
Embedding Task Structure for Action Detection

Michael Peven Gregory D. Hager
Johns Hopkins University
{mpeven,hager}@jhu.edu

Abstract

We present a straightforward, flexible method to enhance
the accuracy and quality of action detection by expressing
temporal and structural relationships of actions in the loss
function of a deep network. We describe ways to represent
otherwise implicit structure in video data and demonstrate
how these structures reflect natural biases that improve net-
work training. Our experiments show that our approach
improves both accuracy and edit-distance of action recog-
nition and detection models over a baseline. Our frame-
work leads to improvements over prior work and obtains
state-of-the-art results on multiple benchmarks. The code is
available here.

1. Introduction
Which activities are more alike? Peeling a carrot, cutting

a carrot, or washing your hands. The answer is obvious,
yet cross entropy, the standard loss function used to train
a neural network, implicitly represents all three as equally
similar or different.

In practice, the consequence of using a one-hot encod-
ing in cross-entropy loss is minimal when enough train-
ing samples are seen [32, 48]. Indeed, the ability of deep
networks to learn latent relationships automatically from a
large enough dataset is the reason they are so ubiquitous.
Likewise, complex spatio-temporal patterns in videos can
be learned from sufficiently large data sets as evidenced by
the fact that the performance of video classification mod-
els have become commensurate to their image classification
counterparts [71]. Video classifiers have followed the same
trend as image classifiers to learn complex patterns: deeper
models with hundreds of layers and hundreds of millions of
tunable parameters. It is only possible to train these net-
works because of the large-scale video datasets that have
been released in recent years [24, 25, 30].

However, as the temporal span of the inputs increase
from image classification (t = 1) to activity recognition
(1 < t ≲ 64), to action detection1 (t ≫ 64), it becomes

1We use the definition of action detection as the classification of all

(a) Frames from the activities: peeling carrot, cutting carrot, and
washing hands.

(b) Structure embedded into the ground-truth label distribution.

Figure 1. How can we use known relationships to improve action
detection models? The images in (a) of cutting and peeling a carrot
have a shared object and occur moments after each other in this
video. Using the one-hot encoding in (b) does not capture these
visual and temporal relationships.

more difficult for neural-based approaches to abstract high-
level relationships directly from data [26]. While more data
can possibly address this gap, an alternative solution to this
is to embed fundamental a priori relationships into the train-
ing process. In particular, many visual datasets used for
computer vision tasks provide a graphical representation of
semantic relationships in the label set. In image classifica-
tion datasets, relationships are typically represented using
a noun-based hierarchy. For example, labels in ImageNet
[13] are expressed using the WordNet [47] semantic tree (X
is a ‘kind of’ Y) and the biological labels in [65] are placed
in a Linnaean taxonomy. In video datasets like [58], short-

frames in an untrimmed video. This is related to the task of temporal action
localization (TAL) which allows for overlapping activity segments.
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term temporal relationships are represented in a verb-based
hierarchy, and the datasets in [4] and [10] provide the trees
for both noun-based and verb-based hierarchies. Long-term
structure describing label sequences (e.g. the natural order
of making dinner is the sequence: prep work, cooking, plat-
ing, clean-up) is given as a state-machine in [1], or can be
derived from the labels in the training samples.

In this paper, our goal is to distill a priori knowledge
about activities into action detection models. We present
methods for using a hierarchical label structure (Fig. 2a) and
temporal sequence information (Fig. 2b) into a better esti-
mate of the ground-truth label distribution. Previous works
have investigated the use of noun-based hierarchies, verb-
based hierarchies, and temporal structure. However, they
have largely been treated as independent. Our aim is to
bridge this gap by creating a unifying framework to em-
bed all forms of structure into an action detection model.
The main contribution of this work is demonstrating that a
straightforward way to take advantage of task structure can
improve performance for action detection, leading to im-
provements over both our baselines and prior works. For
computational efficiency we use light-weight models in our
experiments; despite this, our framework obtains state-of-
the-art results on multiple evaluation datasets.

