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Tomas Simon1 Pablo Arbeláez3 Bernard Ghanem2 Ali Thabet1 Albert Pumarola1

1Meta 2KAUST 3Universidad de los Andes

Figure 1. StyleAvatar for stylizing animatable head avatars. We present StyleAvatar, an easy-to-use method allowing casual users
to stylize their personalized head avatars via images or text. Our method offers control over the stylization strength, i.e. fidelity to the
original avatar’s identity, while preserving the avatar’s fundamental animation capabilities. Furthermore, our method achieves consistent
stylization effects across individuals and styles, preserves compelling photo-realism even in extreme views and intense facial expressions,
and provides disentangled control of texture and geometry. We demonstrate the compatibility of StyleAvatar with existing technologies by
deploying it into an AR/VR headset.

Abstract
AR/VR applications promise to provide people with a

genuine feeling of mutual presence when communicating
via their personalized avatars. While realistic avatars are
essential in various social settings, the vast possibilities
of a virtual world can also generate interest in using styl-
ized avatars for other purposes. We introduce StyleAvatar,
the first method for semantic stylization of animatable head
avatars. StyleAvatar directly stylizes the avatar represen-
tation, rather than stylizing its renders. Specifically, given
a model generating the avatar, StyleAvatar first disentan-
gles geometry and texture manipulations, and then stylizes
the avatar by fine-tuning a subset of the model’s weights.
Our method has multiple virtues, including the ability to
describe styles using images or text, preserving the avatar’s
animatable capacity, providing control over identity preser-
vation, and disentangling texture and geometry modifica-
tions. Experiments have shown that our approach consis-
tently works across skin tones, challenging hair styles, ex-
treme views, and diverse facial expressions.1

1Work performed as part of Juan’s internship at Meta.

1. Introduction
Augmented and virtual reality (AR/VR) technologies

hold immense promise in providing a sense of telepresence
and realism across distances. With the ability to generate
accurate and expressive face avatars, users can precisely
replicate their expressions, thus creating a sense of com-
fort and realism in their interactions with other parties. The
realism of avatars is crucial, as it ensures a precise represen-
tation of facial intricacies like facial hair, scars, and tattoos.

While photorealistic avatars are essential for formal set-
tings such as family reunions and work meetings, there are
situations where people may prefer to present themselves
differently. The limitless possibilities of a virtual world
should enable individuals to express themselves via their
avatars in a wide range of ways, from stylized versions (e.g.
other textures) to completely different faces (e.g. becoming
a dragon). Providing this flexibility fosters a more diverse
range of appealing experiences, which is vital for platforms
aiming to offer meaningful AR/VR experiences.

To enable casual users to customize their appearance
without requiring technical proficiency, platforms should
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provide tools that empower users to easily do so. This com-
fort is necessary to ensure fair access to everyone. While
we have witnessed significant momentum in photorealistic
and animatable avatars [3,9,27], there is still a lack of auto-
mated capabilities to easily stylize these representations.

In this paper, we fill this gap by introducing StyleAvatar,
the first method for stylizing animatable head avatars. By
directly stylizing the avatar representation, our method pro-
vides a high-resolution stylization that preserves the avatar’s
animatable capabilities, thus providing consistent appear-
ance across facial expressions and views. Stylization can be
guided by images or text, and fidelity to the person’s iden-
tity can be easily tuned, allowing for soft and intense styl-
izations. Moreover, geometry and texture manipulations are
disentangled. The method demonstrates consistent styliza-
tion capacity across styles and identities, as well as chal-
lenging hair types and diverse skin tones. Please refer to
Figure 1 for an illustration of the capabilities of StyleAvatar,
and its deployment on an AR/VR headset.

