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Abstract
In the field of chest X-ray (CXR) diagnosis, existing

works often focus solely on determining where a radiologist
looks, typically through tasks such as detection, segmenta-
tion, or classification. However, these approaches are of-
ten designed as black-box models, lacking interpretability.
In this paper, we introduce Interpretable Artificial Intelli-
gence (I-AI) a novel and unified controllable interpretable
pipeline for decoding the intense focus of radiologists in
CXR diagnosis. Our I-AI addresses three key questions:
where a radiologist looks, how long they focus on specific
areas, and what findings they diagnose. By capturing the
intensity of the radiologist’s gaze, we provide a unified so-
lution that offers insights into the cognitive process under-
lying radiological interpretation. Unlike current methods
that rely on black-box machine learning models, which can
be prone to extracting erroneous information from the entire
input image during the diagnosis process, we tackle this is-
sue by effectively masking out irrelevant information. Our
proposed I-AI leverages a vision-language model, allowing
for precise control over the interpretation process while en-
suring the exclusion of irrelevant features.

To train our I-AI model, we utilize an eye gaze dataset to
extract anatomical gaze information and generate ground
truth heatmaps. Through extensive experimentation, we
demonstrate the efficacy of our method. We showcase
that the attention heatmaps, designed to mimic radiolo-
gists’ focus, encode sufficient and relevant information, en-
abling accurate classification tasks using only a portion
of CXR. The code, checkpoints, and data are at https:
//github.com/UARK-AICV/IAI.

1. Introduction
Computer-aided diagnosis (CAD) has proven to be an in-

valuable tool in the medical field. In chest X-ray (CXR) di-

agnosis, the extensive growth of deep learning has given rise
to several automated models that can outperform trained ra-
diologists [27, 32]. In contrast to fully automatic systems,
a good CAD framework should also improve the radiol-
ogist’s performance [8]. Despite steady improvements in
deep learning methods in medical analysis [2, 10, 14, 20,
30, 41, 42, 45, 54], there remains a problem: If the model
makes a correct prediction, but the radiologist does not, then
how does the system help the radiologist discern the truth?
Sight is the essential first step in human thought, and ra-
diologists must look carefully to verify whether there is an
abnormality only after having extracted enough visual in-
formation [3]. Thus, to assist radiologists effectively, we
must address two crucial questions: where the radiologist
should look, and how focused, or intense, they should. An-
swering these questions allows us to explore what findings
can be diagnosed based on the radiologist’s intensity.

The standard approach to address the first question is to
visualize the internal features of the model using standard
visualization methods, such as Class Activation Mapping
(CAM) [39, 46, 53]. However, many state-of-the-art tech-
niques are heavily reliant on the usual black-box approach.
The resulting heatmaps lack reliability as there is no con-
straint regarding any ground truth from physicians except
the final disease label. Consequently, these approaches may
make use of incorrect information, such as using the di-
aphragm as an indirect cue for cardiomegaly [17]. Other
approaches simultaneously predict the disease and point
out the location of it by making predictions in the form of
bounding boxes [24, 34]. However, these approaches only
address the first question of where the radiologist should
look. To overcome these limitations, Karargyris et al. [17]
introduces eye gaze datasets and modifies UNet [33] to
generate heatmaps and predict abnormal findings. How-
ever, due to the bottleneck location prediction and classi-
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Figure 1. The overall pipeline of our proposed I-AI framework to detect radiologist’s intense focus for accurate CXR diagnoses. The model
takes an CXR and anatomical prompt of a particular area of diagnosis as its inputs and outputs the answers of three key questions: where a
radiologist looks, how long a radiologist focuses on specific areas, and what findings a radiologist diagnoses. ⊙ is the Hadamard product.

Table 1. Model capacity comparison between our proposed method and related approaches.

Methods Localization Diagnosis Intensity Interpretability Controllability
ChexNet [32] ✗ ✓ ✗ ✗ ✗
van Sonsbeek [44] ✗ ✓ ✗ ✗ ✗
Grad-CAM [39] ✓ ✗ ✓ ✗ ✗
Grad-CAM++ [4] ✓ ✗ ✓ ✗ ✗
Relevance-CAM [21] ✓ ✗ ✓ ✗ ✗
Integrated Grad-CAM [38] ✓ ✗ ✓ ✗ ✗
Rozenberg et al. [34] ✓ ✓ ✗ ✗ ✗
Karargyris et al. [17] ✓ ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓

fication both share, this approach encounters a significant
challenge of relying on incorrect information when classi-
fying. Clearly, to synchronously answer multiple questions
would require multiple heads in the model or multiple mod-
els creating different types of heatmaps.