1.1. Related Work

Image-based Work Approaches using single-image in-
puts (image classification, object detection) have investi-
gated using noun-based structural relationships since the
release of ImageNet [13], which provided a hierarchical
label-set. An intuitive method for encoding prior knowl-
edge of relationships is to embed it in the classification loss
function [5, 6, 9, 12, 74]. Similarly, Zhang et al. [72] use
this approach in a contrastive learning framework. Struc-
ture can be used without an explicit hierarchy, Fergus et
al. [18] enforce consistency with the semantic structure en-
coded in word embeddings of labels. Likewise, Deselaers
& Ferrari [14] take advantage of both semantic and visual
distance to train a classifier, and McAuley et al. [46] use
weak supervision of semantic relationships with latent vari-
ables. In contrast to these, Russkovsky & Fei-Fei [57] find
that semantic relationships may not actually correspond to
useful visual similarities. Rieger et al. [56] use prior knowl-
edge to modify a loss function to directly penalize a model’s
features when they are considered unimportant for the pre-
diction task. Redmon & Farhadi [54] propose an alternative
technique of using hierarchical relationships for combining
the images from ImageNet, which has a rich hierarchy of
objects, and COCO [39], which has a smaller set of general
labels for common objects.

Temporal Structure in Video Classification of videos
(as opposed to images) allows for pattern recognition in the

additional temporal dimension. Early methods for activity
recognition [19, 33, 49, 66, 67] use a bag-of-words style ap-
proach to model activities as a hierarchy of movement pat-
terns. Later work using deep networks [8, 60, 64] avoid any
explicit modeling and leave this kind of short-term struc-
ture latent. The release of video datasets involving compli-
cated dynamics and a larger temporal range [24,25,30], has
pushed this trend even further. Recent transformer based
methods [2,17,23,51] are able to model these dynamics but
require enormous computational cost. Alternatively, some
methods propose to use structure in the label space to bal-
ance this trade-off. Bacharidis & Argyros [3] and Leong et
al. [36] propose method to embed a verb-based tree of activ-
ity labels in the hierarchical structure of a neural network.
Similarly, Long et al. [42] and Surı́s et al. [61] propose the
use of hyperbolic embeddings to represent the structure be-
tween activities in a continuous domain.

Longer-term Structure Capturing the long-term tempo-
ral structure for action detection has been an active field
of research long before the modern era of deep neural
networks. Early methods of modeling activity sequences
[28, 34, 53, 59] largely use some combination of Hid-
den Markov (or semi-Markov) Models, Conditional Ran-
dom Fields, context-free action grammars, and Dynamic
Bayesian Networks (DBN). More recent work [29, 63] ex-
pand upon these methods using features from deep net-
works to improve performance. Alternatively, the deep
networks in [16, 38, 69, 70] learn the long-term structure
directly from data. Similar to the method of Camporese
et al. [7] for action anticipation (future action prediction),
we embed sequence structure into the loss function. Our
method differs by avoiding both the Markov assumption and
marginalization over occurrences in the training data. This
allows our framework to model longer-term structure and
avoids overfitting to the most frequent sequences. Inspired
by the temporal modeling of activities in [45, 55], we use a
Poisson point process in order to estimate a distance metric
between all activity labels.

Label Distribution Modifications Another set of ap-
proaches investigate the label distribution directly. Szegedy
et al. [62] introduced label smoothing - a modification to
the one-hot label distribution that improved performance
of their InceptionV3 network. Widespread adoption of
this technique has inspired further work [44, 48] toward
understanding its effect. Alternatively to parameterizing
the label distribution, the approaches in [31] and [52] im-
proved model robustness using label distributions defined
by crowd-sourced data (i.e. imperfect labels). Other meth-
ods have used label ambiguity for label distribution learn-
ing [20, 21, 40, 73], with the objective of obtaining a distri-
butional output for either single-label or multi-label infer-
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ence.

2. Methods
Here, we provide a method to combine all forms of struc-

ture into a single measure of ‘distance’ between any two
activity labels. Inspired by the work in [5], we use the loss
function as a method to embed structure. The loss function
is meant to describe the difference between the ground truth
and predicted labels. Thus, the distance value we derive can
be used with a loss calculation in a straight-forward manner.

2.1. Cross-Entropy Loss

The primary way to train action detection networks is the
same as classification models - using cross-entropy loss to
calculate gradients for backpropagation:

LCE(y, ŷ) = −
n∑

i=1

yi log(ŷi) (1)

Where n is the number of classes, yi is the ground truth
probability for label i, and ŷi is the model output, the pre-
dicted probability of label i.