We summarize our contributions as follows: (i) We
present StyleAvatar, the first method for semantic styliza-
tion of photorealistic 3D head avatars. By directly operat-
ing on the avatar representation, our method provides high-
resolution stylizations across diverse skin tones and chal-
lenging hair types. (ii) Our pipeline preserves the avatars’
animatable capabilities, providing consistent stylized ap-
pearance across extreme views and facial expressions.
(iii) Our method provides disentangled control of geome-
try and texture. Our experiments validate these properties
across styles and identities, demonstrating StyleAvatar’s ef-
fectiveness in stylizing, while preserving the avatar’s funda-
mental driving capabilities for AR/VR applications.

2. Related Work
In this section, we cover stylization methods in 2D and

3D. We briefly list here avatar-generation methods [3,9,26,
27], but will not cover them in-depth since our work focuses
on stylizing, rather than generating, head avatars.
Stylizing in 2D. The seminal work of Gatys et al. [11] ma-
nipulated images to follow artistic styles, and spurred in-
terest in leveraging deep learning for stylization. This in-
terest increased further with the surfacing of GANs [12].
In particular, the advent of StyleGAN [21] stimulated a
plethora of methods that exploited its generative capabili-
ties for stylizing images [17,29,45]. Recently, Toonify [39]
demonstrated generation of novel styles by interpolating be-
tween different StyleGAN models, and was later extended
to videos [46]. AgileGAN [41] performs portrait styliza-
tion by inverting to GAN latent space and performing oper-
ations there. A different group of methods leverage CLIP’s
semantic association of images and text [40] to derive and
edit style [4]. StyleCLIP [38] edits images by finding di-
rections in StyleGAN’s latent space via CLIP. StyleGAN-
NADA [10] further introduced a directional CLIP loss, and

used it to fine-tune StyleGAN for novel domains. Our
method, StyleAvatar, uses a CLIP-guided loss to stylize the
avatar. In contrast to the methods mentioned above, StyleA-
vatar directly stylizes the 3D representation (via texture and
geometry manipulations) rather than stylizing 2D images.
Stylizing in 3D. The field of generation and stylization of
3D objects and scenes is rapidly growing. Classical meth-
ods used traditional shape representations like point clouds
and meshes [6, 8, 13, 15, 20, 30, 48]. Recent approaches
now take advantage of neural rendering pipelines to synthe-
size realistic 3D objects and scenes [5, 22, 32, 49]. Dream
Fields [19] leverages NeRFs [31] to generate 3D objects
from text, achieving impressive results. StylizedNeRF [18]
also uses NeRFs for implicit 3D understanding, while cre-
ating stylized scene renderings. A similar work, CIPS-
3D [50], uses NeRFs to design a 3D-aware GAN gener-
ator. CLIP-Mesh [24] uses an input text prompt to opti-
mize the vertices of a control shape and create novel 3D ob-
jects. AvatarCLIP [16] generates full-body human avatars,
introducing both appearance and movement into the avatar.
Focusing on style transfer in 3D, SNeRF [36] generates
artistically-stylized novel views of scenes by updating a
NeRF based on image statistics [11]. The methods men-
tioned in this section provide strong pipelines to generate
and stylize 3D content. However, in contrast to our ap-
proach, none have leveraged semantic understanding for
stylizing a drivable 3D asset such as an avatar. Namely,
StyleAvatar aims at semantically-grounded stylization, and
achieves consistent styles across views and expressions.
Concurrent to our work, Instruct-NeRF2NeRF [14] uses a
diffusion model to edit a NeRF by modifying its training
dataset according to a language instruction.

3. Method: StyleAvatar
Personalized avatars can be represented by a model that

maps the appearance of a person, described by their texture
and geometry, to a volumetric representation. This repre-
sentation allows for rendering the avatar from different per-
spectives. To account for facial expressions, the model can
further be conditioned on features that encode expressions.

We propose StyleAvatar, a novel method for stylizing a
person’s avatar using a style described by images or text.
StyleAvatar achieves this by modifying the person’s model
to disentangle the texture and geometry of the avatar, and
fine-tuning a subset of the model’s weights. An overview of
the method is provided in Figure 2. Next, we describe the
model’s architecture, our procedure for disentangling tex-
ture and geometry, and our optimization objective.

