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Figure 1. The CGAPoseNet+GCAN architecture. The output of the InceptionV3 network is reshaped to obtain a set of motor coefficients
proposals. Motors are objects in the 1D-Up Conformal Geometric Algebra (CGA) G4,0 with scalar, bivector and quadrivector parts, giving
a total of 8 real coefficients. These coefficients are used to build motors ∈ G4,0 in input to the Geometric Clifford Algebra Network
(GCAN). A motor represents a rotation and a translation, and it is hence a suitable representation for camera poses. The GCAN works
in G4,0 space and has weights, biases and outputs that are also motors, and hence interpretable as poses. The GCAN narrows down the
proposals to a single motor through a geometric understanding of the scene.

Abstract

We introduce CGAPoseNet+GCAN, which enhances
CGAPoseNet, an architecture for camera pose regression,
with a Geometric Clifford Algebra Network (GCAN). With
the addition of the GCAN we obtain a geometry-aware
pipeline for camera pose regression from RGB images only.
CGAPoseNet employs Clifford Geometric Algebra to unify
quaternions and translation vectors into a single mathe-
matical object, the motor, which can be used to uniquely
describe camera poses. CGAPoseNet can obtain compa-
rable results to other approaches without the need of ex-
pensive tuning of the loss function or additional informa-
tion about the scene, such as 3D point clouds, which might
not always be available. CGAPoseNet, however, like sev-
eral approaches in the literature, only learns to predict
motor coefficients, and it is unaware of the mathematical
space in which predictions sit in and of their geometri-
cal meaning. By leveraging recent advances in Geomet-
ric Deep Learning, we modify CGAPoseNet with a GCAN:
proposals of possible motor coefficients associated with
a camera frame are obtained from the InceptionV3 back-
bone, and the GCAN downsamples them to a single motor
through a sequence of layers that work in G4,0. The net-
work is hence geometry-aware, has multivector-valued in-

puts, weights and biases and preserves the grade of the ob-
jects that it receives in input. CGAPoseNet+GCAN has al-
most 4 million fewer trainable parameters, it reduces the av-
erage rotation error by 41% and the average translation er-
ror by 8.8% compared to CGAPoseNet. Similarly, it reduces
rotation and translation errors by 32.6% and 19.9%, re-
spectively, compared to the best performing PoseNet strat-
egy. CGAPoseNet+GCAN reaches the state-of-the-art re-
sults on 13 commonly employed datasets. To the best of our
knowledge, it is the first experiment in GCANs applied to
the problem of camera pose regression.

1. Introduction
Camera pose regression is the process of estimating the

3D position and orientation (i.e. the pose) of a camera rel-
ative to a given object or scene. It has found application in
augmented reality [45, 56, 71], object tracking [34, 55, 75],
localization and mapping [5, 25, 73] and three-dimensional
(3D) reconstruction [1, 40, 83].

Before deep learning (DL), camera pose regression was
performed through traditional computer vision algorithms.
These include: (i) feature-based algorithms, such as SIFT
[54] or SURF [2], which extract the camera pose by match-
ing features (edges, corners, ad hoc descriptors, etc.) across

1

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6593



multiple views of the scene and triangulating them; (ii) iter-
ative methods, such as Perspective-n-Point (PnP) [27] and
Bundle Adjustment (BA) [74], that minimize an objective
function such as the reprojection error between 2D points
on the image and 3D points in space; (iii) structure from
motion [28, 31], that jointly reconstructs the 3D geometry
from multiple views and estimates the camera pose. These
methods are generally very accurate, but they require spe-
cial handling of outliers (e.g. through the RANSAC algo-
rithm [27]), precisely crafted features and they generally fail
under large viewpoint changes or in presence of occlusions.
One of the earliest examples of DL approaches to camera
pose regression is found in [43], in which information about
the scene is extracted directly from the RGB images with
a convolutional neural network (CNN), which does not re-
quire hand-crafted feature descriptors. Despite the success
of CNN approaches in the literature [6, 7, 41, 42, 57, 80]
we believe that most pose regression problems via DL suf-
fer from two major drawbacks: (i) they require a sep-
arate handling of rotation and translation components as
they sit in two different mathematical spaces (ii) they are
geometry-agnostic and ignore the structure of the scene be-
ing recorded, unlike more traditional computer vision ap-
proaches.