The standard way to represent the distribution y is
through a one-hot encoding: yi = 1 if i is the correct class
and yi = 0 for all else. Thus, for this correct class C, Eq. (1)
can be simplified as:

LCE(y, ŷ) = −log(ŷi=C) (2)

One-hot encoding is the result of a deterministic function
saying that there is one label associated with the input. The
cumulative effect is to form a joint distribution on labels and
inputs. However, we can see in Eq. (2) that using standard
cross-entropy will only update model parameters based on
the values of the correct class only. In other words, the pre-
dicted probabilities of all other classes do not matter.

2.2. Tree-based Structure

Using a tree-based representation of activities, we can
use the hierarchical structure to create ground-truth distri-
butions that embed this structure. Our goal is to reduce the
penalty for predictions when the distance from the ground
truth label is small.

We can do this by redefining yi:

∀c ∈ C, yi =
1

1 + distt(yc, yi)
(3)

Where distt can be any normalized distance function be-
tween the predicted label and ground truth. For a tree-based
structure (or any graph-like representation) we derive the
values using the ordinal rank from a shortest path algorithm.

As long as activity i shares a parent with another activity,
there is no longer uniform distribution of 0 over all classes

when i ̸= C. This method is a way to embed informative
priors into the ground-truth distributions (see Fig. 1b) for
the loss function.

The full loss term using Eq. (3) is:

L(y, ŷ) = −
n∑

i=1

1

1 + distt(yc, ŷi)
log(ŷi) (4)

2.3. Sequence-based Structure

The classical representation of a temporal event se-
quence is a deterministic finite-state machine or a more gen-
eral Markov chain. The method above can be extended to
embed such temporal structure into the loss, where the dis-
tance function in Eq. (4) is the shortest path between nodes.
However, we choose instead to derive sequence statistics
from the dataset directly in order to demonstrate that the
methods presented here can be generalized to approaches
that require no manual specification.

Using training sequences from one of our evaluation
datasets, examples of sequence order distributions are
shown in Fig. 2b. These are a measure of event occurrences
and naturally resemble Poisson distributions. Representing
sequences of activities as a Poisson point process allows us
to estimate parameters directly from data. Using count data
of the minimum number of transitions (i.e. intervening ac-
tivities) from activity i to activity j, we can obtain a dis-
tribution of distances between all activities in the training
data. Assuming these are generated from a Poisson distri-
bution, we can obtain the maximum likelihood estimator of
the Poisson parameter λ:

λ̂i→j =
1

N

N∑
xi→j (5)

Where xi→j is the number of intervening activities be-
tween i and j, and N is the total number of observations.
We can use this value to obtain a measure of (inverse) dis-
tance between all pairs of activities by using the mass func-
tion of the Poisson distribution:

dists(yi, yj) =


1, if i=j

e−λi→jλk
i→j

k!
, otherwise

(6)

We set k = 1 to calculate the (temporal) distance met-
ric as the probability of being a neighboring activity. Using
Eq. (6) to determine distance (instead of the prior probabil-
ities) allows us to capture transitions with few examples in
the training data because we avoid marginalizing over all
transitions. This is useful because we aim to model not just
the most frequent sequences, but any valid ordering. For
example, if only a small subset of people wash their carrots
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(a) Visual structure in the FineGym dataset represented as a tree
defined over gymnastics events, event sets, and set elements.

(b) Temporal structure in the IKEA ASM dataset represented as
a distribution over the number of intervening activities between
two activities.

Figure 2. Representations of activity structure.

before peeling them, those activities should have low dis-
tance even if the majority don’t. It can now be used as the
loss function:

L(y, ŷ) = −
n∑

i=1

dists(yc, ŷi) · log(ŷi) (7)

Note that although we use the term ‘distance’, distt is
a measure of similarity, and used inversely from Eq. (4),
where distv is a true distance measure.

