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Abstract

This paper addresses the challenging problem of open-
vocabulary object detection (OVOD) where an object detec-
tor must identify both seen and unseen classes in test images
without labeled examples of the unseen classes in training.
A typical approach for OVOD is to use joint text-image em-
beddings of CLIP to assign box proposals to their closest
text label. However, this method has a critical issue: many
low-quality boxes, such as over- and under-covered-object
boxes, have the same similarity score as high-quality boxes
since CLIP is not trained on exact object location informa-
tion. To address this issue, we propose a novel method,
LP-OVOD, that discards low-quality boxes by training a
sigmoid linear classifier on pseudo labels retrieved from
the top relevant region proposals to the novel text. No-
tably, LP-OVOD seamlessly integrates the knowledge dis-
tillation technique from ViLD, resulting in a new state-of-
the-art OVOD approach. Experimental results on COCO
affirm the superior performance of our approach over prior
work, achieving 40.5 in APnovel using ResNet50 as the
backbone and without external datasets or knowing novel
classes in training. Our code will be available at https:
//github.com/VinAIResearch/LP-OVOD.

1. Introduction

Open-vocabulary object Detection (OVOD) is an impor-
tant and emerging computer vision problem. The task is to
detect both seen and unseen classes in test images, given
only bounding box annotations of seen classes in the train-
ing set. Seen classes are called base classes while unseen
classes are called novel classes, both explicitly specified by
their names. Novel classes are determined based on the
availability of annotations for those classes in the training
set. Classes present in training images without annotations
are still considered novel classes. OVOD has various appli-
cations where a detector should be capable of extending its
detected categories to novel classes without human anno-
tation such as in autonomous driving or augmented reality

*The first two authors contribute equally.

Figure 1. Comparison of box predictions for novel classes ‘bus’
and ‘cake’ between ViLD [10] (top) and our approach (bottom).
Low-quality boxes have similar scores to high-quality ones, lead-
ing to high false positive (left) and false negative rates (right) in
ViLD while being eliminated in our LP-OVOD.

where new classes can appear in deployment without anno-
tation. OVOD is also useful as an automatic labeling system
in scenarios where it is impractical for annotators to exhaus-
tively label all objects of all classes in a large dataset.

The main challenge in OVOD is to detect novel classes
without labels while maintaining good performance for
base classes. To address this challenge, a pretrained visual-
text embedding model, such as CLIP [28] or ALIGN [15],
is provided as a joint text-image embedding where base and
novel classes co-exist. This embedding can be used to align
box proposals with their closest classes. However, for each
object in the image, low-quality (over- and under-covered-
object boxes) and high-quality (perfectly match the objects’
extent) box proposals can co-exist as they have the same
similarity scores to the text embeddings. This is because
CLIP is trained on images without object location informa-
tion, leading to high false positive and false negative rates
in the OVOD approaches as shown in Fig. 1.

To address this limitation, we propose a novel linear
probing method called LP-OVOD. This technique involves
training a linear classifier for novel classes using features
from the penultimate layer of a Faster R-CNN model pre-
trained on base classes. Despite being trained solely on

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. The feature embeddings of COCO novel classes are ex-
tracted from the penultimate layer of a Faster R-CNN pretrained
on base classes. These embeddings are highly discriminative,
which motivates us to learn a robust classifier from them.

base classes, these features are remarkably discriminative
for novel classes (Fig. 2). To generate pseudo labels for
the linear classifier, we extract box candidates from the
most relevant proposal boxes associated with the novel text.
This way, our approach effectively harnesses related classes
within training images, even without annotations. These re-
lated classes include exact and similar classes like ‘kitten’
and ‘cat’, or ‘pony’ and ‘horse’. Importantly, we do not
assume novel class presence in training images.

Additionally, for smooth integration with the linear clas-
sifier covering both base and novel classes, without man-
ual score adjustment, we propose using a sigmoid classi-
fier. The sigmoid classifier predicts each class indepen-
dently, making it conducive to swift combination. By con-
catenating the weights of the novel class linear classifier
with those of the base class linear classifier, our approach
facilitates object classification across both base and novel
classes. This classification score, combined with the distil-
lation score from ViLD’s knowledge distillation head [10],
significantly enhances the model’s ability to differentiate
coarse-grained and fine-grained classes.