In this paper we expand CGAPoseNet, presented in [60],
by adding a Geometric Clifford Algebra Network (GCAN)
[66] to it. The GCAN sits in the same mathematical space of
the predictions (see Figure 1). The use of motors in CGA-
PoseNet solves the separate treatment of rotation and trans-
lation component, but CGAPoseNet, like most regression
problems, has the limitation of predicting poses without
knowledge about the geometry of the scene. With CGA-
PoseNet+GCAN we let the backbone predict a set of pro-
posals of motor coefficients (rather than a single motor as
CGAPoseNet does) which are then transformed into actual
motors and fed into the GCAN, which operates on them.
This enables a geometry-aware approach in which inputs
and outputs of the GCAN layers are also camera poses.
This allows for better understanding of the geometry of the
scene, better generalizability on prevously unseen data and
better interpretability of the intermediate layers’ outputs.

Our CGAPoseNet+GCAN architecture significantly re-
duces the translation and rotation error with respect to both
CGAPoseNet, from which we borrow the pose representa-
tion and the loss function, and PoseNet with geometric re-
projection error loss, which is the best performing PoseNet
strategy. Moreover, CGAPoseNet+GCAN adds only a few
trainable parameter to the base PoseNet approach, but with
a simpler MSE loss function to be minimized and no ad-
ditional information about the 3D scene required (e.g., no
3D point cloud information is necessary), and it has about 4
million fewer parameters than CGAPoseNet.

2. Related Work
2.1. Geometric Algebra

In this section we will provide some basics of Geo-
metric Algebra (GA) needed to follow the approach pre-
sented. For a more complete introduction, we refer the
reader to [23,35,36,50]. GA is the term introduced by David
Hestenes [35] as a form of Clifford Algebra which offers a
unifying language for applied mathematics. GA has found
application in general relativity [35], quantum mechanics
[70], computer vision [78], computer graphics [29], com-
putational chemistry [20, 51] and bioinformatics [61, 63].

The Geometric Algebra we work with is a real Clif-
ford algebra. Given an n-dimensional real vector space
Rn, we define a GA Gp,q,r, with n = p + q + r, with p
basis vectors that square to 1, q basis vectors that square
to −1 and r basis vectors that square to 0. G3,0,0, for
example, is the 3D Euclidean GA, and it is spanned by
{1, e1, e2, e3, e12, e13, e23, e123}. The grade of an object in
GA refers to the dimensionality of the subspace it defines,
so {1}, a scalar or a 0-blade, has grade 0, {e1, e2, e3}, vec-
tors or 1-blades, have grade 1, {e12, e13, e23}, bivectors or
2-blades, have grade 2 and {e123}, a trivector or 3-blade,
has grade 3. Multiplication of vectors in GA yields objects
called multivectors, which are higher-dimensional objects.

GA is built out of two fundamental operations, addition
and the geometric product, which, given two GA vectors
u,v, is defined as

uv = u · v + u ∧ v (1)

in which · indicates the inner product and ∧ indicates the
Grassman outer product. uv is a multivector, as it is a
linear combination of objects with different grades, i.e. a
scalar (u ·v) and a bivector (u∧v). The geometric product
is associative, distributive and closed under multiplication,
for which uv ∈ Gp,q,r.

Rotors. Given a geometric product of vectors R =
u1u2...uk in an nD space where k ≤ n, we define the re-
version operator R̃ = ukuk−1...u1. By scaling R so that
RR̃ = 1, then we define

v′ = RvR̃ (2)

to be a “sandwich” product, i.e. the geometric product of
a GA object in between a rotor and its reverse. Equation
2 represents a rotoreflection or, if k is even, a rotation. In
the latter case, we call R a rotor. Rotors are isomorphic to
quaternions in 3D, and they can be regarded as generalized
quaternions for any nD space.

2.2. Geometric Algebra Neural Networks

The concept of geometric deep learning was introduced
in [11]. The idea behind it is to preserve the inherent ge-
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ometry and structure of data and extract information from
it through ad hoc models and algorithms. There are many
examples of the disruptive power of geometric deep learn-
ing in the literature [17, 26, 58, 81], but here we focus on
GA-based strategies.