3.1. Preliminaries: avatar architecture
We use the Instant Avatar architecture introduced in [3],

the current state-of-the-art for realistic and personalized
avatars. Essentially, this architecture is an encoder-decoder
model that leverages rendering based on Mixture of Volu-
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Figure 2. StyleAvatar overview. StyleAvatar stylizes an avatar by
fine-tuning a disentangled avatar architecture. We first disentangle
geometry and texture modifications with the procedure described
in Section 3.2, and then perform optimization. For a given identity
and expression, we compute a CLIP loss between renders of the
avatar, and CLIP embeddings of the target style. We use this loss to
fine-tune the identity encoder, E i, and the decoder, D, that generate
the avatar. Blue indicates the modules we fine-tune.

metric Primitives [26] for photo-realistic results. The iden-
tity of the produced avatar is defined by the model’s specific
weights, that is, each person has their own set of weights.

The inputs to this model are an identity—the person’s
appearance—denoted by xi, and an expression, denoted
by xe. Both xi and xe are pairs of a position map (repre-
senting a mesh) and a texture (representing color appear-
ance). These identity-expression inputs are mapped to an
avatar of the given identity exhibiting the specified expres-
sion. Avatars should desirably disentangle the factors of
identity and expression. To achieve this objective, these
factors are separately processed by two independent en-
coders (correspondingly called E i and Ee), whose outputs
are processed by decoder D to generate the avatar. For-
mally, the renderable outputs of the model are M(xi, xe) =
D
(
E i(xi), Ee(xe)

)
. By defining θ as the camera parameters

and R[ · ; θ] as the rendering operator conditioned on θ, a
rendered image of the avatar with model M is

IθM = R [M(xi, xe); θ] = R
[
D
(
E i(xi), Ee(xe)

)
; θ
]
.
(1)

In this framework, manipulating an avatar’s appearance
amounts to manipulating the architecture’s components that
are associated with the avatar’s identity. StyleAvatar thus
stylizes an avatar by manipulating its identity. Specifi-
cally, StyleAvatar fine-tunes a subset of M’s modules, cor-
responding to both E i and D, while leaving Ee fixed.

3.2. Disentangling texture and geometry

In traditional graphics, face identity is described by two
primary factors: texture and geometry. Our intended iden-

tity transformation thus reduces, essentially, to manipulat-
ing these two factors. While texture and geometry are typ-
ically treated separately in graphics pipelines, they are in-
tertwined in the method we target, as the Instant Avatar ar-
chitecture combines these inputs at several stages in the for-
ward pass to generate realistic avatars. Hence, modifying E i

and D results in entangled edits to the avatar’s texture and
geometry. That is, despite the impressive photo-realistic
avatars produced by the Instant Avatar architecture, its inner
workings prevent disentangled editing of texture and geom-
etry, making our task challenging.

StyleAvatar circumvents this limitation by disentangling
these factors in the architecture. First, we note that both the
identity encoder E i and the decoder D are internally divided
into geometry and texture branches, i.e. E i = {E i

geo, E i
tex}

and D = {Dgeo,Dtex}. These branches inherit the names
of the inputs received by their encoders: E i

geo receives a
position map (representing a mesh), while E i

tex receives a
texture map. Figure 3 (left) illustrates this internal division.

Under this configuration, the branch processing geom-
etry is composed of {E i

geo,Dgeo}, while the one process-
ing texture is composed of {E i

tex,Dtex}. The configura-
tion of this architecture, while promising for our purposes,
connects encoders with decoders via a set of skip connec-
tions S. In the original implementation of Cao et al. [3], S
connects the forward passes of the geometry and texture
branches, as illustrated in Figure 3 (top-right), via a bias
layer B. This implementation thus suffers from geometry-
texture entanglement. We fix this entanglement by intro-
ducing simple modifications on S.