We demonstrate the effectiveness of our approach on two
standard OVOD datasets: COCO [22] and LVIS [11]. LP-
OVOD significant improvement over state-of-the-art meth-
ods, without relying on external datasets or retraining the
whole network whenever novel classes arrive.

In summary, the contributions of our work are as follows:
• A linear probing approach that leverages the highly

discriminative features extracted from the penultimate
layer of a pretrained Faster R-CNN on base classes to
train a linear classifier for novel classes on the pseudo
labels from retrieving the top relevant box proposals.

• Sigmoid classifiers for both pretraining on base classes
and linear probing on novel classes to predict class
scores independently, forming a unified classifier for
both base and novel classes in testing.

In the following, Sec. 2 reviews prior work; Sec. 3 spec-
ifies our approach; and Sec. 4 presents our experimental re-
sults. Sec. 5 concludes with some remarks.

2. Related Work
Object detection approaches aiming to localize and clas-
sify objects in images can be classified into three groups:
anchor-based, anchor-free, and DETR-based detectors.
Anchor-based detectors, such as Faster RCNN [32], Reti-
naNet [21], and YOLO [31], first classify and then regress
the predefined anchor boxes. In contrast, anchor-free detec-
tors like CenterNet [48] and FCOS [34] regress the bound-
ing box extent directly without using predefined anchor
boxes. DETR-based detectors [3,19,23,37,44,50] leverage
encoder-decoder transformer architecture along with one-
to-one matching loss to predict object bounding boxes in
an end-to-end manner without using NMS. However, these
methods are designed to work in a closed-vocabulary set-
ting, where detectors are trained and evaluated on prede-
fined categories, unlike our OVOD setting.

Few-shot object detection (FSOD) approaches [7, 27, 36,
41] aim to detect novel objects with a few labeled examples.
On the other hand, OVOD only requires the names of the
novel classes instead. These two inputs are complementary
since some fine-grained classes may be easier to identify
through exemplars, while others may be more common and
easier to identify through their names.

Zero-shot or open-vocabulary object detection (ZSOD/
OVOD) aims to detect unseen categories given the class
name. To enable open-vocabulary learning, during training,
we are provided with labeled examples of the base classes
and a pretrained word embedding (such as Word2vec [24],
GloVe [26]), or vision-language models (such as CLIP [28],
ALIGN [15]). OVOD methods can be grouped as follows:

External-dataset-based methods [2, 8, 9, 14, 20, 25, 30,
35, 39, 43, 46, 47] utilize huge external datasets, including
image-caption pairs or image-level labeled annotations, to
improve the pretrained vision-language model or detectors
to recognize more classes, including the novel ones. Thus,
these methods have an advantage over those that do not.

Novel-class-aware methods including OV-DETR [42],
VL-PLM [45] assume that novel categories are known dur-
ing training. These methods retrieve large-scale region pro-
posals of novel classes based on the joint text-image embed-
ding of CLIP [28] as pseudo-GT labels, which are jointly
trained with GT-labeled examples of base classes. As a re-
sult, these methods need to regenerate the pseudo labels and
retrain the detectors whenever new classes arrive.

Novel-class-unaware methods [5, 10, 18, 40] follow the
same setting as ours. ViLD [10] uses knowledge distil-
lation from CLIP visual features to learn the embedding
for unseen categories. DetPro [5] proposes a learnable-text
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Figure 3. Overview of our approach. LP-OVOD starts with extracted ROI features from Faster R-CNN [32], following the initial steps.
During pretraining (left), a distillation head mimics CLIP’s predictions, like VilD [10]. We replace the softmax classifier with a sigmoid
variant, trained using base class labels. In the linear probing phase (middle), a novel sigmoid classifier with a trainable linear layer is
trained using pseudo labels from novel classes. These labels are derived from top box proposals based on novel text embeddings. In
inference (right), we concatenate both sigmoid classifier weights for a unified classifier spanning base and novel classes. This unified
classifier independently predicts class scores. Final detection scores result from combining classification and distillation scores.

prompt instead of a fixed-text prompt. F-VLM [18] utilizes
a pretrained CLIP’s image encoder as a backbone to retain
the locality-sensitive features necessary for detection.