GA is an intuitive framework to represent, manipu-
late and transform geometric objects such as points, lines,
planes and spheres. Hence, several attempts have been
made to build geometric DL models that operate in GA in
order to capture the geometric nature of data and achieve
equivariance, i.e., we obtain the same output if we apply a
geometric transformation to the input function to the neural
network or we transform the output. GA for neural com-
putation was first introduced in [59]. Multivector-valued
neurons, as opposed to real-valued neurons, were later pre-
sented for a radial basis function network [21], for the mul-
tilayer perceptron (MLP) [12, 14] and in neural networks
(NNs) [4, 15, 16].

As of today, GA NNs have found application to sev-
eral problems, including signal processing [13], robotics
[3], PDE modeling [8], fluid dynamics [66] and particle
physics [65]. Moreover, several new GA-based architec-
tures have been introduced, including multivector-valued
CNNs [52,77], recurrent neural networks [46,84] and trans-
former networks [10, 53].

The architecture we employed in this paper, the Geomet-
ric Clifford Algebra Network (GCAN), is directly derived
from [66]. GCANs parametrize linear combinations of
learnable group actions, meaning that GCANs are trainable
and adjustable geometric templates, which excel at model-
ing rigid body transformations. The advantage of GCANs
is that they ensure covariance at the layer level and that they
preserve the grade of input objects. This is enforced by
substituting standard layers with sandwich product layers,
that in GA represent rigid geometric transformations.

2.3. Pose parametrization

Camera pose regression means predicting, in a super-
vised fashion, the camera pose p ∈ SE(3), with SE(3) ≜
{(R, t) : R ∈ SO(3), t ∈ R3} for a given frame of a video
capture of a scene. The translation component is generally
represented as a 3D vector in R3. The rotation component,
on the other hand, can be parametrized in multiple ways
including rotation matrices, quaternions, Euler angles, axis-
angles representations, rotors, bivectors and more.

The impact of the rotation representation in machine
learning has been widely studied [9, 18, 64, 79]. The gim-
bal lock of Euler angles or the double coverage of quater-
nions, for example, negatively impact the regression quality.
The discontinuity in the mapping from the rotation matrix
R ∈ SO(3) onto a given representation space has also been
highlighted as a limiting factor [62, 67, 82].

- PoseNet CGAPoseNet
CGAPoseNet

+GCAN

Parameters 21,782,695 25,918,224 22,132,520

Table 1. Number of trainable parameters for the three approaches.

Hence, in camera pose regression problems, two things
have to be taken into account: (i) the choice of a rotation
representation suitable for the learning algorithm and (ii)
the weighting of the translation and rotation components.
In PoseNet [43], rotations are expressed as quaternions and
they are weighted with the translation through a scalar co-
efficient β in the loss function:

Lβ = Lt + βLq (3)

in which Lt and Lq are the translation and rotation loss,
resepctively. The choice of β depends on the dataset and
the kind of architecture employed. The value of β re-
quires expensive tuning through a grid search and cannot
be intuitively picked based on geometric information of the
dataset. Similar weighting strategies are found in [24, 76]

Two more advanced loss functions, that leverage geom-
etry information, have been presented in [42], namely (i)
a probabilistic DL approach, using homoscedastic uncer-
tainty as a weigthing factor, and (ii) a weighting-free ap-
proach via geometric reprojection error. Both approaches
significantly improve the results compared to baseline
PoseNet [43] as they include geometry information of the
scene, but approach (i) still represents a cumbersome tun-
ing of loss functions over objects sitting in different spaces
and approach (ii) requires additional information about the
3D points of the scene, which is not always available.

A unifying approach to modelling rotations and trans-
lations was proposed with CGAPoseNet in [60]. Leverag-
ing the PoseNet pipeline, CGAPoseNet unifies rotations and
translations with motors in a curved space, which then only
requires an MSE loss. CGAPoseNet, however, ignores the
geometry of the scene as it only predicts motor coefficients.

3. Methodology
3.1. 1D-Up CGA

We represent poses in G4,0,0 (which we will refer to as
G4,0). The G4,0 algebra is called the 1D-Up CGA because it
is a Conformal Geometric Algebra (CGA) with only 1 extra
dimension, i.e. we are modelling a 3D space with a 4D al-
gebra [47–49]. CGA, on the other hand, extends a GA Gp,q

to Gp+1,q+1, hence it requires 2 extra dimensions. G4,0,0

has four basis vectors {e1, e2, e3, e4}, for which e2i = +1
∀ i ∈ {1, 2, 3, 4}. The G4,0 space has constant curvature λ
and it represents a spherical geometry. While it may seem
counter-intuitive at first, modelling the real world in spheri-
cal space allows for: (i) a Euclidean signature space, which
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is likely the main reason behind the speedy convergence
of the loss during training (ii) a representation for the pose
with few parameters as only 1 extra dimension is needed.

