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Abstract

Knowledge distillation is an attractive approach for
learning compact deep neural networks, which learns a
lightweight student model by distilling knowledge from a
complex teacher model. Attention-based knowledge dis-
tillation is a specific form of intermediate feature-based
knowledge distillation that uses attention mechanisms to en-
courage the student to better mimic the teacher. However,
most of the previous attention-based distillation approaches
perform attention in the spatial domain, which primarily af-
fects local regions in the input image. This may not be suffi-
cient when we need to capture the broader context or global
information necessary for effective knowledge transfer. In
frequency domain, since each frequency is determined from
all pixels of the image in spatial domain, it can contain
global information about the image. Inspired by the ben-
efits of the frequency domain, we propose a novel module
that functions as an attention mechanism in the frequency
domain. The module consists of a learnable global filter
that can adjust the frequencies of student’s features under
the guidance of the teacher’s features, which encourages the
student’s features to have patterns similar to the teacher’s
features. We then propose an enhanced knowledge review-
based distillation model by leveraging the proposed fre-
quency attention module. The extensive experiments with
various teacher and student architectures on image classi-
fication and object detection benchmark datasets show that
the proposed approach outperforms other knowledge distil-
lation methods.

1. Introduction

Convolutional Neural Networks (CNNs) have been
widely applied and achieved a myriad of successes in var-
ious computer vision tasks, such as image classification,
object detection, and image segmentation. However, these
CNNs often require expensive memory and computation re-
sources, making them unsuitable for applications with lim-

ited resources. Different approaches have been proposed
to learn efficient deep neural networks, such as pruning
[5, 10, 16], knowledge distillation [6, 7, 19, 23], and quan-
tization [8,20,35,37]. Among them, knowledge distillation
(KD) is an attractive approach to reduce the computational
cost of CNNs. In knowledge distillation, a smaller student
network is trained to mimic the behaviour of a larger teacher
network.

Different approaches have been proposed for knowledge
distillation [2,6,7,11,19,23,30,36]. Among them, interme-
diate feature-based KD is a popular approach because it is
flexible to design different distillation mechanisms such as
layer to layer distillation [6, 11, 23] and layer fusion distil-
lation [19]. Attention-based KD [9, 11, 26, 28] is a specific
form of intermediate feature-based knowledge distillation.
In those works, the attention is performed in the spatial do-
main and they use attention maps to help the student to fo-
cus on the most informative information from the teacher.
However, in [9, 11, 26, 28] each value of the attention map
is calculated from a local region of the input feature map.
This focus of the local regions may not be sufficient to ef-
fectively transfer knowledge from teacher model to student
model in knowledge distillation when we need to capture
the broader context or global information necessary for ef-
fective knowledge transfer.

Our goal is to encourage student model to capture both
detailed and higher-level information such as object parts
from the teacher model. This can be accomplished by pro-
cessing the student’s features in the frequency domain in-
stead of the spatial domain. The frequency domain is use-
ful for understanding images with repetitive or periodic pat-
terns that may be difficult to discover using traditional spa-
tial domain techniques. By capturing the intensity changes
and patterns in the image, the frequency domain can iden-
tify different regions associated with objects, and each fre-
quency could correspond to some specific structures, e.g.,
high frequencies correspond to large changes in image in-
tensity over a short pixel distance (e.g., edges).

With the above benefits of the frequency domain, we pro-
pose a Frequency Attention Module (FAM), which has a
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learnable global filter in the frequency domain. The global
filter can be seen as a form of attention in the frequency do-
main, which can adjust the frequency of student’s feature
maps. We then invert the attending features in frequency
domain back to the spatial domain and minimize them with
the teacher’s features. By updating the parameters of the
learnable filter based on the guidance of the teacher, we can
encourage the transformed student’s features to have similar
patterns as the teacher’s features.