However, these methods attempt to align the text embed-
ding with the feature embedding of each proposal to predict
its class. In contrast, our method approaches a different way
that learns a linear classifier for novel classes using features
extracted from a Faster R-CNN pretrained on base classes.

3. Our Approach

Problem statement: During training, we are provided with
a large set of annotated examples of base classes CB , i.e.,
bounding boxes bi and their categories ci ∈ CB . In testing,
given the names of novel classes CN , our goal is to detect
objects of both base and novel classes, i.e., ĉi, b̂i, where ĉi ∈
CB∪CN for test images. To facilitate learning, a pretrained
CLIP [28] is provided as the joint image-text embedding of
both base and novel classes.

Our scope: Our approach strictly assumes that we do not
know novel classes during training, as we cannot antici-
pate the classes that an open-vocabulary detector (OVD)
will encounter in practical use. Additionally, to ensure a
fair comparison, we utilize only the images and annotations
provided by each benchmark without any external datasets,

such as image-caption or image-level label datasets.
Fig. 3 illustrates our approach, which is based on Faster

R-CNN [32]. We adopt the same backbone, region pro-
posal network (RPN), and box regression modules, and re-
fer readers to [32] for details. However, we make two mod-
ifications: replacing the softmax classifier with a sigmoid
classifier and adding a distillation head as in ViLD [10].
For novel classes, we extract features from the top relevant
proposals to the novel text embedding as pseudo labels for
training a sigmoid classifier of the novel classes. In testing,
we concatenate the weights of the two sigmoid classifiers to
form a unified sigmoid classifier for object detection.

3.1. Pretraining on Base Classes

To accelerate learning of novel classes during testing, we
propose substituting Faster R-CNN’s softmax classifier [32]
with a sigmoid variant. This pretrains the classifier on base
classes, transforming the task from multi-category classifi-
cation to detecting the presence or absence of a category
within an image. This prevents new class embeddings from
clustering with base class embeddings, as shown in Fig. 2.
This classifier also independently predicts each category.
This design enables seamless integration of newly trained
classifier weights with those of base classes, creating a uni-
fied classifier for both base and new classes. This eliminates
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Figure 4. Top-4 box proposal retrievals from CLIP’s embeddings
of four novel classes: ‘elephant’, ‘dog’, and ‘knife’. The quality
is good enough to be used as pseudo labels for training a few-shot
classifier on novel classes.

the need for retraining or temperature adjustments.
Concretely, for each proposal b̃i, we extract ROI features

from the backbone. These features are used by the classifi-
cation and distillation heads to obtain classification feature
f cls
i and distillation feature f dis

i , respectively. We jointly
train a new sigmoid classifier and the distillation head. The
sigmoid classifier learns from base class ground-truth labels
ci using sigmoid focal loss [21]. Simultaneously, the distil-
lation head is guided by CLIP’s image embedding eimage

i ,
which comes from cropped images of proposal b̃i. The dis-
tillation head is trained using L1 loss. In particular,

LBase
cls =

∑
i

Focal loss(Sigmoid(f cls
i ;WB), ci), (1)

Ldis =
∑
i

∥f dis
i − eimage

i ∥1, (2)

where WB are the weights of the base classes.

3.2. Linear Probing on Novel Classes

As illustrated in Fig. 1, low-quality boxes usually have
the same similarity score to the novel text embeddings as
the high-quality ones do, resulting in high false positive and
false negative rates. Therefore, we need to have better pos-
itive/negative proposals for training a sigmoid classifier to
discard these low-quality proposals.

To this end, first, the top relevant proposals of each
novel class are retrieved and served as pseudo-GT labels
c̃i. Specifically, we extract all image embeddings eimage

i of
all proposals b̃i having the objectness score oi larger than τ
in the training set. For each novel category with text em-
bedding etext

c where c ∈ CN , we retrieve the top K closest
proposals in order to form a set P = {(b̃i, c̃i)}i=1..K×CN

using cosine similarity cos(etext
c , eimage

i ). We visualize the
examples of top-4 retrieved proposal for four novel classes
in Fig. 4. To speed up the retrieval process, we resort the

Faiss [16] tool. Then, we leverage the sampling mecha-
nism of Faster R-RCNN to sample positive/negative pro-
posals where the positives P+ = {(b̃i, c̃i)}, c̃i ∈ Nc are the
ones having IoU > 0.5 with the pseudo-GT boxes P while
the rest are the negatives P− = {(b̃i, 0)}.