To address all the above problems comprehensively, we
propose a novel unified controllable interpretable I-AI
pipeline for simultaneously generating radiologist-based
anatomic attention heatmaps and predicting abnormal find-
ings as illustrated in Figure 1. Our I-AI model takes a CXR
image and anatomical prompt as inputs. To be control-
lable, our model first employs a short prompt specifying an
anatomical part to guide the model’s attention. To be inter-
pretable, our model allows users to observe meaningful at-
tention heatmaps of radiologists’ explicit focus. I-AI model
not only addresses the first question of localization but also
captures the radiologists’ focus intensity. Once obtaining
where and how intense the radiologist gazes, our I-AI elim-
inates all extraneous information before predicting any ab-
normal findings, and therefore we ensure that our model
cannot exploit erroneous data (i.e. diagnosis). This makes
our network more interpretable and controllable compared
to traditional black-box approaches. The I-AI model capac-
ity comparison between our proposed method and related
approaches is given in Table 1.

To obtain radiologist’s intensity, we utilize the RE-
FLACX dataset [19], which contains a plethora of eye gaze
information captured by high sensitivity hardware of radi-

ologists analyzing CXR images. However, aligning a gaze
sequence with an abnormal finding is non-trivial. For exam-
ple, the radiologist’s gaze can shift from the heart to the up-
per left lung, then to the right lung, and go back to the heart,
and then they start to say ”the heart size is normal”. The
randomness in the provided gaze sequence makes it hard to
manually decide exactly which gaze points contribute to the
diagnosis. To handle this, we propose a semi-automatic ap-
proach to extract gaze information using anatomical parts of
the lung. Using this filtered data, we train, test our method
and further verify a hypothesis that the classifier can achieve
strong performance even without using the full image.

Our contribution can be summarized as follows:

• We propose I-AI, a novel unified controllable & inter-
pretable approach that uses a CXR image in conjunc-
tion with an anatomical prompt to determine the loca-
tion and intensity of a radiologist’s focus followed by
the prediction of a corresponding finding. To the best
of our knowledge, our method is the first in the medi-
cal domain to learn from radiologist-based anatomical
gaze heatmap while offering controllability.

• To train our I-AI model, we present a semi-automatic
approach to extract radiologist-based anatomic
heatmap from eye gaze datasets by using transcript
and anatomic segmentation masks.

• We have conducted an extensive experiments and com-
parison to demonstrate the effectiveness of the pro-
posed I-AI.

7851



Linear

Fusion block

IN
TEN

SITY D
EC

O
D

ER

BiomedCLIP
Text Encoder

BiomedCLIP
Visual Encoder

Visual Intense
Encoder

Diagnosis

    FC
 & Softm

ax

Transform
er blocks

...

ANATOMIC-DRIVEN ADAPTER

{part}

...

Transformer blocks

Fusion block

Transformer blocks

Fusion block

Transformer blocks

Fusion block

Transformer blocks

Fusion block

...

Transform
er blocks

Figure 2. The detailed pipeline of our proposed controllable & interpretable framework to decode radiologist’s intense focus for accurate
CXR diagnoses. In our framework, the frozen pre-trained model still serves to extract text embedding and CXR visual encoding, and the
anatomic-driven adapter generates mask and attention heatmap to guide the deeper layers of the pre-trained model.

2. Related works

Explainable Deep Learning. Understanding a model’s
decision-making process holds significant importance to-
day, particularly in CAD. Recent developments such as
Class Activation Mapping (CAM) [4,21,38,39] have show-
cased one common approach: training a black box model
and subsequently employing CAM-related techniques to vi-
sualize critical areas. While black-box models often exhibit
high performance, they are recognized for their unreliabil-
ity, as highlighted in literature [35]. Therefore, we design
our model as an interpretable approach.