Given the proposed frequency-based attention module,
we propose two enhanced architectures for layer-to-layer [6,
11, 23] and knowledge review distillation [19]. We ex-
tensively demonstrate the effectiveness of our proposed
method with various teacher and student architectures on
benchmark datasets for image classification and object de-
tection. The experimental results show that the proposed
approach outperforms other knowledge distillation meth-
ods. In summary, our contributions are:

• We propose a novel module, which is our main contri-
bution in which we explore Fourier frequency domain
for knowledge distillation. The module consists of a
learnable global filter that can adjust frequency of the
student’s features, which encourages student’s features
to mimic patterns from the teacher’s features.

• We propose an enhanced layer-to-layer knowledge dis-
tillation model and an enhanced knowledge review-
based distillation model by leveraging the proposed
FAM module.

• Our method outperforms other knowledge distillation
methods for classification on CIFAR-100 and Ima-
geNet datasets and object detection on MS COCO
dataset.

2. Related work

Knowledge Distillation (KD) has received substantial
attention recently due to its versatility in various applica-
tions. In KD, the student model can benefit from the guid-
ance of various forms from the teacher model to achieve
better performance. This could be soft logit-based distil-
lation [7, 36], relation-based distillation [2, 17, 30], or in-
termediate feature-based distillation [6, 11, 19, 23]. Among
them, the feature-based knowledge distillation allows flex-
ibility in designing distillation mechanisms. Particularly,
in FitNets [23] given a student layer (guided layer) and a
teacher layer (hint layer), the authors minimize the L2 dis-
tance between the transformed student’s features and the
teacher’s features. Following FitNets, AT [11], PKT [18],
and SP [31] transfer knowledge through activation maps,
feature distributions, and pairwise similarities, respectively.
In OFD [6], the authors propose margin ReLU applied on

teacher’s feature maps to select information used for distil-
lation. In [19], the authors introduce the review mechanism
to enrich student features. They show that lower-level fea-
tures of teacher are useful in supervising the higher-level
features of student. They propose to fuse different levels of
student features before mimicking teacher knowledge.

In [9,11,26,28], the attention is performed in the spatial
domain and they use attention maps to help the student fo-
cus on the most informative information from the teacher.
Specifically, spatial attention maps in AT [11] can be com-
puted using the sum of absolute values across the channel
dimension. AFD [9] also transfers knowledge from teacher
to student through spatial attention maps that are computed
through channel-wise average pooling layer. They then
maximize the similarity between attention maps of student’s
features and the attention maps of teacher’s features. Mean-
while, [28] computes the spatial attention maps using aver-
age pooling and fully connected layers. However, with the
attention in the spatial domain used [9,11,26,28], weights of
the attention map are usually calculated from local regions
of the feature maps. The attention weights (i.e., values in the
attention map) indicate the importance of the corresponding
local regions. Due to its local property, a change in a value
of the attention map (in backpropagation) only affects the
corresponding local region.

Fourier frequency domain and attention in the fre-
quency domain. In digital image processing, Fourier fre-
quency domain represents an image with a set of sinusoidal
waves, with each wave representing a different level of in-
tensity in the whole image. The frequency domain is a help-
ful way to understand images that have repetitive or periodic
patterns [3]. It is more effective than traditional spatial do-
main techniques in capturing geometric structures that are
difficult to extract. By capturing the intensity changes in the
image, the frequency domain can identify distinct regions
that are associated with objects.

Each frequency in the frequency domain is determined
by all the pixels in the image in the spatial domain. Fre-
quencies can correspond to particular structures in the spa-
tial domain. For instance, high frequencies correspond to
significant changes in image intensity over a small distance
between pixels, such as edges. Therefore, focusing on the
frequency domain can be seen as a form of global attention.
Meanwhile, attention in the spatial domain [9, 11, 28] pri-
marily affects local regions in the input feature map, which
may be insufficient for capturing the global structure of the
feature map. By contrast, attention in the frequency domain
can be especially useful for identifying global information
or geometric structures of the feature map that may be dif-
ficult to detect using traditional spatial domain techniques.
A change in a frequency of the attention frequency map can
impact the entire input feature, compared to the effect on
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the local regions when changing a value in attention map in
the spatial domain.