When novel classes arrive, a new sigmoid classifier WN

is added on top of the pretrained classification feature f cls
i .

The sigmoid classifier for novel classes is trained as follows:

LNovel
cls =

|P+∪P−|∑
i=1

Focal loss(Sigmoid(f cls
i ;WN ), ci), (3)

where WN are the weights of the novel classes.
Discussion: Our approach achieves speed, requiring

only 5 minutes on COCO, as we focus solely on retriev-
ing top proposals. This differs from OV-DETR [42] and
VL-PLM [45], which extract pseudo labels from the entire
training set for joint training with base class labels. More-
over, our approach does not hinge on acquiring precise pro-
posals for the novel text. This adaptability arises because
our model proficiently classifies fine-grained classes, aided
by the distillation head. Consequently, proposals from re-
lated classes also yield strong results, minimizing the need
for precise novel class proposals, even in scenarios where
training data might lack examples of novel classes.

3.3. Inference on Both Base and Novel Classes

Given a proposal box b̃i with classification feature f cls
i

and distillation feature f dis
i , the inference on both base and

novel classes is visualized in the right of Fig. 3.
For the classification head, we concatenate the weights

of the sigmoid classifiers learned on the base and novel
classes to form a unified classifier with weight W =
[WB ;WN ]. The classification score scls

i is calculated as:

scls
i = Sigmoid(f cls

i ;W ) ∈ [0, 1]|CB |+|CN |. (4)

For the distillation head, we compute the distillation
score sdis

i as the softmax score of the cosine similarity be-
tween the distillation features f dis

i and text embeddings etext
c

with temperature κ as:

sdis
i = Softmaxc

(
cos(f dis

i , etext
c )

κ

)
∈ [0, 1]|CB |+|CN |. (5)

Finally, the final score for prediction of each proposal b̃i
with objectness score oi is computed as:

si = oi ·

{
scls
i for base classes
(scls

i )β(sdis
i )1−β for novel classes

(6)

where β are coefficient hyper-parameter for novel classes.
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Method Venue Training source Box AP on COCO Mask AP on LVIS
APnovel APbase AP APr APf APc AP

OVR-CNN [43] CVPR 21 22.8 46.0 39.9 - - - -
XPM [14] CVPR 22 27.0 46.3 41.3 - - - -
RegionCLIP [46] CVPR 22 31.4 57.1 50.4 17.1 27.4 34.0 28.2
PromptDet [8] ECCV 22 26.6 59.1 50.6 19.0 18.5 25.8 21.4
Detic [47] ECCV 22 27.8 47.1 42.1 17.8 26.3 31.6 26.8
PB-OVD [9] ECCV 22 30.8 46.1 30.1 - - - -
OWL-ViT [25] ECCV 22 41.8 49.1 47.2 16.9 - - 19.3
VLDet [20] ICLR 23 32.0 50.6 45.8 21.7 29.8 34.3 30.1
MS-OVIS [35] CVPR 23 31.5 - - - - - -
BARON [39] CVPR 23

image captions in CB ∪ CN

instance-level labels in CB

(use external datasets)

42.7 54.9 51.7 22.6 27.6 29.8 27.6

OV-DETR [42] ECCV 22 29.4 61.0 52.7 17.4 25.0 32.5 26.6
VL-PLM [45] ECCV 22

instance-level labels in CB

known novel classes during training 34.4 60.2 53.5 17.2 23.7 35.1 27.0

ZSD [1] ECCV 18
instance-level labels in CB

(zero-shot object detection)