Interpretable Deep Learning. Unlike the aforemen-
tioned explainable tools, a more desirable approach entails
the design of a system wherein decisions are intrinsically
linked to explainability, particularly in high-stakes medi-
cal contexts [35]. Generally, interpretable models aim to
transform inputs into human-interpretable representations
such as concepts or prototypes, which are then harnessed
for prediction. To imbue the model with self-explanatory
capabilities, many researchers have embraced the success-
ful prototype-based approach [5, 28, 29, 36, 37, 43, 47]. For
instance, ProtoPNet [5] introduces a prototypical part net-
work that identifies prototypical parts within input images,
leveraging this insight for the final prediction. PIP-net [28]
learns prototypes that align closely with human visual per-
ception, serving as scoring sheets during classification. In a
supervised conceptual framework, TCAV [18] is trained on
data representing specific concepts. Adhering to the princi-
ples of interpretable models, we extend this methodology by
enlisting the expertise to annotate the raw gaze sequences of
a radiologist with three intentions, corresponding to three
anatomical regions: left lung diagnosis, right lung diagno-
sis, and heart diagnosis. Subsequently, the model employs
this intention-based information to diagnose the presence of

anomalies.
Disease condition localization. Some works [12,24,34]

predict a bounding box to localize diseases with the ground
truth being a bounding box and disease label. There are
other works [31, 55] that train the model primarily on an
image-level label and extract saliency maps or use Class
Activation Mapping (CAM) to obtain the location of the
disease. Karargyris et al. [17] predict a heatmap, but the
ground truth is a full gaze map, and their GradCAM visu-
alization indicates that the model is unreliable as it incor-
porates unrelated information in classification and heatmap
prediction. Unlike previous works, we utilize a unique com-
bination of eye tracking information, the reading of the ra-
diologist, and anatomic segmentation to generate anatomic
radiologist-based heatmaps.

CXR disease classification. Disease classification using
CXR images has gained much attention recently. The ear-
liest of these efforts, ChexNet [32], is a DenseNet [15] that
uses the CXR image as its direct input. Since then, many
efforts that use deep learning have risen from the related ar-
eas of supervised learning [40, 50], semi-supervised learn-
ing [23, 25], and self-supervised learning [1, 11]. Besides
using the full image to predict a disease, numerous stud-
ies [22, 24, 44, 49] suggest that location information of the
disease can help in classification tasks. To the best of our
knowledge, no existing methods use anatomic radiologist-
based heatmaps in aiding and masking out irrelevant pixels
in the image for classification.

3. Methodology: Proposed I-AI

3.1. Problem Formulation

Given a CXR image x and an anatomical prompt p, i.e.
”Diagnosis of {}” as a prefix with ”left lung”,
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”right lung”, or ”the heart”, our goal is to produce
a radiologist-based attention heatmap a and corresponding
label y.

Generally speaking, a radiologist-based attention
heatmap should match the location and intensity of radiol-
ogists’ eye gaze patterns and highlight relevant areas of the
chest X-ray (CXR) for accurate diagnoses, as described in
Section 4. It should also derive the predicted label from a
comparable amount of visual information that a radiologist
would consider.

3.2. Architecture

To capture the textual modality while maintaining a good
mask prediction, we design our heatmap predictor to be
a lightweight Anatomic-Driven Adapter that leverages the
BiomedCLIP [52] checkpoint, which was trained on 15 mil-
lion image-caption pairs in PMC-15M [52], followed by a
classifier. The architecture is described in Figure 2.
Visual encoding. First, the image will be split into 16× 16
patches. Then, we feed the patches into the BiomedCLIP
Visual Encoder. Following Xu et al. [48], we extract the
intermediate features fvi ∈ RH/k×W/k×768 from 4 layers,
i.e., stem, 3, 6, and 9.
Text encoding. Unlike visual encoding, the anatomical
prompts are short and concise, so the latent features of in-
termediate transformer layers are not meaningful for us.
Therefore, we get only the final embedding ft ∈ R512 from
the BiomedCLIP Text Encoder module.
Anatomic-Driven Adapter. Inspired by Xu et al. [48], we
train a vision transformer (ViT) [9] as an Anatomic-Driven
Adapter by using the domain feature from BiomedCLIP
from different scales. First, the input image x is split into
multiple 16 × 16 patches. Then, we use a linear projec-
tion to produce fa ∈ R(14∗14)×D, where D is the hidden
dimension. We then concatenate fa with a scaling vec-
tor α ∈ RD. Next, we feed the concatenated feature into
multiple stacked combinations of transformer layers and
fusion blocks. Specifically, we fuse the feature from lay-
ers {stem, 1, 2, 3} of our adapter ViT with {stem, 3, 6, 9}
layers in BiomedCLIP, a 12-layer ViT-B/16, i.e. stem to
stem, 3 to 1, 6 to 2, and 9 to 3. For each fusion step, we
also feed the text embedding ft into the fusion block as il-
lustrated in Figure 2 (right).