Please refer to Figure 3 (bottom-right) for an illustra-
tion of our architecture modifications. Specifically, we note
that, inside S, the bias layer B receives geometry and tex-
ture features as input (bgeo and btex), and feeds its output to
both Dgeo and Dtex. To prevent this connection during fine-
tuning, we perform two steps. First, we freeze the initial
values for bgeo and btex (denoted by b̂geo and b̂tex in Fig-
ure 3 (bottom-right)). Second, we split B into two layers,
Bgeo and Btex, whose corresponding inputs, computed in
the first step, are kept fixed during optimization.

With these modifications, we can independently edit ge-
ometry and texture by simply fine-tuning the correspond-
ing encoder-decoder weights. That is, geometry can be
controlled by modifying {E i

geo,Dgeo}, while texture can be
controlled by modifying {E i

tex,Dtex}.

3.3. CLIP-guided stylization

To stylize the animatable head avatars, StyleAvatar uti-
lizes a CLIP direction loss [10]. This loss function is de-
signed to fine-tune a StyleGAN generator from a source
to a target domain by “sliding” the generator away from
the original generator along a specific direction in CLIP’s
space. The fine-tuning process involves using a frozen copy
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Figure 3. StyleAvatar disentangles geometry and texture in the Instant Avatar architecture. Left: In this architecture, identity xi

is represented as a mesh and a texture. The mesh is processed by the “geometry” branch (E i
geo and Dgeo), and the texture is processed

by the “texture” branch (E i
tex and Dtex). This architecture connects encoders and decoders with skip connections S. Right, top: The

original implementation of Cao et al. (“S–Entangled”) uses entangled skip connections S connecting the forward passes of both branches,
and thus suffers from geometry-texture entanglement. Specifically, geometry outputs (i.e. the opacity slab) are affected by the texture
branch; conversely, appearance outputs (i.e. the appearance slab) are affected by the geometry branch. Right, bottom: StyleAvatar uses
disentangled skip connections S, effectively splitting the architecture into two separate encoder-decoder models. Notice our modification
allows using pre-trained weights.

of the original model during optimization. The optimized
model is encouraged to generate images that differ from
those generated by the frozen model only along a specified
target direction in CLIP space. This objective is achieved by
enforcing the optimized images to follow a direction that is
parallel to the given target direction.

Here, we leverage this loss to fine-tune the disentangled
architecture. We use CLIP to process texts and renders of
the avatar, and keep a frozen copy M∗ of the avatar model
throughout optimization. The target CLIP-space direction,
dtgt = etgt − esrc, is dictated by the embeddings esrc and
etgt describing the source and target styles. The optimized
direction is computed between CLIP embeddings of ren-
ders of the avatar being stylized (IM∗ ) and the original
avatar (IM). Formally, the stylization loss we optimize is

Lsty(M∗,M) = Dcos
(
f
(
IθM∗

)
− f

(
IθM

)
,dtgt

)
, (2)

where, Dcos is the cosine distance, M∗ and M denote the
stylized and frozen avatar models, respectively, and f(·) is
the CLIP image encoder. Similar to StyleCLIP [38], guid-
ing stylization based on text or images is reduced to the
manner in which etgt and esrc are computed. That is, for
text guidance, etgt and esrc are CLIP text embeddings with
template augmentations [38,40]. On the other hand, for im-
age guidance, etgt is the target style images’ embedding, and
esrc is an embedding of a render of the original avatar.

3.4. Regularization

StyleAvatar uses two regularizers, one to control identity
preservation and another to control asymmetrical artifacts
in the avatar. Next, we describe these regularizers in detail.