In this work, we explore the Fourier frequency domain
for the knowledge distillation problem. We propose a fre-
quency attention module (FAM) that has a learnable global
filter, which acts as an attention in the frequency domain.
Based on the guidance from the teacher, FAM will en-
courage the student’s features to have similar patterns as
teacher’s features.

3. Proposed method
This section first details the frequency attention mod-

ule (FAM) that encourages the student to better mimic
the teacher. We then present our design to integrate the
FAM module into two popular knowledge distillation mech-
anisms, i.e., layer-to-layer feature-based distillation [6] and
knowledge review-based distillation [19].

3.1. Frequency attention module

As shown in Figure 1, the FAM module consists of
global and local branches. Specifically, given a feature map
X with a dimension of Cin ×H ×W , in the global branch
we first transform it into the frequency domain via Fast
Fourier Transform (FFT). Here the FFT is applied to each
channel separately. For the ith channel Xi of the feature
map X , the 2-D discrete FFT of Xi denoted by Xi is ex-
pressed as:

Xi(u, v) =

H−1∑
k=0

W−1∑
l=0

Xi(k, l)e
−i2π(uk

H + vl
W ). (1)

To adjust the frequencies of Xi, we apply a learnable
global filter K which can be seen as a form of attention on
Xi.

Global filtering. It is worth noting that in feature distilla-
tion, we want the feature map resulting from the FAM mod-
ule to have the same dimension as the dimension of a given
teacher feature map where the knowledge will be distilled.
Therefore, we design the global filter K with the dimension
of Cout×Cin×H×W , where Cout is the number of chan-
nels of the teacher’s feature map. Each kernel in the global
filter K has the same size as the 3D input tensor X with the
size Cin×H×W . This kernel performs element-wise mul-
tiplied with the 3D input tensor X , resulting in a 3D feature
map with the same size as the input feature map. Next, the
3D frequency feature maps of the output are then summed
up, (i.e., sum-pooling in each Cin × 1× 1 block), resulting
in a 2D output with the size H ×W . The above operation
is performed for Cout kernels of the global filter, resulting
in a 3D feature map with a size of Cout × H × W as the
output.

It is worth noting that the proposed filter acts in the fre-
quency domain. Each frequency in the frequency domain
is determined by all the pixels in the spatial domain; hence,
although each element of each kernel attends to a particular
frequency, the filter still achieves the global effects.

After that, we further suppress low frequencies, which
encourages the student to de-focus from the non-salient re-
gions. To this end, we add a high pass filter (HPF) after
the learnable global filter to eliminate part of the lowest fre-
quency components. The HPF is applied to each channel
separately. Specifically, for each channel, we adopt the ideal
HPF, which suppresses 1 percent of the lowest frequencies.

We then transform the frequency domain back to the spa-
tial domain via the inverse Fast Fourier Transform (IFFT).
Given X̄ which is the frequency feature map after the HPF,
for the ith channel X̄i of the frequency feature map X̄ , the
2-D IFFT of X̄i denoted by X̄i is expressed as:

X̄i(k, l) =
1

HW

H−1∑
u=0

W−1∑
v=0

X̄i(u, v)e
i2π(uk

H + vl
W ). (2)

Formally, let g(X ,K) be the output of the global filtering
as above, h be the high pass filter, F and F−1 be the FFT
and the inverse IFFT, respectively, the output of the global
branch is calculated as:

Fglobal(X) = F−1(h(g(F(X),K)), (3)

where F, h,F−1 are applied in a channel-wise fashion.
The FAM module also consists of a local branch, which

is a 1 × 1 convolutional layer in the spatial domain. This
layer aims to leverage the information of features in the
spatial domain. Let Flocal(X) be the output of the local
branch, and the output of the frequency attention module is
calculated as below:

Fout = γ1 ∗ Fglobal + γ2 ∗ Flocal, (4)

where γ1 and γ2 are the learnable weighting parameters of
the global and local branches, respectively.

Computational complexity of the FAM module. The
global branch comprises a fast Fourier transform (FFT), an
inverse fast Fourier transform (IFFT), a global filter, and a
high pass filter (HPF).