A point x ∈ G3,0, is mapped to X ∈ G4,0 through the
function f : x → X

X = f(x) =

(
2λ

λ2 + x2

)
x+

(
λ2 − x2

λ2 + x2

)
e4. (4)

It can be shown that translating and rotating in G4,0 can
both be done through rotors. Given a translation vector t ∈
G3,0, its corresponding rotor in 4D spherical geometry is
given by:

T = g(t) =
λ+ te4√
λ2 + t2

(5)

A rotor R in 3D Euclidean geometry is still R in 4D
spherical geometry. The rigid body motion, i.e. translation
and rotation, of an object X into X ′ in the 1D-Up CGA
can hence be expressed as the combination of two sandwich
products :

X ′ = TRXR̃T̃ = MXM̃ (6)

The geometric product M = TR yields a motor, which
represents a rotation and a translation. Note how rotations
and translations are now expressed in the same units. Mo-
tors are objects (multivectors) in G4,0 with only even blades,
presenting 1 scalar, 6 bivector and 1 quadrivector compo-
nents:

M = x01︸︷︷︸
scalar

+ x12e12 + x13e13 + x14e14 + x23e23 + x24e24 + x34e34︸ ︷︷ ︸
bivector

+ x1234e1234︸ ︷︷ ︸
quadrivector

(7)

Since motors combine translations and rotations, they
can be employed as a pose representation with 8 parame-
ters (i.e. the 8 coefficients). An object in 1D-Up CGA X
can be projected back onto 3D space via:

x = f−1(X) =
λ

1 +X · e4
[(X · e1)e1 + (X · e2)e2

+(X · e3)e3]
(8)

3.2. Architecture

The key element in our approach is the GCAN added
at the output of the backbone. We call our architecture
CGAPoseNet+GCAN because, like in CGAPoseNet, we
also represent poses with motors in 1D-Up CGA, which
unify translation and rotation with a single object that sits

in a space with Euclidean signature, and we keep the mean
squared error (MSE) function as a loss to guide the training.

CGAPoseNet, however, is not really working in 1D-Up
CGA space as it only learns to predict poses expressed as
motors coefficients. It does so based on patterns in the
data, without understanding the poses’ geometrical mean-
ing or learning how to perform geometrical transformations
on them. We believe that this is a key limitation of the
CGAPoseNet approach, that explains why it does not sig-
nificantly surpass PoseNet paired with geometric reprojec-
tion error, that includes information about 3D points of the
scene in its loss function and therefore is a proper geometry-
aware approach.

We modify CGAPoseNet by reshaping the penultimate
layer of the backbone from 2048 into 256 × 8. We refer
to this output as motor proposals, since the backbone now
predicts 256 sets of 8 motor coefficients rather than a single
set of motor coefficients as in CGAPoseNet. Proposals are
then employed to build motors Mi and fed in as input to the
GCAN. The GCAN explicitly works in G4,0 and it consists
of 3 sandwich product dense layers, whose outputs obey

h(M) =

c∑
i=1

WiMiW̃i +Bi (9)

where c is the number of channels, M = {Mi}ci=1 is the
set of motors per channel, Wi are the weights and Bi the
biases. Note that we employ the uppercase notation since
Wi,Mi, Bi ∈ G4,0 and all of them only contain even blades.
This means that (i) each neuron in the layer encodes a ge-
ometric transformation of its input, preserving the grade of
the objects as described in Section 2.1, and hence (ii) each
output of the GCAN layers is also a (unnormalized) mo-
tor in 1D-Up CGA. The GCAN layers have 128, 64 and 1
neurons, respectively: the 256 proposals are progressively
downsampled until the optimal pose is found (see Figure 1).
A pipeline with 128-64-32-1 neurons has also been tested,
without significant difference.