Identity preservation. Ensuring the preservation of iden-
tity is crucial when stylizing personalized avatars. Off-
the-shelf avatars may suffice for users who do not require
identity preservation, but it is necessary to preserve key fa-
cial features to enable identification of the avatar’s owner.
To achieve this purpose, StyleAvatar incorporates a regu-
larizer that controls the preservation of key facial features
during the stylization process. Note that a naı̈ve regular-
izer based on face recognition models may be unsuitable
for stylized faces. Therefore, we adopt the image-structure
regularizer proposed by Bar-Tal et al. [2]. This regularizer
preserves the spatial layout, shape, and perceived semantics
between two images, serving as a proxy for facial features
and structure. Specifically, the regularizer operates on the
self-similarity matrices of an image’s features, which cor-
respond to the tokens extracted from the image by CLIP.
Namely, by defining f i(·) as the ith CLIP token, the entries
of the self-similarity matrix are given by

S (I)i,j = 1−Dcos
(
f i (I) , f j (I)

)
.

The regularizer is then defined as the Frobenius norm be-
tween these self-similarity matrices. Formally, the loss is:

Lid(M∗,M) = ∥S
(
IθM∗

)
− S

(
IθM

)
∥F .

Symmetry. Some stylizations introduce undesirable asym-
metrical artifacts in the avatars, as shown Figure 7 in Sec-
tion 4. While human perception tolerates (and can even find
desirable) some degree of asymmetry in the face, asymmet-
ric artifacts between the eyes are particularly disturbing to
humans [43]. To address this issue, StyleAvatar leverages
a regularizer that specifically targets asymmetrical artifacts
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Figure 4. StyleAvatar stylization across identities and styles. Here, each row is an identity, and each column is a style. Note how
StyleAvatar preserves key facial features of each subject, while introducing believable changes to the avatars’ appearance. Furthermore,
StyleAvatar provides consistent stylizations across subjects, and manipulates both texture and geometry, e.g. the “Boterismo” style correctly
introduces the painter’s traditional color palettes and exaggerated face sizes.

around the avatar’s eyes. The regularizer is formulated as an
SSIM [44] loss comparing the two eyes from a frontal view.
By defining Θ as the camera parameters corresponding to a
frontal view of the avatar, our loss is defined as:

Lsym(M∗) = SSIM
(
eyeL

(
IΘM∗

)
, eyeR

(
IΘM∗

))
,

where the extraction of the eye region is enabled by our
direct control over the avatar and its renders. As such, this
process is independent of additional face-parsing pipelines.

3.5. Loss

The overall objective for stylization is defined as:

argmin
M∗

E
θ,xe

[ Lsty + λid Lid + λsym Lsym] , (3)

where the expected value is taken over camera parameters θ
and facial expressions xe from Equation (1). We experi-
mentally set the regularizers to λid = 10 and λsym = 12.

4. Experiments
Next, we present an extensive evaluation of the archi-

tectural modifications and losses introduced in StyleAvatar.
We evaluate our method on the data captured in [3].

4.1. Implementation details

We fine-tune with Adam [25] with a learning rate
of 10−3. We run 400 optimization steps, which require
around 30 minutes on an NVIDIA V100 GPU.

Batches consist of renders of the original and stylized
avatars. We augment data for generating avatar renders and
computing the losses. That is, we implement Equation (3)
by randomizing the camera’s azimuth and the avatar’s ex-
pression. For computing the style loss from Equation (2),
we use image augmentations proposed in [2].

4.2. Main results
Appearance. We showcase the results of our proposed
StyleAvatar method for various styles and identities in Fig-
ure 4. The results demonstrate that StyleAvatar is capable
of achieving high fidelity to the original avatar while intro-
ducing physically-plausible stylizations of the avatar’s ap-
pearance. Furthermore, note how our stylization is consis-
tent across identities, while also leveraging each person’s
facial features to fit the desired style. For instance, note
how the “manga” style slightly modifies eyebrow shape, and
hair/skin tone to achieve realistic stylization, while preserv-
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Figure 5. Appearance consistency across viewpoints and facial expressions. StyleAvatar provides consistent appearance when the
avatar is (i) viewed from multiple (and even extreme) points of view, and (ii) exhibiting (intense) facial expressions.

ing the individual’s most salient facial features.
Multi-view and expression consistency. We visualize the
stylized avatar under various camera poses and facial ex-
pressions in Figure 5. Our results demonstrate that StyleA-
vatar’s stylization is consistent across different views and
expressions, which is fundamental for the avatar’s useful-
ness in AR/VR applications. Without this consistency, the
avatar would appear artificial and erratic, potentially lead-
ing to uncanny valley effects [33, 34]. Please refer to the
Supplementary Materials for video samples showcasing
our method’s consistency across angles and expressions.