The complexity of the FFT of an image with dimensions
H × W is O(HWlog(HW )). Similarly, the complexity
of the inverse fast Fourier transform (IFFT) of a frequency
image with dimensions H × W is O(HWlog(HW )).
Therefore, the complexities of the FFT, global filter,
HPF, and IFFT components in the FAM module are
O(CinHWlog(HW )), O(CoutCinHW ), O(CoutHW ),
and O(CoutHWlog(HW )), respectively.
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Figure 1. Fourier Frequency Attention Module. HPF stands for a high pass filter. In the global branch, the input student’s feature map is
transformed to the frequency domain using the FFT. The frequency is then adjusted by a learnable global filter. A high pass filter is then
applied to the adjusted frequency map to filter out lowest frequencies. The local branch consists of a 1×1 convolutional layer in the spatial
domain. The outputs of the global and local branches are added and the resulting feature map is compared with the teacher’s feature map.
γ1 and γ2 are the learnable weighting parameters of the global and local branches, respectively.

Figure 2. The proposed enhanced layer-to-layer knowledge dis-
tillation. LA is the local attention and FAM is the proposed fre-
quency attention module. D is the distance function. FT and FS

represent the feature maps of teacher and student, respectively.

The FAM module also consists of a local branch,
which is a 1 × 1 convolutional layer in the spa-
tial domain. The local branch has the complexity of
O(CoutCinHW ). Overall, the FAM module has the com-
plexity of O(CoutCinHW ).

3.2. Applying FAM to knowledge distillation

3.2.1 Layer-to-layer intermediate feature-based
knowledge distillation

Let I be the selected layer indices from the teacher for
intermediate feature-based distillation. The layer-to-layer
knowledge distillation loss is defined as

Lfeat =
∑
i∈I

D
(
FT
i , f(FS

j )
)
, (5)

where FS
j is the feature map from the jth layer of the stu-

dent selected for receiving the knowledge from the feature

Figure 3. The proposed enhanced knowledge review distillation.
CrossAT is the cross attention and FAM is the proposed frequency
attention module. D is the distance function. FT and FS repre-
sent the feature maps of teacher and student, respectively.

map FT
i from ith layer of the teacher; f is a transformation

applied on the student’s feature map. In our work, f is the
FAM module. D is a distance function. In this work, we
use L2 distance as the distance function. It is worth not-
ing the teacher is fixed in our framework, i.e., there are no
transformations applied on teacher’s feature maps.

In order to make FAM to better mimic teacher, we find
that it would be beneficial to also enhance local structures in
the spatial domain. To this end, we place an attention layer
after student’s feature maps before feeding it through the
FAM module, as shown in Figure 2. To avoid increasing
model complexity, we use local self-attention (LA) layer
introduced by [21]. In LA, the self-attention is applied only
to a small neighbourhood around each position.

3.2.2 Knowledge review distillation

We also integrate the FAM module into the knowledge re-
view distillation mechanism [19], as shown in Figure 3.
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In [19], the authors propose a knowledge review mechanism
that uses teacher’s low-level features to supervise deeper
student’s features. They fuse different levels of the student’s
features before mimicking knowledge from the teacher. In
knowledge review mechanism [19], the distillation loss is
defined as follows:

Lfeat = D(FT
M , f(FS

N ))+

1∑
i=M−1

D
(
FT
i , f(u(FS

j=i, F
S
j+1,N ))

)
,

(6)
where M and N are the numbers of selected intermedi-
ate layers of teacher and student used for knowledge dis-
tillation. We note that in intermediate feature-based KD,
the student and the teacher models are often divided into
stages. The number of stages is the same for the teacher
and the student, i.e., M = N . The last layers in each
stage are used for distillation. u(., .) is a fusion function
that recursively fuses student features. FS

j+1,N denotes the
fusion of features from FS

j+1 to FS
N ; u(FS

j=i, F
S
j+1,N ) =

u(FS
j=i, u(F

S
j+1, F

S
j+2,N )); f is the FAM module.