Both forms of structure can be summed into a single
term:

L(y, ŷ) = −
n∑

i=1

dists(yc, ŷi)
1 + distt(yc, ŷi)

· log(ŷi) (8)

3. Experiments
Distilling activity structure into a taxonomy is up to in-

terpretation. When using a tree-based structure for nouns
and verbs, the choice of ‘splitting function‘ defines how the
child nodes are placed underneath their parents. For tempo-
ral structure, sequence distributions are application depen-
dent - activity ordering could be loosely defined or clear-
cut (e.g. furniture building). In order to evaluate how this
method holds up to application-based variance, we evaluate
results on four distinct action detection datasets that exhibit
unique forms of structure.

In these experiments, structure is embedded into mod-
els for both activity recognition (trimmed video of a single
activity) and action detection (untrimmed video with many
possible activities). Details on the architecture, datasets,
and implementation are described below.

3.1. Network Architecture

For activity recognition we use a custom implementation
of the Temporal Shift Module (TSM) introduced in [37].
The main innovation of TSM is to integrate temporal con-
text by performing channel shifts along the time dimension
of the feature map at multiple locations in a CNN. This
module is used on top of the framework introduced by Wang
et al. [68] to allow temporal modeling while maintaining the
complexity of a 2D (image-based) CNN. Despite the much
lower computational costs, it outperforms many 3D CNNs
and is the highest performing baseline in one of our evalua-
tion datasets [58].

For action detection we use a two-stage architecture to
classify all frames untrimmed video. We first pretrain the
TSM to predict the activity label at the center frame of short
snippets sampled from the whole video. Next, this model is
applied in a sliding-window manner across all videos, and
the features from the final layer of the network are concate-
nated along the time axis. We use an LSTM [27] for se-
quence modeling. The video representations are used as
input to infer activity labels at each frame in the video.

This choice of architecture fits naturally with our struc-
ture distillation process: the visual loss from a tree-based
structure in Sec. 2.2 can be used to train the backbone
network for activity recognition, and the temporal loss in
Sec. 2.3 can be used to train the sequence model. We se-
lected these networks based on computational efficiency of
training. Our goal is to evaluate multiple forms of structure
in each dataset; the training time of large-scale models is
unreasonable with the total combinations of loss functions,
backbones, and sequence models. However, our proposed
framework is independent of the model at each stage and
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is general enough to be applied to any choice of backbone,
sequence, or single-stage model for activity recognition or
detection.

3.2. Datasets

We select four distinct datasets for experimental evalu-
ation, all of which provide a hierarchical representation of
the activity classes.
Activity recognition datasets:

• FineGym [58] contains 4883 videos of different gym-
nastics events where a three-layer hierarchy is defined
(a subset is visualized in Fig. 2a). We are able to use
this multi-layer hierarchy to evaluate activity classifi-
cation when the distance function is defined over activ-
ities with a shared parent and activities with a shared
grandparent.

• Berkeley MHAD [50] contains 660 videos of actors
performing a specified set of actions. The activity are
in a three-layer hierarchy defined over motion. For ex-
ample, jumping in place and jumping jacks share a par-
ent of jumping and a grandparent of movement in both
upper and lower extremities.

Action detection datasets:

• IKEA ASM [4] contains 371 videos of a furniture as-
sembly task. The structure is given through objects and
verbs, given as part of the annotations. These videos
exhibit little variation in sequence dynamics because
of the procedural nature to putting together furniture.

• EPIC-Kitchens-100 [10] contains over 700 egocen-
tric videos of daily kitchen activities. Visual struc-
ture is given using two three-layer hierarchies of
{activity, verb, verb-category} and {activity, noun,
noun-category}.

3.3. Implementation Details

Both the TSM and LSTM are trained with the AdamW
[43] optimizer and a learning rate initialized to 5e−4.
Learning-rate decay (by 1

10 ) and early stopping are imple-
mented when validation loss doesn’t improve for 5 and 10
epochs respectively. The TSM hyperparameters were set
to the same values as [37] and the LSTM has a hidden di-
mension of 256 units. The batch size was set to 12 videos to
keep GPU memory under 12GB. The detection experiments
were run for 5 trials to obtain the standard deviations shown
in Tab. 2 and Fig. 3. The code is written in Pytorch and
all training was performed using a computer with an Intel
i9-9900X CPU (3.50GHz), 64GB of DDR4 RAM, and two
Nvidia Titan-RTX GPUs.