The intuition of including the scaling vector α is that
each element in the last latent feature does not contribute
equally across all anatomic parts, so the learnable scaling
vector α allows the model to flexibly re-weight the last fea-
ture in the most suitable way to produce the final intense
heatmap.
Fusion block. The fusion block has 3 inputs, the Biomed-
CLIP visual encoding at ith block fvi ∈ RH/k×W/k×768,
the BiomedCLIP text embedding ft ∈ R768, and the
adapter latent feature fa ∈ R(14∗14)×D. For the visual

MLP MLP

Intensity heatmap

(a)

Conv2dLinear

Resize

(b)

Figure 3. The detailed illustration of our proposed modules: (a) In-
tensity Decoder module takes the output [fo

a αo] from Anatomic-
Driven Adapter as its input and results in intensity heapmap; (b)
Fusion block consists of three inputs of text embedding ft, visual
encoding fvi and adapter latent feature fa.

⊕
denotes element-

wise addition.

encoding fvi , we first use a convolution layer to reduce
the channel dimension, and then we perform an interpo-
lation operation to resize the resolution to create f ′

vi ∈
R(14∗14)×D. On the other side, we pass ft through a lin-
ear layer to project it into the fusion space with dimension
of D to create f ′

t ∈ RD. After that, we add them together

f ′
a = fa + f ′

vi
+ f ′

t (1)

where the add operation of f ′
t is broadcasting. A fusion

block is shown in Figure 3b.
We use the add operation for feature fusion: a simple

and strong established baseline [48]. While other fusion
mechanisms may enhance performance, they are beyond the
scope of this paper.
Intensity Decoder. The Intensity Decoder receives the out-
put of the last layer of our adapter to generate the heatmap,
i.e. latent feature fo

a ∈ R(14∗14)×D and scaling vector
αo ∈ RD. We first pass those two features into two sep-
arated multilayer perceptrons (MLPs). We then use matrix
multiplication between them to produce a small gray-scale
attention logit al ∈ R(14∗14). To get the final attention logit,
we resize al into âl ∈ RW×H . In our implementation, we
set D to 240. Fig. 3a illustrates Intensity Decoder module.
Heatmap loss. Given the predicted logit âl ∈ RW×H and
ground truth heatmap a ∈ RW×H , we compute the L2 loss:

L2 = ∥al − σ−1(a)∥2 (2)

where σ−1(x) = ln x
1−x is the logit function. Note that we

compute the loss before applying the sigmoid function to
the predicted logit heatmap to avoid the issue of vanishing
gradients.
Mask-related losses. Given the predicted logit âl and
ground truth heatmap a, we use binary cross entropy loss
and dice loss on the masks created from al and a. First, we
apply the sigmoid function σ(x) = 1/(1+exp(−x)) on the
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predicted logit to create the predicted heatmap â. We then
define a function f(·):

f(ai,j) =

{
1 if ai,j > 0
0 otherwise (3)

We apply f(·) on all values of a and â to create the ground
truth mask m and predicted mask m̂. Finally, we apply the
standard dice loss Ldice and binary cross entropy loss Lce as
in [7]. The the final loss for training the Anatomic-Driven
Adapter is

Lh = λ1L2 + λ2Lce + λ3Ldice (4)

where the weights λ1, λ2, λ3 are all set to 1.0.
Classifier. Using the predicted heatmap â ∈ [0, 1]W×H

from the previous step, we multiply â with the image x
element-wise to re-weight the importance of all pixels. Af-
terwards, we use a Visual Intense Encoder and Linear layer
followed by Softmax activation as Classifier to extract and
predict the finding label y. In our implementation, the Vi-
sual Intense Encoder is the BiomedCLIP Visual Encoder.
Finally, we use a cross entropy loss to guide the classifier.