In [19], u(., .) is an attention-based fusion (ABF [19])
function that learns two attention maps for two inputs and
uses attention maps to aggregate two inputs. In this work,
we hypothesize that the similarities between teacher and
student features are often higher when they are at the same
level (i.e., same stage). It could mean that a student’s fea-
ture of the same level as the teacher’s feature has a more
important role than others. Emphasizing the importance of
those features could be more beneficial for knowledge dis-
tillation. Therefore, instead of using the ABF attention used
in [19], we want an attention mechanism that directly em-
phasizes the importance of the student’s feature map that is
at the same level as the teacher’s feature map. To achieve
this goal, we propose using cross attention [32] in which
the low-level feature map is considered as the value and
key and the high (fused) feature map is considered as the
query when fusing student’s feature maps at different lev-
els. Specifically, let F ′ = u(FS

j+1, F
S
j+2,N ))

u(FS
j , F ′) = softmax((WQF

′)(WKFS
j )T )WV F

S
j ,

(7)
where WQ, WK , and WV represent learnable parame-
ters for query, key, and value, respectively. In summary,
compared to [19], firstly, to emphasize the importance of
the student’s feature map that is at the same level as the
teacher’s feature map, our enhanced KD review architecture
uses cross attention instead of ABF [19]. Then, we feed the
output of cross attention to the FAM module to adjust fre-
quencies before computing the distance function D.

The overall loss consists of the task loss (i.e., cross-
entropy loss for classification task) and the feature distil-
lation loss:

L = Ltask + αLfeat (8)

4. Experiments
4.1. Experimental setup

Datasets. We evaluate our approach on CIFAR-100 [12]
and ImageNet [24] datasets for image classification task,
and COCO dataset [14] for object detection task. The
CIFAR-100 dataset consists of 60, 000 images for 100
classes, in which, 50, 000 and 10, 000 images are used for
training and validation sets, respectively. ImageNet is a
challenging dataset with 1000 classes. This dataset contains
1.2 million images for training and 50, 000 images for val-
idation, which is used as a test set in our experiments. For
object detection task, COCO is a standard dataset with mul-
tiple objects in an image. In total, this dataset contains 1.5
million object instances of 80 object categories in 118, 000
training and 5, 000 validation images.

Implementation details. We apply our method across
various teacher-student architecture pairs, as shown in Ta-
ble 1, Table 2, Table 3, and Table 4. For a fair comparison,
we do experiments on standard teacher/student pairs follow-
ing other distillation methods [2,19,30, 36] and base on the
public distiller code-base [36]. This includes the distilla-
tion when teachers and students are in the same architecture
and in different architectures. For training, we use the stan-
dard training procedure following [19, 36] and pre-trained
teachers in all settings for both classification and object de-
tection tasks. We employ L2 distance as a distance function
D when calculating the Lfeat losses (Eq. (5) and Eq. (6)).
The implementation details for CIFAR-100, ImageNet, and
MS-COCO datasets and the values of the hyper-parameter
α (Eq. 8) for each teacher/student pair are provided in sup-
plementary materials due to page limit.

4.2. Comparison with the state of the art

4.2.1 Image classification

Comparative results on CIFAR-100. We present top-
1 classification accuracy on the CIFAR-100 by various
teacher-student pairs, both from the same network fam-
ily (Table 1) and from the different network family (Table
2). The selected networks comprise ResNet [4], WideRes-
Net [34], ShuffleNet [15], MobileNetV2 [25], and VGG
[29]. The results of competitors are cited from [2, 19, 36].

Overall, our method FAM-KD (review) consistently out-
performs all compared methods in all settings. In some
cases, i.e., WRN-40-2/WRN-16-2, ResNet110/ResNet32,
WRN-40-2/ShuffleNet-V1, students’ performance even sur-
passes the teachers.