We also slightly adapted the backbone in order to reduce
the number of trainable parameters (see Table 1). CGA-
PoseNets adds two dense layers to the backbone, with 2048
and 8 neurons, respectively, without removing the last clas-
sification layer of InceptionV3, that has 1000 neurons (see
Figure 2). This bottleneck significantly increases the num-
ber of parameters. In CGAPoseNet+GCAN, we remove the
classification layer with 1000 neurons and instead reshape
the 2048 outputs that precede the classification layer.

4. Experiments
4.1. Datasets

We followed [41–43, 60] and tested our approach on
datasets of both indoor and outdoor scenes, for a total of
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Table 2. Median translation and rotation errors over the test set for the 7 approaches.

Scene PoseNet [43]
Bayesian
PoseNet [41]

PoseNet
LSTM [76]

PoseNet
σ2 Weights [42]

PoseNet
Geom. Repr. [42]

CGA-
PoseNet

CGA-
PoseNet+GCAN

Great Court - - - 7.00m, 3.65◦ 6.83m, 3.47◦ 3.77m, 4.27◦ 3.88m, 3.21◦
King’s 1.92m, 5.40◦ 1.74m, 4.06◦ 0.99m, 3.65◦ 0.99m, 1.06◦ 0.88m, 1.04◦ 1.36m, 1.85◦ 1.00m, 1.16◦

Old Hospital 2.31m, 5.38◦ 2.57m, 5.14◦ 1.51m, 4.29◦ 2.17m, 2.94◦ 3.20m, 3.29◦ 2.52m, 2.90◦ 1.79m, 2.28◦
Shop 1.46m, 8.08◦ 1.25m, 7.54◦ 1.18m, 7.44◦ 1.05m, 3.97◦ 0.88m, 3.78◦ 0.74m, 5.84◦ 1.19m, 3.43◦

St. Mary’s 2.65m, 8.48◦ 2.11m, 8.38◦ 1.52m, 6.68◦ 1.49m, 3.43◦ 1.57m, 3.32◦ 2.12m, 2.97◦ 1.60m, 2.94◦
Street - - - 20.7m, 25.7◦ 20.3m, 25.5◦ 19.6m, 19.9◦ 19.0m, 19.4◦
Chess 0.32m, 6.60◦ 0.37m, 7.24◦ 0.24m, 5.77◦ 0.24m, 5.77◦ 0.13m, 4.48◦ 0.26m, 6.34◦ 0.10m, 3.58◦
Fire 0.47m, 14.0◦ 0.43m, 13.7◦ 0.34m, 11.9◦ 0.27m, 11.8◦ 0.27m, 11.3◦ 0.28m, 10.3◦ 0.15m, 6.30◦

Heads 0.30m, 12.2◦ 0.31m, 12.0◦ 0.21m, 13.7◦ 0.18m, 12.1◦ 0.17m, 13.0◦ 0.17m, 7.98◦ 0.12m, 8.15◦

Office 0.48m, 7.24◦ 0.48m, 8.04◦ 0.30m, 8.08◦ 0.20m, 5.77◦ 0.19m, 5.55◦ 0.26m, 7.23◦ 0.14m, 3.11◦
Pumpkin 0.49m, 8.12◦ 0.61m, 7.08◦ 0.33m, 7.00◦ 0.25m, 4.82◦ 0.26m, 4.75◦ 0.22m, 5.18◦ 0.17m, 3.84◦

Red Kitchen 0.58m, 8.34◦ 0.58m, 7.54◦ 0.37m, 8.83◦ 0.24m, 5.52◦ 0.23m, 5.35◦ 0.55m, 16.7◦ 0.15m, 3.76◦
Stairs 0.48m, 13.1◦ 0.48m, 13.1◦ 0.40m, 13.7◦ 0.37m, 10.6◦ 0.35m, 12.4◦ 0.17m, 12.0◦ 0.19m, 8.30◦

Table 3. Ablation study with different backbones for selected dataset. Results superior to the best PoseNet strategy are in bold.