0.31 29.2 24.9 - - - -
PL [29] AAAI 20 4.12 35.9 27.9 - - - -
DELO [49] CVPR 20 3.41 13.8 11.1 - - - -

ViLD [10] ICLR 22

instance-level labels in CB

unknown novel classes during training

27.6 59.5 51.2 16.6 24.6 30.3 25.5
RegionCLIP† [46] CVPR 22 14.2 52.8 42.7 - - - -
DetPro‡ [5] CVPR 22 19.8 60.2 49.6 19.8 25.6 28.9 25.9
F-VLM [18] ICLR 23 28.0 43.7 39.6 18.6 - - 24.2
CORA [40] CVPR 23 35.1 35.5 35.4 - - - -
LP-OVOD (ours) - (with OLN [17] proposals) 40.5 60.5 55.2 19.3 26.1 29.4 26.2
LP-OVOD (ours) - (with OWL-VIT [25] proposals) 44.9 59.4 55.6 23.0 28.0 30.4 28.6

Table 1. Performance on COCO and LVIS. ‘-’ indicates unreported number. † is an alternate RegionCLIP version using only COCO for
training. ‡ is our COCO DetPro re-run, excluding LVIS transfer. Methods in faded rows are for reference only. Best results, second best .

4. Experimental Results

Datasets: We conduct our experiments using the OVOD
versions called OV-COCO [1] and OV-LVIS [10] of two
public datasets: COCO [22] and LVIS [11]. The OV-COCO
dataset comprises 118,000 images with 48 base categories
and 17 novel categories. OV-LVIS [11] shares the image
set with OV-COCO. Its categories are divided into ‘fre-
quent’, ‘common’, and ‘rare’ groups based on their occur-
rences, representing the long-tailed distributions of 1,203
categories. We treated the ‘frequent’ and ‘common’ groups
of 866 categories as the base classes while considering the
rare’ group of 337 categories as the novel classes.

Evaluation metrics: Consistent with the standard OVOD
evaluation protocol [10,46], we report the box Average Pre-
cision (AP) with an IoU threshold of 0.5 for object detec-
tion on the COCO dataset, i.e. APnovel for novel classes,
APbase for base classes, and AP for all classes. For instance
segmentation on the LVIS dataset, we report the mask AP,
which is the average AP over IoU thresholds ranging from
0.5 to 0.95, i.e., APr,APf , APc, and AP for ‘rare’, ‘fre-
quent’, ‘common’, and all classes, respectively.

Implementation details: In our implementation, we use
the Faster R-CNN detector [32] for COCO and the Mask-
RCNN detector [12] for LVIS, both with the ResNet50 [13]

backbone. The ResNet50 backbone is initialized with the
self-supervised pre-trained SoCo [38]. We use multi-scale
training with different image sizes while maintaining the as-
pect ratio for data augmentation. We employ OLN [17] as
the object proposal network. For training on base classes,
we use the SGD optimizer with an initial learning rate of
0.02 and an image batch size of 16. We adopt the 20-epoch
schedule from MMDetection [4], where the learning rate is
decreased by a factor of 10 after the 16th and 19th epochs,
and apply a linear warm-up learning rate for the first 500
iterations. For quick adapting to novel classes, we set the
objectness score threshold to τ = 0.6 to filter proposals be-
fore retrieval. We train the novel weights WN for 12 epochs
using the SGD optimizer with an initial learning rate of 0.01
and decreasing the learning rate by a factor of 10 after the
8th and 11th epochs. In testing, we use a temperature of
κ = 0.01 for the distillation head.

4.1. Comparison with State-of-the-art Approaches

Results on COCO are shown in Tab. 1 and Fig. 5.
In Tab.1, we compare our approach to diverse methods:
ZSOD, external-data-based, novel-class-aware, and novel-
class-unaware. Our approach significantly outperforms the
second-best (CORA) on COCO by +5.5 in APnovel, while
maintaining a much better base class performance (60.5 vs.
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Figure 5. Qualitative comparison of different approaches on COCO’s novel classes. The first four columns show our superior perfor-
mance while the last one shows a failure case where all of them cannot generate boxes for the airplane due to its rare aspect ratio.

APnovel on COCO APr on LVIS

Ours + RPN [32] 37.2 19.3
Ours + OLN [17] 40.5 19.3

Table 2. The effectiveness of RPN [32] and OLN [17].

Retrieval Sigmoid APnovel APbase AP

27.6 61.2 52.4
✓ 33.2 61.2 53.9
✓ ✓ 40.5 60.5 55.2

Table 3. Ablation study on the contribution of each component.
Retrieval: retrieving top boxes as pseudo labels for novel classes.
Sigmoid: replace softmax with sigmoid classifier.

