are the limitations of our method? There are
several limitations that we would like to highlight. First,
detecting artifacts in augmented videos is not always triv-
ial, and we used motion driving videos without extreme
motions to mitigate the chance of augmented videos with
unnatural artifacts. We did not conduct an extensive inves-
tigation to determine if other physiological changes (e.g.,
respiration) that might be correlated with the PPG signal
are preserved in the augmented videos. However, empiri-
cally we have shown that these data can be used to effec-
tively train heart rate estimation models. We did not thor-
oughly test whether the waveform dynamics, beyond the
dominant frequency, were faithfully preserved in the aug-
mented videos. For tasks such as blood pressure estimation
from PPG waveforms, morphological information is impor-
tant. Our method does not address diversity across other
dimensions, particularly identity diversity. The augmented
datasets we produced, while contributing to significant im-
provements over the baselines, only contain examples from
the same number of subjects as the original dataset. Other
synthetic generation techniques [46] could help in these re-
gards alongside more generic neural rendering approaches
such as ours.

6. Conclusion
Motion artifacts are a significant challenge in camera

physiological measurement. The PPG signal presents only
very subtle changes in diffuse light reflections from the skin,
whereas motion of the head causes large changes in specu-
lar reflections. We have shown that neural motion augmen-
tation can be used to create training data with more motion,
while still preserving the pulse signal. Motion augmented
data leads to up to 79% reduction in error in cross-dataset
experiments using TS-CAN and a 47% reduction in error
when compared to other state-of-the-art methods using the
same source dataset.
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