4. Data preparation
4.1. Settings

REFLACX [19] provides eye gaze data for more than
2,500 CXRs from MIMIC-CXR [16], where each gaze
sequence is captured using a device with sensitivity of
1000Hz. However, REFLACX does not provide a gaze
map for each anatomic part of the lung. To construct the
disease-level gaze heatmap ground truth, we manually an-
notate the data. The process of creating the ground truth is
discussed in Sections 4.2 and 4.3. Note that the only cat-
egory that has more than 300 samples after annotating is
Cardiomegaly. Therefore, Cardiomegaly is treated as a sep-
arate subset, while all other diseases are categorized into
left or right lung subsets. After labeling the data, we split it
into four distinct settings below

• C: Only samples with verbal transcript that specifically
mentions cardiomegaly.

• L: Only samples with transcript that specifically men-
tions left lung.

• R: Only samples with transcript that specifically men-
tions right lung.

• M: Merging all samples from C, L, and R.
For each subset, we split 70% for training, 15% for eval-

uation, and 15% for testing. We also keep the balance be-
tween positive and negative ratio to be 1:1. The data distri-
bution is shown in Table 2.

4.2. Ground truth heatmap

To create the ground truth heatmap, we perform two
steps: make anatomic masks and filter fixations. Figure 4

Table 2. Data distribution corresponding to four distinct settings:
C: cardiomegaly, L: Left lung, R: Right lung, M: entire chest and
merging all samples from the C, L, and R subsets.

Settings No. samples (train:val:test)

C 611:131:132
L 631:143:145
R 575:129:125
M 1817:403:402

demonstrates the overall pipeline for making ground truth
gaze heatmaps.
Anatomic masks. REFLACX also does not provide
anatomic masks, so we have to create these masks as well.
Currently, the anatomic masks for three big parts are pro-
vided by EGD-CXR [17]: left lung, right lung, and the me-
diastinum. We finetune SAMed [51] on EGD-CXR, then
use the finetuned model to make inferences on REFLACX.
Then, we manually correct the segmentation masks if there
is any problem. For example, we heuristically cut out the
top one third of each mediastinum mask to make the heart
masks, but automatic script may cut too much, so we have
to fix it.
Filtering fixation sequence. For a particular anatomic re-
gion, we can acquire the fixations by looking for keywords
in the provided transcripts. For example, cardiomegaly
or enlarged and cardiac for setting C. Then, we will
pick the rightmost sentence to decide the upper end of the
interval containing our desired fixations. Specially, given
a sequence of sentences {s1, s2, . . . , sn}, if we find s3, s4
and s10 contain the keyword, we will use s10. As a result,
the chosen fixations are in interval [0, e], where e is the end-
ing time of s10. Using the predicted mask from before, we
exclude any fixation point located beyond its boundaries.
Note that the starting time of 0 is required to capture po-
tentially relevant visual information from the moment the
radiologist takes their very first glance. Finally, by applying
a Gaussian filter with radius of 150 on the chosen fixations’
coordinates, we obtain the final ground truth heatmap. More
details can be found in our Supplementary Material.
Anatomical prompt. We also need the input prompt to
guide the model. For our anatomical prompt, we use the
prefix ”diagnosis of {}”. After the prefix, we append
our target: ”left lung” for left lung heatmap prediction,
”right lung” for right lung heatmap, and ”heart” for
heart heatmap.

In order to ensure the validity of the results and the effec-
tiveness of the automated process, all corrections are metic-
ulously examined and carried out by expert radiologists.

4.3. Classification

Based on our four distinct settings, we design four yes/no
questions for classifying findings:
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Figure 4. The pipeline of creating ground truth gaze map from eye
gaze dataset.

• C: Is there cardiomegaly?
• L: Is there a finding (excluding Cardiomegaly) in the

left lung of the image?
• R: Is there a finding (excluding Cardiomegaly) in the

right lung of the image?
• M: Is there a finding in the masked image?