35.5). Notably, LP-OVOD far exceeds ViLD [10] (our base-
line) by 13 in APnovel, with only a new classification head.
In Fig. 5, our approach excels. RegionCLIP [46] misclas-
sifies foreground instances, and ViLD [10] generates re-
dundancies. The last column showcases a challenge where
methods struggle due to airplane aspect ratio. These results
affirm our effectiveness without external data or known
novel classes in training.

Results on LVIS are shown in Tab. 1 and Fig. 6 reveals that
our results are comparable to DetPro [5], yet the improve-

ment is less pronounced than in COCO. This discrepancy
stems from the semantic distinction between base and novel
classes. In COCO, the difference is relatively high due to
fewer classes, resulting in coarser granularity. In contrast,
LVIS classes are finer-grained, facilitating easier transfer
of learned embeddings from base to novel classes. This
allows swift matching of novel text embeddings with pre-
dicted features during testing, diminishing the significance
of our linear probing method in this context. Nonetheless,
we still significantly outperform our baseline, ViLD [10],
by approximately 3 in APr, courtesy of our proposed clas-
sification head.

4.2. Ablation Study

In this section, we conduct ablation studies on the COCO
dataset on various aspects to analyze our approach.

Impact of different proposal networks. Tab. 2 presents
the results of our approach using RPN [32] and OLN [17]
proposals. OLN is a SOTA object proposal network in the
open-world setting. On COCO, the quality of the OLN pro-
posals is higher than that of RPN with the same supervi-
sion in training, as evidenced by an improvement of +3.3 in
APnovel. This is because OLN is more robust to object sizes
and aspect ratios by replacing foreground/background clas-
sification with centerness and IoU score predictions. How-
ever, when the number of base classes increases, as in the
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Figure 6. Qualitative results of novel classes on the LVIS dataset [11]. Our approach can successfully detect some novel classes
including “lab coat”, “mallet”, and “hand glass”. However, due to the rarity of some novel classes in training, our method retrieves the
proposals of close-meaning classes instead, i.e., “tie” vs “neckerchief”, leading to the wrong prediction in testing.

Features APnovel APbase AP

Classification 35.9 60.5 54.1
Distillation 19.7 60.5 49.8

Table 4. Types of features to learn the sigmoid linear classifier.

# proposals 5 10 20 50 100 200

APnovel 30.5 34.8 38.3 40.3 40.5 39.6

Table 5. Ablation on # retrieved proposals per novel class.

case of LVIS, these predictions become less effective since
the base classes can cover a wider range of object sizes and
aspect ratios of the novel classes.

Ablation study on each component’s contribution is
summarized in Tab. 3. Our baseline is ViLD with OLN
proposals. By using retrieval of top boxes as the pseudo
labels for novel classes, the performance improves signifi-
cantly by +5.6 in APnovel compared to the baseline, while
keeping the performance of base classes intact. Moreover,
combining the sigmoid classifier and the pseudo-labeling
strategy results in the best performance of 40.5 in APnovel.

Study on features to learn the sigmoid classifier. To quan-
titatively show that the classification features of Faster R-
CNN pre-trained on base classes are superior to distillation

β 0.9 0.8 0.7 0.6

APnovel 40.2 40.5 39.7 38.5

Table 6. Study on the coefficient of novel classes β.

features for classifying novel classes, we train a sigmoid
classifier on top of the classification feature f cls

i and the dis-
tillation feature f dis

i , which is trained to distill the CLIP’s
image embedding. The results are presented in Tab. 4. The
feature of the classification head yields 35.9 in APnovel,
greatly outperforming that of the distillation head.

Number of retrieved proposals per novel class. Tab. 5
presents the performance of our approach for different num-
bers of proposals K per novel class in Sec. 3.2. The perfor-
mance improves as the value of K increases and saturates
at K=100. We speculate that a higher number of proposals
provides more diverse examples for training whereas too
many proposals increase the likelihood of including noisy
boxes, resulting in suboptimal performance. Moreover, too
many proposals can slow down the retrieval and few-step
training of the linear classifier for novel classes.