Model Accuracy (%)

HFP-I3D [3] 82.89
K-SVM [50] 91.97
H-I3D [3] 96.38

Ours (no hierarchy) 94.55
Ours (Verb 2-level) 96.36
Ours (Verb 3-level) 98.91

(a) Results on MHAD.

Model Gym-99 Gym-288

I3D [58] 74.8 66.7
TSM [58] 80.4 73.5
Hyperbolic [61] 82.54 -
Joint [36] 91.80† -

Ours (no hierarchy) 88.16 81.89
Ours (Verb 2-level) 89.50 83.34
Ours (Verb 3-level) 89.14 83.29
† The authors in [36] did not have access to the full
dataset and do not provide their evaluation split or code.

(b) Results on both label settings in FineGym.

Table 1. Activity recognition results reported in classification ac-
curacy (% of videos correctly classified) over the test set.

4. Results

4.1. Activity Recognition

To evaluate the effectiveness of our method, we first
present results on activity recognition. We know from pre-
vious works in Sec. 1.1 that exploiting the label hierarchy
should improve classification performance. In addition to
verifying this assumption, our aim with these experiments
is to answer the following questions: How does our generic
method compare against the methods in [3, 36] that imple-
ment architectural modifications to embed hierarchical label
structure? Furthermore, unlike architectural modifications
our method can use a tree-based hierarchy of any depth -
does embedding a deeper hierarchy improve performance?

We investigate embedding both the child-parent and
child-parent-grandparent relationships in MHAD and Fin-
eGym. Results are presented in Tab. 1 measured in average
accuracy over all videos in the test split specified in each
dataset. Because of the inconsistencies in [36] we include
it in Tab. 1b, but disregard their result for comparative pur-
poses. Our experiments demonstrate that embedding the
visual structure into the sequence model is enough to obtain
state-of-the-art results on both datasets.

Interestingly, the accuracy degrades when moving from a
2 level (child-parent) to a 3 level (child-parent-grandparent)
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Dataset Model Accuracy (%)

IKEA
ASM

VAVA [41] 31.92
I3D [4] 57.57
Multi-view CDFL [22] 60.3
P3D [4] 60.40
OODL Supervised [22] 63.5

Ours (No Structure) 66.98 ± 0.93
Ours (Object) 67.36 ± 0.36
Ours (Verb) 68.08 ± 0.28

EPIC
Kitchens

TSM [10] 38.27∗

Ours (No Structure) 35.09 ± 0.10
Ours (Verb) 35.51 ± 0.62
Ours (Verb 2-level) 35.80 ± 0.45
Ours (Object) 35.82 ± 0.43
Ours (Object 2-level) 36.23 ± 0.37

Table 2. Frame-wise accuracy of the model when the backbone
classifier is trained using the structure given in IKEA-ASM and
EPIC-Kitchens. *The TSM from [10] is trained and evaluated us-
ing ground-truth boundaries of the activities, an approximate for
the upper bound of action detection.

hierarchy on the FineGym dataset (seen in Tab. 1b). We hy-
pothesize this is due to the top level of the hierarchy in Fine-
Gym containing only 4 elements (seen in Fig. 2a). This lim-
ited set does not provide enough information to improve re-
sults, and could potentially degrade performance for a gym-
nastics dataset such as this, which contains similar grand-
child elements across grandparents (e.g. ‘Balance-Beam’
and ‘Floor Exercise’ contain related ‘Salto’ elements).

4.2. Action detection

In these experiments, our aim is to determine if the fea-
tures learned from the classification backbone can general-
ize better when trained with the embedded structure. We
use the two-stage model described in Sec. 3.1 to perform
action detection in untrimmed videos.

In Tab. 2 we evaluate action detection results when train-
ing the backbone model (TSM) using the tree-based loss
over the two types of visual hierarchies provided in IKEA-
ASM and EPIC-Kitchens: verb (spatio-temporal) and ob-
ject (spatial only). The LSTM is trained using standard
cross-entropy loss in each of these experiments.