Scene InceptionV3 VGG16 [69] VGG19 [69] ResNet50 [32] ResNetV250 [33] Xception [19] DenseNet121 [38] MobileNetV3 [37] EfficientNetB0 [72]
Old Hospital 1.79m, 2.28◦ 5.03m, 3.10◦ 1.93m, 1.70◦ 13.11m, 13.96◦ 10.8m, 3.75◦ 2.21m,3.11◦ 1.98m, 2.12◦ 12.14m, 11.10◦ 1.96m, 2.13◦

Shop 1.19m, 3.43◦ 5.26m, 15.60◦ 4.87m, 14.01◦ 5.70m, 23.1◦ 5.20m, 6.20◦ 1.23m, 3.53◦ 3.12m, 2.49◦ 7.72m, 18.3◦ 4.15m, 6.23◦

St. Mary’s 1.60m, 2.94◦ 2.78m, 4.80◦ 2.45m, 4.68◦ 1.72m, 3.28◦ 1.40m, 3.41◦ 1.95m, 4.41◦ 2.01m, 3.95◦ 16.8m, 31.6◦ 6.24m, 7.28◦

Chess 0.10m, 3.58◦ 0.11m, 2.67◦ 0.13m, 3.69◦ 0.07m, 2.66◦ 0.10m, 3.41◦ 0.095m, 3.28◦ 0.080m, 2.62◦ 0.39m, 15.1◦ 0.39m, 15.1◦
Fire 0.15m, 6.30◦ 0.28m, 8.69◦ 0.14m, 9.29◦ 0.39m, 20.1◦ 0.22m, 6.88◦ 0.21m, 6.62◦ 0.16m, 6.62◦ 0.46m, 33.6◦ 0.21m, 7.60◦

Heads 0.12m, 8.15◦ 0.20m, 11.9◦ 0.20m, 10.4◦ 0.29m, 15.6◦ 0.25m, 14.1◦ 0.22m, 12.9◦ 0.14m, 8.90◦ 0.25m, 12.5◦ 0.17m, 9.33◦
Pumpkin 0.17m, 3.84◦ 0.22m, 3.74◦ 0.22m, 4.67◦ 0.10m, 2.78◦ 0.14m, 4.01◦ 0.18m, 4.25◦ 0.13m, 3.48◦ 0.22m, 4.56◦ 0.13m, 3.58◦

Red Kitchen 0.15m, 3.76◦ 0.02m, 0.45◦ 0.02m, 0.43◦ 0.01m, 0.45◦ 0.02m, 0.41◦ 0.02m, 0.53◦ 0.02m, 0.60◦ 0.70m, 18.64◦ 0.08m, 1.92◦
Stairs 0.19m, 8.30◦ 0.22m, 5.73◦ 0.26m, 5.41◦ 0.37m, 9.37◦ 0.25m, 6.65◦ 0.19m, 6.32◦ 0.22m, 7.06◦ 0.35m, 9.15◦ 0.37m, 6.67◦
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Figure 2. The original CGAPoseNet pipeline, which is geometry-
agnostic and adds a significant number of parameters compared to
baseline PoseNet.

13 different datasets. The indoor dataset, 7 Scenes, was
introduced in [68] and it includes Chess, Fire, Heads, Of-
fice, Pumpkin, Red Kitchen and Stairs datasets. The videos
have been recorded with a Kinect RGB-D sensor and they
all span a volume of less than 20m3.

The outdoor dataset, Cambridge Landmarks, was first
presented along with PoseNet in [43]. It includes 6 datasets
(Great Court, King’s College, Old Hospital, Street, Shop
Facade, St. Mary’s Church and Street). The variability be-
tween each scene is significant, with Shop Facade spanning
an area of 875m2 and Street covering 50000m2. The simi-
larity between train and test set is also variable.

Each dataset includes RGB images extracted from the
scene and labels of the position t = [x, y, z] and orienta-
tion R of the camera, expressed as either rotation matrices
or quaternions, given an arbitrary reference frame. We con-
verted labels into motors M and picked the curvature of
the space λ (see Equation 5) to be proportional to the area
spanned by the scene as described in [60].

4.2. Error metrics

Given a predicted motor M̂ and a ground truth motor M ,
we measure the quality of the predicted pose by decompos-
ing motors into their rotation and translation components
and measure (i) translation error and (ii) rotation error.

We followed the procedure described in [60] and decom-
posed the motor M into a translation vector t ∈ R3, the
translation component, and into a rotor R ∈ G3,0 , the rota-
tion component.

We define the translation error between original position
t and predicted position t̂ as:

et = ∥t̂− t∥1 (10)

in a similar way described in [42,44,60]. The rotation error
between a ground truth rotor R and predicted rotor R̂ has
been derived from [62, 82] and consistent with [60]. It is
defined as:

eR = cos−1(⟨R ˜̂
R⟩0) (11)

where ⟨·⟩0 denotes the component with grade 0, i.e. the
scalar part of the geometric product. Since RR̃ = 1, when
R̂ is close to R the error goes to 0◦.