4.3. Analysis
Identity preservation. StyleAvatar allows for controlling
the balance between identity preservation and stylization
strength via the identity regularizer λid. Figure 6 shows the
effect of varying this regularizer. We observed that small
regularizer values lead to significant changes in appearance
that hinder the recognition of the avatar’s owner, which is
consistent with findings in psychology [42]. Conversely,
large regularizer values strongly preserve facial features
while decreasing the degree of stylization. Offering users
the ability to control this aspect of stylization is crucial.
However, after experimentation, we found that λid = 10
offers a reasonable trade-off between identity preservation
and stylization strength, and therefore selected this as the
default value for StyleAvatar.
Eye symmetry. The symmetry regularizer λsym, introduced
in Section 3.4, addresses the unpleasant artifacts that can ap-
pear around the avatars’ eyes in certain styles. The presence
of these asymmetrical artifacts is sporadic and can occur
without the proposed regularization, as illustrated in the left
column of Figure 7. Our experiments indicate that incorpo-

rating λsym effectively resolves these artifacts. To maintain
a balance between the removal of these artifacts and over-
smoothing effects in the stylization result, we set the default
value for λsym to 12 in StyleAvatar.

Visualizing geometry modifications. The volumetric na-
ture of the avatar lends itself to visualizing the geometric
changes induced by StyleAvatar. To this end, we color the
stylized geometry according to the output of a Non-Rigid It-
erative Closest Point (NR-ICP) [1] algorithm. Specifically,
we assign colors to vertices in the stylized mesh based on
their distance to the original mesh, as determined by the
NR-ICP algorithm. To generate the meshes, we use Poisson
surface reconstruction [7,23] on point clouds obtained from
renders of the avatar with a neutral expression.

We use StyleAvatar to stylize the avatar for “obese” and
“skinny” text queries, and visualize the resulting geome-
try deformations in Figure 8. These stylizations introduce
sizable appearance changes. However, upon comparing
the stylized appearance with the geometric visualization,
we observe a bias towards introducing changes in radiance
(i.e., the adversarial-like noise in the obese-style forehead)
over changes in geometry. Although the avatar appears to
have undergone significant geometric modifications, most
of the modifications that optimize our proposed losses are
those in radiance. Thus, we find that StyleAvatar displays
a preference for modifying appearance via texture changes.
This finding aligns with previous observations in neural ren-
dering [37, 47], whereby appearance modifications can be
achieved by changing texture while mostly disregarding dis-
regarding geometry. Furthermore, this result aligns with
findings in cosmetic science, where people can alter their
appearance via optical illusions using makeup [28, 35].
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Figure 6. StyleAvatar control of identity preservation—stylization strength. The rows depict, respectively, “zombie” and “scary clown”
style. From left to right, we introduce and progressively increase the identity-preservation regularizer λid. The column with λid = 0 shows
how the lack of regularization results in the introduction of dramatic appearance changes that could hinder recognizing the avatar’s owner.
On the other hand, a large regularizer of λid = 20 allows to easily distinguish the person; however, the stylization strength is compromised,
and so the stylization may not be easily perceived. We find that λid = 10 provides a sensible trade-off between both (undesirable)
phenomena.

Figure 7. Eye symmetry loss ablation. Our symmetry regular-
izer prevents stylization from sporadically introducing undesirable
artifacts in the avatar’s eyes. These artifacts strongly affect the
avatar’s appearance, and have even stronger consequences when
animating the avatar.