5. Experiments and Results
5.1. Experiment settings

Implementation details. The ViT adapter is an 8-layer vi-
sion transformer with dimension of 240, 6 attention heads,
and an input patch size of 16 × 16. The BiomedCLIP’s vi-
sual encoder is a 12-layer ViT-B/16 pretrained on resolution
2242. The BiomedCLIP’s text encoder is a 12-layer BERT
with a vocab size of 30, 522. We freeze both the text en-
coder and visual encoder of BiomedCLIP in the heatmap
prediction and classification stages. The MLPs in the In-
tensity Decoder have 3 fully connected layers and hidden
dimension of 256. We proceed to train them with a learn-
ing rate of 0.0001, batch size of 16, 60, 000 iterations, and
AdamW optimizer [26]. The training process takes roughly
4 hours on a single Quadro RTX 8000 GPU. The hyper-
parameter and fusion layer choices are described in Supple-
mentary Materials.
Comparison. For the black-box approaches, we train a
ResNet-101 [13] on our settings. Then we use Relevance-
CAM [21], Grad-CAM [39], Grad-CAM++ [4], and Inte-
grated Grad-CAM [38] to get the performance of various
CAM methods. For the heatmap prediction approach, we
use Karargyris et al. [17] and TransUNet [6] to compare
with our proposed method. Note that, both ResNet-101 and
Karargyris et al. are trained on separated settings, i.e. C,
L, and R subsets, because we have one input with three out-
puts. Then, we take the average of all subsets to get the final

scores. Meanwhile, our proposed method is trained on only
M subset.
Metrics. To quantify the performance at capturing radiol-
ogist’s intensity, we use the mean of L2 (mL2), L1 (mL1),
Structural SIMilarity (mSSIM), and peak signal-to-noise ra-
tio (mPSNR) over all samples. On the other hand, we also
need to measure how well the heatmap can filter out irrele-
vant pixels by using intersection over union on foreground
(fgIoU) and background (bgIoU). Additionally, we also use
Frequency Weighted IoU (fwIoU).

5.2. Qualitative results

Figure 5 shows the difference of our results compared
to other results from Karargyris et al. [17] and CAM meth-
ods. Despite being trained on 3 different subsets, the CAM
methods produce bad and unreliable heatmaps because we
do not constrain them. Note that, although Karargyris et
al.’s predicted heatmap is not too far off and its accuracy
is 75% (Table 4), its Grad-CAM visualizations show that
Karargyris et al. is using mostly irrelevant information to
classify and produce heatmaps. Unlike the aforementioned
results, our method produces more precise heatmaps thanks
to the radiologist-based heatmap constraint.

Moreover, we can also see from Figure 5 that Karargyris
et al. [17] results are bigger than ours. Therefore, it has
a better chance at covering the ground truth heatmap and
has a better chance at achieving a high fgIoU score with a
high false positive rate. However, the score for the intensity
should not be as high because there are many regions that
should be paid much less attention.

5.3. Quantitative Results

Table 3 shows that our method achieves superior perfor-
mance over other heatmap generators. Among the CAM-
based methods, Integrated Grad-CAM is the highest scor-
ing, but its scores are still lower than methods that directly
predict heatmaps. For instance, Integrated Grad-CAM has
a fgIoU score lower than ours by approximately 25 units. In
terms of ”where to look at”, Karargyris et al.’s IoU scores
closely match our method. In particular, ours has a slightly
lower fgIoU than Karargyris et al. by 1.3, but our method
has a better bgIoU by approximately 9 unit.

In regards to intensity-type metrics, our method is su-
perior in all metrics. Specifically, our methods outper-
form Karargyris et al. with +0.28 mSSIM, +4.49 mPSNR,
−0.08 mL1, and −0.03 mL2. This agrees with our visual
analysis in Figure 5.

Table 4 shows that our pipeline achieves the highest ac-
curacy at 76%, despite using only a portion of the input im-
age based on our predicted attention heatmap. Note that our
accuracy is similar to Karargyris et al.’s, implying that using
a radiologist-based heatmap to mask the input image does
not harm, and might even enhance overall performance.
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Figure 5. Comparison of the results from various CAM methods, Karargyris et al. [17], and ours. Relevance-CAM [21], Grad-CAM [39],
and Grad-CAM++ [4] disappoint with unreliable heatmaps. Integrated Grad-CAM [38] exhibits some promise despite imprecision and
error. Karargyris et al. [17] performs well. However, our approach stands out as the closest match to the ground truth.

5.4. Ablation study

Heatmap prediction of particular setting. Table 5 shows
the robustness of our model across all settings. Our model
achieves high performance with marginal difference be-
tween the full setting (M) versus subsetting C, L, and R.