Regarding layer-to-layer distillation, our method FAM-
KD (layer-to-layer) outperforms all other methods belong-
ing to the same category. Our method consistently out-
performs the most competitor WCoRD [2] on all settings.
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Teacher WRN-40-2 WRN-40-2 ResNet56 ResNet110 ResNet32x4
Student WRN-16-2 WRN-40-1 ResNet20 ResNet32 ResNet8x4
Teacher 75.61 75.61 72.34 74.31 79.42
Student 73.26 71.98 69.06 71.14 72.50

Soft logit-based distillation
KD [7] 74.92 73.54 70.66 73.08 73.33

DKD [36] 76.24 74.81 71.97 74.11 76.32
Layer to layer-based distillation

FITNET [23] 73.58 72.24 69.21 71.06 73.50
AT [11] 74.08 72.77 70.55 72.31 73.44
VID [1] 74.11 73.30 70.38 72.61 73.09

RKD [17] 73.35 72.22 69.61 71.82 71.90
CRD [30] 75.48 74.14 71.16 73.48 75.51

WCoRD [2] 75.88 74.73 71.56 73.81 75.95
OFD [6] 75.24 74.33 70.98 73.23 74.95

FAM-KD (layer-to-layer) - Ours 76.03 74.88 72.03 74.03 76.24
Layer to layer + Soft logit-based distillation

WCoRD + KD [2] 76.11 74.72 71.92 74.20 76.15
Knowledge review-based distillation

ReviewKD [19] 76.12 75.09 71.89 73.89 75.63
FAM-KD (review) - Ours 76.47 75.40 72.15 74.45 76.84

Table 1. Results on the CIFAR-100 validation set. Teachers and students are in the same architecture. FAM-KD (layer-to-layer) and
FAM-KD (review) refer to our proposed methods in Section 3.2.1 and Section 3.2.2, respectively. Our reported results are an average of
three trials.

Teacher ResNet32x4 WRN-40-2 ResNet32x4 VGG13
Student ShuffleNet-V1 ShuffleNet-V1 ShuffleNet-V2 MobileNet-V2
Teacher 79.42 75.61 79.42 74.64
Student 70.50 70.50 71.82 64.60

Soft logit-based distillation
KD [7] 74.07 74.83 74.45 67.37

DKD [36] 76.45 76.70 77.07 69.71
Layer to layer-based distillation

FITNET [23] 73.59 73.73 73.54 63.16
AT [11] 71.73 73.32 72.73 59.40
VID [1] 73.38 73.61 73.40 65.56

RKD [17] 72.28 72.21 73.21 64.52
CRD [30] 75.11 76.05 75.65 69.73

WCoRD [2] 75.40 76.32 75.96 69.47
OFD [6] 75.98 75.85 76.82 69.48

FAM-KD (layer-to-layer) - Ours 77.15 77.33 77.64 69.96
Layer to layer + Soft logit based-distillation

WCoRD + KD [2] 75.77 76.68 76.48 70.02
Knowledge review-based distillation

ReviewKD [19] 77.45 77.14 77.78 70.37
FAM-KD (review) - Ours 77.76 77.57 78.41 70.88

Table 2. The comparative results on the CIFAR-100 validation set. Teachers and students are in the different architectures. FAM-KD
(layer-to-layer) and FAM-KD (review) refer to our proposed methods in Section 3.2.1 and Section 3.2.2, respectively. Our reported results
are an average of three trials.
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Setting Teacher Student KD [7] AT [11] OFD [6] CRD [30] WCoRD [2] DKD [36] ReviewKD [19] FAM-KD (Ours)

(a) Top-1 73.31 69.75 70.66 70.69 70.81 71.17 71.49 71.70 71.61 71.91
Top-5 91.42 89.07 89.88 90.01 89.98 90.13 90.16 90.41 90.51 90.53

(b) Top-1 76.16 68.87 68.58 70.69 70.81 71.17 - 72.05 72.56 73.33
Top-5 92.86 88.76 88.98 90.01 89.98 90.13 - 91.05 91.00 91.44

Table 3. Top-1 and top-5 accuracy (%) on the ImageNet validation set. (a) ResNet34 and ResNet18 and (b) ResNet50 and MobileNetV1
are used as the teacher and student architectures. Our results (FAM-KD) are with the enhanced knowledge review-based distillation
(Section 3.2.2). Our reported results are an average of three trials.