Study on the coefficient of novel classes β is summarized
in Tab. 6. ViLD uses β = 1/3, indicating that the distil-
lation head’s novel scores have more impact on the final
prediction than the classification head’s scores. However,
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Objectness APnovel APbase AP

34.6 61.4 54.4
✓ 40.5 60.5 55.2

Table 7. The importance of objectness score oi in Eq. (6).

Figure 7. The CLIP’s image embeddings of top retrieved boxes.
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Figure 8. Embeddings of some selected base and novel classes.

in our case, we achieve the best performance when using
β = 0.8, implying that the classification score has a greater
contribution than the distillation score to the final score.

The importance of the objectness score in Eq. (6). We
compare the performance of our model with and without
multiplication of the objectness score oi. The object detec-
tor’s objectness score provides an indication of the presence
of an object in an image. Hence, multiplying the final score
by the objectness score can mitigate false positive and false
negative detections. In Tab. 7, we observe a performance
gain of +5.9 in APnovel with the multiplication of the ob-
jectness score compared to the model without it.

Reason to choose top retrieved boxes as pseudo labels.
Unlike the CLIP features of random proposals, the top-
retrieved boxes are distinct as visualized in Fig. 7. There-
fore, these top-retrieved boxes are good candidates for train-
ing the sigmoid classifier for novel classes.

Visualization of the same embedding space of some se-
lected base and novel classes to demonstrate the discrimi-
native capability of our LP-OVOD is illustrated in Fig. 8.

4.3. Transfer from LVIS to Objects365 and VOC

We evaluate the transfer learning performance of our ap-
proach on Objects365 [33] and PASCAL VOC [6] datasets,

Objects365 PASCAL VOC
Method AP AP50 AP75 AP50 AP75

ViLD† [10] 10.2 16.2 10.9 72.2 56.7
DetPro [5] 10.9 17.3 11.5 74.6 57.9

Ours 12.6 18.9 13.1 76.0 59.4

Table 8. Transfer from LVIS to Objects365 and PASCAL VOC.
†denotes the re-implementation of ViLD in the DetPro repository.

following the protocol in [5,10]. We use a pretrained model
on the LVIS dataset, which includes the ‘frequent’ and
‘common’ classes, and evaluate its performance on the vali-
dation sets of Objects365 and PASCAL VOC, consisting of
365 and 20 classes, respectively. For Objects365, we use
part V1 of the newly released Objects365 V2 dataset, con-
sisting of 30,310 images and over 1.2M bounding boxes.
For PASCAL VOC, we retrieve the top K = 10 proposals
per novel class for Objects365 and the top K = 50 pro-
posals for PASCAL VOC and set β = 0.6. Results are re-
ported in Tab. 8. Our approach outperforms ViLD [10] and
DetPro [5] with a substantial margin of approximately +1.5
in APs, demonstrating the effectiveness of our approach in
various transfer learning settings beyond COCO and LVIS.

5. Discussion and Conclusion

Limitations: As shown in Tab. 1, the performance of novel
classes is still lagging behind that of base classes, with a gap
of 20 points in Box AP on the COCO dataset. One of the
main reasons for this is that we did not fine-tune or improve
the box regression for novel classes, as we only focused on
the classification head. This is due to the lack of box annota-
tions for novel classes, which is a common issue in OVOD.
Additionally, CLIP’s visual embeddings are not highly sen-
sitive to the precise box location but only require that the
box contains the object or important parts of the object. As
a result, there is limited information available for improv-
ing the bounding boxes based solely on CLIP. Therefore,
further research on improving box regression would be an
interesting direction for OVOD.

Conclusion: In this work, we have introduced a simple
yet effective approach for OVOD with two contributions.
Firstly, we propose a linear probing approach that utilizes
a pretrained Faster R-CNN to learn a highly discrimina-
tive feature representation in the penultimate layer, which is
then used to train a linear classifier for novel classes. Sec-
ondly, we propose to replace the standard softmax classifier
with a sigmoid classifier that is able to predict scores for
each class independently, which unifies the classifier heads
for both base and novel classes. Our approach outperforms
strong baselines of OVOD on the COCO dataset with an
APnovel of 40.5, setting a new state of the art.
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