The importance of mask-related losses. During training
process, we notice that the gradient flow of L2 is not enough
for the model to learn where to look, and it can easily col-
lapse to a local minima where a metric like mL2 is good,

but other metrics like fgIoU are bad. As shown in Table 6,
fgIoU dramatically drops to 4.06, while mL2 is 0.03. There-
fore, we use masks created from the heatmaps together with
cross entropy loss and dice loss to guide the model.
The importance of scaling vector α. We define a learn-
able scaling vector α in Section 3.2 to help the model learn.
From the output fo

a ∈ RW×H×D, it is true that we can
naively create the final output by taking the mean of the last
dimension. However, as shown in Table 7, the inflexibility
of naively averaging the feature space effectively prevents
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Table 3. Performance comparison with state-of-the-art methods. Our I-AI stands out for its fine-grained localization and precision. Note
that Grad-CAM (Karargyris et al. [17]) method extracts the heatmap from Karargyris et al. [17] using Grad-CAM.

Methods Location Intensity
fgIoU↑ bgIoU↑ fwIoU↑ mSSIM↑ mPSNR↑ mL1↓ mL2↓

Relevance-CAM [21] 15.49 40.00 37.25 0.10 5.64 0.50 0.29
Grad-CAM [39] 18.91 78.12 71.49 0.24 10.40 0.22 0.11
Grad-CAM++ [4] 8.76 79.85 71.88 0.20 10.69 0.20 0.09
Integrated Grad-CAM [38] 12.27 82.44 74.58 0.37 12.48 0.17 0.07
Grad-CAM (Karargyris et al. [17]) 6.68 54.81 49.97 0.36 9.62 0.27 0.12
Karargyris et al. [17] 39.59 83.69 79.26 0.55 13.77 0.16 0.05
TransUNet [6] 33.68 90.13 84.54 0.83 12.79 0.09 0.06

I-AI (Ours) 37.27 92.44 86.96 0.83 18.26 0.08 0.02

Table 4. Accuracy comparison between all classifiers.

Model Accuracy(%)

Resnet-101 71.64
Karargyris et al. 75.12
TransUNet 74.88

I-AI (Ours) 76.86

Table 5. Ablation study: Heatmap prediction of particular settings.

Settings fwIoU↑ mSSIM↑ mPSNR↑ mL1↓
C 87.42 0.84 18.80 0.07
L 86.51 0.85 18.76 0.08
R 87.16 0.82 17.48 0.10
M 86.96 0.83 18.26 0.08

Table 6. Ablation study: the impact of losses on heatmap predictor.

Losses Location Intensity
L2 Lce Ldice fgIoU↑ fwIoU↑ mPSNR↑ mL2↓
✓ ✗ ✗ 4.06 81.80 16.62 0.03
✗ ✓ ✓ 38.16 85.04 13.11 0.04
✓ ✓ ✓ 37.27 86.96 18.26 0.02

Table 7. Ablation study: the scaling vector on anatomic-driven
heatmap predictor.

Settings fwIoU↑ mSSIM↑ mPSNR↑ mL1↓
w/o α 62.87 0.31 12.59 0.17
w/ α 86.96 0.83 18.26 0.08

the model from learning.
The importance of radiologist-based heatmap in classifi-
cation. As shown in Table 8, the classifier can be improved
by using the ground truth heatmap. The area ratio is defined
as H

T , where H is the number of heatmap values larger than
0, and T is the number of pixels. Even though the predicted
heatmaps cover more area, the performance does not scale
accordingly. We can see that correctly identifying where
and how long to look is more beneficial than simply cover-

Table 8. Ablation study: classification performance using pre-
dicted gaze map versus ground truth gaze map.

Settings Heatmap Area ratio (%) Accuracy(%)

C Ground truth 21.49 83.33
Ours 43.31 80.30

L Ground truth 16.43 81.37
Ours 43.14 74.48

R Ground truth 18.18 80.00
Ours 43.95 75.20

M Ground truth 18.18 81.34
Ours 43.49 76.86

ing a larger part of the image.

6. Conclusion
We present I-AI, a novel unified controllable & inter-

pretable pipeline to decode and reconstruct radiologists’ in-
tense focus and diagnosis from CXR. Our I-AI model can
simultaneously address three critical questions: where a ra-
diologist looks, how long a radiologist focuses on specific
areas, and what findings a radiologist diagnoses. Our I-
AI achieves effective interpretability by aligning the output
(findings) with intermediate layers (heatmap) and controlla-
bility through prompt-guided intensity generation and find-
ing classification. Extensive experiment shows the superi-
ority of our I-AI approach compared to other methods, even
when utilizing only a portion of the image. This highlights
the importance of focusing on the most relevant regions
rather than processing the entire input indiscriminately.
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