(a) Original image (b) ResNet18 (w/o KD) (c) OFD [6] (d) Knowledge review [19] (e) FAM-KD (Ours)

Figure 4. (a) Original image. (b) - (e) Grad-CAMs [27] from layer 9 of ResNet18 model when training (b) without knowledge distillation,
(c) with OFD [6], (d) with knowledge review [19], and (e) with FAM-KD (ours), respectively. When training with distillation, ResNet34 is
used as the teacher. The figure shows that our FAM-KD (e) has better focus on the object than using OFD [6] and knowledge review [19].

Compare to WCoRD + KD [2], our method achieves com-
petitive results, despite that we only use feature-based dis-
tillation. The highest improvement over WCoRD + KD [2]
is 1.38% with the ResNet32x4/ShuffleNet-V1 setting. It
is worth noting that even with the layer-to-layer setting,
the FAM-KD achieves comparable results with the current
state-of-the-art feature distillation method using the review
mechanism [19].

Regarding the knowledge review mechanism (FAM-KD
(review)), we outperform compared methods for all teacher-
student distillation pairs. Compare to [19], our method
outperforms ReviewKD [19] in all cases. Compare to
DKD [36], which is a soft logit-based distillation method,
our method FAM-KD (review) also outperforms DKD [36]
in all settings. The highest improvement is 1.34% with the
ResNet32x4/ShuffleNet-V2 setting. The promising results
have shown the effectiveness of the FAM module, support-
ing students to perform better.

Comparative results on ImageNet. We validate our ap-
proach on the large-scale dataset ImageNet [24] in the
case of integrating the FAM module into the knowl-
edge review distillation mechanism (FAM-KD). Table 3
presents the top-1 and top-5 classification accuracy on the
ImageNet validation set of various distillation methods.
When both teacher and student have the same architec-
ture, we employ ResNet34/ResNet18 as the teacher/student
pair. Meanwhile, when teacher and student have dif-
ferent architectures, we use ResNet50/MobileNetV1 as
the teacher/student pair. Our approach yields the high-

est performance on both top-1 and top-5 accuracy. For
ResNet34/ResNet18, compared to the vanilla KD [7], the
FAM-KD improves by a large margin of 1.24% top-1 ac-
curacy. Meanwhile, compared to ReviewKD [19] and
DKD [36], the FAM-KD improves 0.3% and 0.21% top-
1 accuracy, respectively. The relative improvements1 over
DKD and ReviewKD are considerable at 20.2% and 31.6%,
respectively. For ResNet50/MobileNetV1, our approach
yields a significant improvement, i.e., the improvements of
1.28% and 0.77% over DKD and ReviewKD in top-1 ac-
curacy, and the corresponding relative improvements over
DKD and ReviewKD are 36.9% and 19.3%, respectively.

Figure 4 visualizes Grad-CAMs [27] (gradient-weighted
class activation mapping) extracted from layer 9 of the
ResNet18, which serves as student’s architecture, with
ResNet34 used as the teacher. The figure shows that the
Grad-CAM when using our FAM-KD (e) has better fo-
cus on the object than using OFD [6] and knowledge re-
view [19].

4.2.2 Object detection

Table 4 presents the object detection accuracy on the
MS COCO dataset. We use the FasterRCNN [22]
with FPN [13] as the detector, and use teacher/student
pairs ResNet101/ResNet18, ResNet101/ResNet50 for the
backbones. The results show that our method FAM-

1Similar to [2], we compute the relative improvement as Ours−A
A−KD

,
where A is the method we are comparing to. For each method, the cor-
responding accuracy of the student is used for the calculation.
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Method ResNet101 & ResNet18 ResNet101 & ResNet50
AP AP 50 AP 75 AP AP 50 AP 75

Teacher 42.04 62.48 45.88 42.04 62.48 45.88
Student 33.26 53.61 35.26 37.93 58.84 41.05
KD [7] 33.97 54.66 36.62 38.35 59.41 41.71