4.3. Training details

CGAPoseNet+GCAN has been trained in a supervised
fashion with only RGB images I as inputs and camera poses
expressed as motors M as labels. Weights are initialized
starting from ImageNet [22, 43]. We employed an 80-20
train-validation split, a batch size of B = 64 and a number
of epochs E = 100. Adam has been chosen as optimizer
with exponentially decaying learning rate, with initial value
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Figure 3. Train (solid line) and validation (dashed line) losses for selected datasets. CGAPoseNet+GCAN attains the lowest loss profile
due to its Geometric Clifford Algebra layers.
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Figure 4. Ground truth and predicted translation component of the pose over the test set for selected datasets.

η = 10−4 and decay rate of 0.98. The rate of decay has
been adjusted based on the training set dimension. To avoid
overfitting, we implemented early stopping with patience
P = 12 and restored the best weights based on the valida-
tion loss.

The training procedure adopted differs slightly between
indoor and outdoor datasets. For Cambridge Landmarks,
the network has been re-trained twice with decreasing start-
ing learning rate, namely η = {10−4, 10−5, 10−6} and
keeping the weights from the last training. For 7 Scenes
the network has been trained once.

The loss we minimize is

L = MSE(M,M̂) (12)

where M̂ and M are the predicted and ground truth motors,
as in [60]. The training time does not show noticeable dif-
ference with respect to the simple CGAPoseNet, both mea-
sured to be around 4s/step.

The code is available in the form of two Jupyter note-
books, written on Google Colab Pro and run on a NVIDIA
Tesla T4 GPU at 1.59 GHz. The backbone architecture has
been implemented via the Keras API of TensorFlow, while
the GCAN has been implemented via the TensorFlow Geo-

metric Algebra library [39]. Operations in Geometric Alge-
bra have been handled through Clifford [30]. Jupyter note-
books and output files are all available as supplementary
materials.

5. Results
Results are summarized in Table 2. We report me-

dian translation and rotation errors, consistently with [41–
44, 60], for 7 different approaches, namely 5 PoseNet ap-
proaches with different loss functions, CGAPoseNet and
CGAPoseNet+GCAN (ours). Our approach signficantly re-
duces both errors by predicting a single mathematical ob-
ject, the motor, through a geometry-aware network, present-
ing the lowest rotation error on 11 out of 13 datasets and the
lowest translation error on 8 out of 13 datasets. For the 7
Scenes dataset, even mean errors via CGAPoseNet+GCAN
are below the others reported in Table 2.

To verify that the improvement comes indeed from the
GCAN layers, we report training and validation losses in
Figure 3. We compare CGAPoseNet, CGAPoseNet+GCAN
and CGAPoseNet without bottleneck, i.e. by removing the
last classification layer in the backbone and only adding
one dense layer with 8 neurons. We do this so that
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Figure 5. Ground truth and predicted rotation component of the pose over the test set for selected datasets.
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Figure 6. Translation error over the test set for selected datasets.

0 10 20 30 40 50 60 70
Rotational Error (°)

0.00

0.05

0.10

0.15

0.20

0.25
PDF (CGAPoseNet)
PDF (CGAPoseNet+GCAN)

0 10 20 30 40 50 60 70
Rotational Error (°)

0.0

0.2

0.4

0.6

0.8

1.0

CDF (CGAPoseNet)
CDF (CGAPoseNet+GCAN)

(a) PDF (left) and CDF (right) for the Red Kitchen dataset

0 2 4 6 8 10
Rotational Error (°)

0.0

0.1

0.2

0.3

0.4

PDF (CGAPoseNet)
PDF (CGAPoseNet+GCAN)

0 2 4 6 8 10
Rotational Error (°)

0.0

0.2

0.4

0.6

0.8

1.0

CDF (CGAPoseNet)
CDF (CGAPoseNet+GCAN)

(b) PDF (left) and CDF (right) for the Old Hospital dataset

Figure 7. Rotation error over the test set for selected datasets.

CGAPoseNet without bottleneck and CGAPoseNet+GCAN
share the same backbone structure. It can be seen how the

validation loss for CGAPoseNet+GCAN is lower than the
other two approaches despite similar training loss profiles,
showing (i) that our network generalizes better and (ii) that
this is due to the GCAN layers and not to the backbone
structure. CGAPoseNet without bottleneck performs worse
than standard CGAPoseNet, justifying its structure.