The evaluation protocol for action detection on EPIC-
Kitchens (called activity detection in [11]) is performed
over mean average precision (mAP) results because of the
overlapping frames in the segment annotations. Our model
assumes a one-to-one relationship between activities and
frames; despite this, we obtain an average mAP of 9.93

Loss Function
Accuracy

Improvement
Edit Distance
Improvement

Temporal +0.2% +6.6%
Temporal + Object +0.6% +10.3%
Temporal + Verb -0.6% -2.0%

Table 3. Ablative experiment measuring difference over the base-
line in frame-wise accuracy and edit distance when training the
detector with temporal loss and temporal+visual loss. These were
performed on IKEA-ASM.

using our non-overlapping segment predictions. This is a
significant improvement over the baseline of 5.21 in [10].

The best results on IKEA-ASM are by embedding the
structure in the verb-based relationships, but on EPIC-
Kitchens the best results are from object-based relation-
ships. We hypothesize this is due to imbalance in the abil-
ity of a model to discriminate between the classes of a cer-
tain category. For example, the objects are very distinct in
IKEA-ASM (shelf vs. table) but most verbs are fairly simi-
lar (align vs. attach) and vice-versa in EPIC-Kitchens (fork
vs. spoon, wash vs. grate). We observe this across all mod-
els by looking at accuracy of parent nodes in the tree: on
average, the correct object class is predicted more often in
IKEA-ASM than the verb class (74.9% to 68.4%) and like-
wise for the correct verb parent in EPIC-Kitchens (36.8%
to 36.0%). Thus, we see a greater benefit from embedding
the less discriminative relationship directly into the training
process. These differences in per-category accuracy illus-
trate the data dependence of performance gains when em-
bedding structure representations.

4.3. Temporal Structure

We found that embedding temporal structure into the se-
quence model led to no significant difference in predictions
once the backbone classifier was already trained using vi-
sual structure, χ2

1 = 0.451, P = 0.502 [15]. We hypothe-
size that this is because the loss function defined in Sec. 2.3
embeds the structure of short-term dependencies, which are
already captured in the temporal range of the TSM. The
modified loss will have little effect on the LSTM as the fea-
tures are discriminative enough without it.

To experimentally evaluate the effect of using temporal
structure, we isolate the sequence model by reducing the
generalizability of the features from the TSM. We use a
TSM pretrained on Kinetics [30] to generate features with
less discriminative power. Our goal is to rely more on the
temporal model (LSTM) when evaluating the effect of the
sequence-based loss function. We measure the relative dif-
ference of accuracy and edit distance over a baseline model
trained using standard cross-entropy loss. Edit distance is
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Figure 3. Distance function parameter sweep when using the full
hierarchy in the FineGym dataset. The results are sorted by mean
accuracy over five trials. The labels are {shared-grandparent,
shared-parent} weights used to calculate distance. All weights in
the purple box have: shared parent distance > shared grandparent
distance. The red box is equivalent to using standard cross-entropy
loss with a one-hot encoding. The best performing model is shown
in green.

used to measure the ‘smoothness’ of predictions using a
normalized Levenshtein edit score as defined in [35]. Re-
sults are in Tab. 3. We observe little change in frame-wise
accuracy, but the edit distance of the predictions are much
better when using both temporal loss and the combination
of temporal and visual (object-based) loss. The reduction
in edit distance when using verb-based relationships falls
in line with our reasoning above, as motion is the primary
discriminator between activities in Kinetics (optical flow in-
puts outperform RGB [8, 37]).

4.4. Parameter Selection

To evaluate the effect of the parameter selection on the
loss function we perform a sweep over the parameter used
to calculate the distance metric in Eq. (4). We use the
multi-layer tree in FineGym’s defined activity structure (see
Fig. 2a). Fig. 3 displays accuracy of the model over multi-
ple values of the distance weight for children under a shared
parent, and children under a shared grandparent. The results
follow our intuition - when the distance weights children
under a shared grandparent as ‘closer‘ than children under
a shared parent, the model performs worse than using stan-
dard cross-entropy loss. When it is the other way around,
we see an increase in classification accuracy.

5. Conclusion
We present a simple method to embed relationships be-

tween activities into the loss function used to train action
detection models. This can be used on the visual structure
described through shared verbs or objects, and the temporal
structure derived from the sequence of activities. We derive

how these structure representations can be embedded into a
loss function and demonstrate how this improves both ac-
curacy and edit distance of an action detection model. This
small change to the training process leads to state-of-the-art
results on challenging benchmarks for action detection.
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