4.4. Comparisons
Portrait-based semantic stylization. To the best of our
knowledge, no other work has attempted to provide seman-
tic stylization of animatable avatars. To establish a baseline
for comparison, we consider portrait stylization, where the
avatars are stylized by directly altering their rendered im-
ages. Specifically, we compare the performance of StyleA-
vatar against StyleGAN-NADA [10], which involves invert-

Figure 8. Visualizing geometric changes. We color the vertices
of the stylized geometry according to their displacement w.r.t. the
original geometry. Blue/red colors indicate inwards/outwards dis-
placement. Stylization displays a strong bias for modifying ap-
pearance by concentrating modifications to radiance, rather than
geometry. Specifically, note how a geometry-inclined objective of
“obese” is satisfied by introducing large changes in radiance.

ing the portrait to StyleGAN’s latent space, fine-tuning the
generator to the target style, and then forwarding the latent

8684



Figure 9. Comparison against other stylization approaches. We compare against (i) StyleGAN-NADA (columns 5-7), a method for
stylizing portrait images, and (ii) Image style transfer, Gatys et al. (columns 8-10), a method for artistic stylization of images. As expected,
there are clear disadvantages to stylizing individual renders of the avatar, either semantically (i.e. StyleGAN-NADA), or artistically (Image
style transfer): mode collapse and inconsistent appearance across views and expressions, among others. Notably, directly operating on the
avatar has the advantage of preserving identity, facial pose, facial expression and background.

code through the fine-tuned generator. We present the re-
sults of this comparison in columns 5 to 7 of Figure 9. As
expected, operating directly on the render has several short-
comings when compared to stylizing the avatar represen-
tation. Our findings demonstrate that StyleAvatar outper-
forms StyleGAN-NADA in preserving the identity, facial
pose, and expression of the avatars. These characteristics
are crucial for maintaining a coherent animatable avatar.
Non-semantic stylization. We also compare StyleAvatar
against a method for artistic (i.e. non-semantic) stylization
based on local image statistics. In particular, we use the
seminal work of Gatys et al. [11] on artistic style transfer
with neural networks. This technique is designed to modify
a content image to match the artistic style of another im-
age, such as rendering a landscape in the style of Van Gogh.
In the last three columns of Figure 9, we demonstrate the
difference between StyleAvatar’s semantic stylization and
that of [11]. While [11] produces mesmerizing results, its
per-image nature hinders coherent avatar stylization across
variations in point of view and facial expressions.

5. Conclusions and Limitations

We presented StyleAvatar, a novel method for stylizing
animatable head avatars. StyleAvatar disentangles texture
and geometry and then conducts CLIP-guided [40] opti-
mization to fit a target style. Our method operates on a

model that was pre-trained on a limited set of a few hun-
dred identities [3]. Despite the constraints of the training
domain (i.e. real images of people), we observe, akin to ob-
servations in [10], that CLIP provides useful feedback to
shift the model from the original realistic domain to the de-
sired stylized domain. We highlight several key advantages
of StyleAvatar, including its ability to accept text and im-
age guidance, its flexibility across styles and identities, its
preservation of the avatar’s driving capabilities, and its abil-
ity to control the fidelity of the stylization to the original
identity. These advantages are essential in empowering ca-
sual users to create stylized avatars that meet their needs.

Despite StyleAvatar’s strengths, we observe some limi-
tations. Firstly, our stylizations are not cartoon-ish (in con-
trast to [10,39,46]), but rather costume-ish: results look like
plausible ways in which a person could use heavy make-up.
Secondly, the stylization process can occasionally be un-
stable, and produce undesirable artifacts that are not easily
resolved via regularization. Thirdly, while our architecture
disentangles texture from geometry, we still find that direct
geometry manipulation can be challenging and may result
in degenerate solutions with hole-like artifacts [26]. Fi-
nally, our method is not scalable to a large number of iden-
tities/styles, as it requires the optimization of each identity-
style pair separately. We attribute some of these limita-
tions to the difficulty of manipulating implicit representa-
tions [26] through CLIP, as observed in [16, 19, 30].
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