In Figures 4-5 we display ground truth and predicted
translation and rotation components, respectively, after
breaking M down into t ∈ R3 and R ∈ G4,0. In Figure
5 we plot the bivector components of the rotor R. CGA-
PoseNet+GCAN shows more accurate predictions, espe-
cially on previously unseen areas of the scene compared to
CGAPoseNet (see Figure 5a). The improvement on the ro-
tation component is less evident for outdoor datasets (see
Figure 5b), but much more visible on indoor datasets (see
Figure 5a-5c).

A comparison of the error distributions of the predic-
tions via CGAPoseNet and CGAPoseNet+GCAN is given
in Figures 6-7 for the translation and the rotation error,
respectively: both errors are noticeably reduced with our
geometry-aware approach in terms of both probability den-
sity function (PDF) and cumulative density function (CDF).

We visualize the outputs of the GCAN layer in Figure 8.
As the GCAN works exclusively with motors, it is possible
to interpret the intermediate layer outputs from a geomet-
rical point of view as poses. The motor proposals (in yel-
low) are downsampled into progressively fewer poses until
converging to the final prediction. Note the difference in
scale (as also shown in Figure 1) between the outputs and
how they cover progressively smaller areas. This explains
why results are superior on the 7 Scenes dataset, since the
volume of Euclidean space to cover is significantly smaller.
The curvature of the poses shows that we are working in the
spherical space G4,0.

It is worth mentioning that the choice of the activation
function influences the area in which poses are distributed,
hence affecting how convergence is reached. In Figure 9,
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Figure 8. Input and output poses of the GCAN layers for a test image in the Old Hospital dataset (relu activation).
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Figure 9. Input and output poses of the GCAN layers for a test
image in the Old Hospital dataset (tanh activation).

for example, outputs obtained with a tanh activation func-
tion are presented. Predicted poses occupy a hemisphere in
Figure 8, but they cover a full sphere in Figure 9: the in-
tepretability of the GCANs intermediate ouputs allows us
to design networks that minimize the loss function via dif-
ferent paths, meaning that we can customize the network
prediction strategy based on the geometry of problem that
we are trying to solve.

Figure 10. Average input and output poses of the GCAN layers
for a test image in the Old Hospital dataset (tanh activation) with
3 (left) and 4 (right) sandwich product layers in the GCAN.

In Figure 10 the average pose in input and output of
each GCAN layer is shown. We plot average poses with
and without an additional layer with 32 neurons (output

coloured in cyan). As geometric transformations are ap-
plied to the input poses by the sandwich product dense lay-
ers, the average pose converges towards ground truth, fol-
lowing clear traces in 3D space.

Lastly, an ablation study with different backbones has
been performed, and results are reported in Table 3. Re-
gardless of the backbone employed, CGAPoseNet+GCAN
still outperforms the best performing PoseNet strategy in
most indoor cases. For outdoor cases, we believe that back-
bones whose outputs are reshaped into more proposals need
to be paired with GCAN layers with more units, to avoid
bottlenecks from fast downsampling and to make sure that
the volume covered by the scene is thoroughly explored.

6. Conclusion

We introduced CGAPoseNet+GCAN, an architecture to
predict camera poses from images which expands CGA-
PoseNet with a network that works with Clifford Geomet-
ric Algebra objects. CGAPoseNet+GCAN is a geomet-
ric deep learning approach that allows for geometry-aware
predictions of the camera poses. The backbone now only
predicts proposals of suitable poses, on which geometric
transformations are applied via GCAN until the optimal
pose is found. The GCAN has been implemented through
sandwich product layers that preserve objects’ grades and
whose outputs are fully interpretable geometrically. CGA-
PoseNet+GCAN, by working in the same mathematical
space in which the predictions sit, significantly improves
both baseline CGAPoseNet and PoseNet, reducing the pose
regression error without requiring extra information about
the captured scene and achieving state-of-the-art results.
This is done by reducing the number of trainable parameters
of CGAPoseNet by 17% and at no additional computational
cost. We believe that GCANs have the potential to simplify
and improve several computer vision approaches that have
been solved through DL but without geometric information
of the scene.
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