FitNet [23] 34.13 54.16 36.71 38.76 59.62 41.80
FGFI [33] 35.44 55.51 38.17 39.44 60.27 43.04

ReviewKD [19] 36.75 56.72 34.00 40.36 60.97 44.08
DKD [36] 35.05 56.60 37.54 39.25 60.90 42.73

DKD + ReviewKD [36] 37.01 57.53 39.85 40.65 61.51 44.44
FAM-KD (ours) 37.20 57.86 40.01 40.77 61.42 44.49

Table 4. Comparative object detection accuracy on the MS-COCO dataset. We use the two-stage method Faster RCNN [22] with FPN [13]
as the detector. On the student side, ResNet18 and ResNet50 models are selected as backbones, while teacher models use ResNet101 as a
backbone. Our results (FAM-KD) are with the enhanced knowledge review-based distillation (Section 3.2.2). Our reported results are an
average of three trials.

Setting Global branch Local branch Top-1
(a) ✓ 73.90
(b) ✓ 74.17
(c) ✓ ✓ 74.45

Table 5. Impact of the global branch and local branch of the FAM.
ResNet110 and ResNet32 are used as the teacher and the student,
respectively. The results are on the CIFAR-100 validation set.

KD consistently outperforms ReviewKD [19] and the re-
cent work DKD [36] for both settings at all metrics.
With the teacher/student pairs ResNet101/ResNet18 and
ResNet101/ResNet50, the proposed method outperforms
DKD 2.15 and 1.52 AP points, respectively. In [36],
to boost the detection accuracy of the student, the au-
thors combine their soft logit-based distillation DKD with
the knowledge review-based distillation [19]. Compare
to DKD+ReviewKD [36], despite that we only use in-
termediate feature-based distillation, our method outper-
forms DKD+ReviewKD for most metrics, except AP 50
with ResNet101/ResNet50 setting.

4.3. Ablation studies
In this section, we focus on investigating how different com-
ponents of the FAM module contribute to the performance
of FAM-KD. All experiments are conducted on CIFAR-
100 dataset with ResNet110 as a teacher and ResNet32
as a student when integrating the FAM module into the
knowledge review-based mechanism as presented in Sec-
tion 3.2.2. Other experiments that inspect the effectiveness
of the FAM module when integrating the FAM module to
ReviewKD [19], given the same ReviewKD implementa-
tion in the public distiller code-base [36] are provided in
supplementary materials.

With/without global and local branches in FAM. In Ta-
ble 5, we present performance of FAM-KD with and with-
out the global branch and local branch. The results show

Setting Top-1
FAM-KD (w/o HPF) 73.82

FAM-KD 74.45

Table 6. Effect of the high pass filter (HPF) component in global
branch of the FAM. ResNet110 and ResNet32 are used as the
teacher and the student, respectively. The results are on the
CIFAR-100 validation set.

that the global branch benefits the model better than the lo-
cal one and having both branches gives the best result.

With/without high pass filter (HPF) in the global
branch. The effectiveness of the HPF is presented in Ta-
ble 6, i.e., having the HPF boosts the performance 0.63%.
This shows the effectiveness of HPF, which helps to filter
out the lowest frequency components and encourages the
student to de-focus from the non-salient regions.

5. Conclusion
In this paper, we propose to use the frequency domain to

encourage the student model to capture both detailed and
higher-level information such as object parts based on a
well-trained teacher’s guidance. We introduce a novel fre-
quency attention module (FAM) for knowledge distillation
that operates in the frequency domain and has a filter that
can be adjusted to mimic the teacher’s features. This en-
courages the student’s features to have similar geometric
structures to the teacher’s features. Moreover, we propose
an enhanced knowledge review-based distillation by lever-
aging the proposed FAM and cross attention. We exten-
sively evaluate our approach with different teacher and stu-
dent models, and the proposed approach achieves signifi-
cant improvements compared to other state-of-the-art meth-
ods for image classification on the CIFAR-100 and Ima-
geNet datasets and for object detection on the MS COCO
dataset.
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