
MixtureGrowth: Growing Neural Networks by Recombining Learned
Parameters

Chau Pham1* Piotr Teterwak1* Soren Nelson2* † Bryan A. Plummer1

Boston University1 Physical Sciences Inc2

{chaupham,piotrt,bplum}@bu.edu snelson@psicorp.com

Abstract

Most deep neural networks are trained under fixed net-
work architectures and require retraining when the archi-
tecture changes. If expanding the network’s size is needed,
it is necessary to retrain from scratch, which is expen-
sive. To avoid this, one can grow from a small network
by adding random weights over time to gradually achieve
the target network size. However, this naive approach falls
short in practice as it brings too much noise to the grow-
ing process. Prior work tackled this issue by leveraging
the already learned weights and training data for gener-
ating new weights through conducting a computationally
expensive analysis step. In this paper, we introduce Mix-
tureGrowth, a new approach to growing networks that cir-
cumvents the initialization overhead in prior work. Be-
fore growing, each layer in our model is generated with a
linear combination of parameter templates. Newly grown
layer weights are generated by using a new linear com-
bination of existing templates for a layer. On one hand,
these templates are already trained for the task, providing a
strong initialization. On the other, the new coefficients pro-
vide flexibility for the added layer weights to learn some-
thing new. We show that our approach boosts top-1 ac-
curacy over the state-of-the-art by 2-2.5% on CIFAR-100
and ImageNet datasets, while achieving comparable perfor-
mance with fewer FLOPs to a larger network trained from
scratch. Code is available at https://github.com/
chaudatascience/mixturegrowth.

1. Introduction
Many tasks explore the trade-off between predictive per-

formance and computational complexity, such as neural ar-
chitecture search (NAS) [3, 12, 23, 39], knowledge distilla-
tion [16, 18], and parameter pruning [21, 44]. These meth-
ods result in a well-optimized model during inference but

*Equal contribution
†Work done while at Boston University

are often expensive to train (e.g., [39]). Thus, some re-
searchers have explored an alternative procedure where one
begins with a small network and increases its size over
time (e.g., [14, 46]). By first training a smaller and cheaper
model, this approach can also be used to learn a target archi-
tecture with fewer floating point operations (FLOPs) than
training the target network from the start. The key challenge
is deciding how to initialize any new layer weights after a
growth step that avoids forgetting what the network has al-
ready learned while still leaving room for improvement. As
illustrated in Fig. 1a, prior work explored methods that ini-
tialize new parameters through a computationally expensive
analysis step that selects parameters that decrease the train-
ing loss [46] or increase gradient flow [14].

Our paper seeks to find a solution for a scenario where
we have a fully trained model and wish to expand it to a big-
ger one. To this end, we propose MixtureGrowth, a novel
network growing framework that generates new weights by
learning to reuse and combine parameters from the smaller
network. Our approach is inspired by recent success with
template mixing methods [2, 31, 34, 41, 48], where layer
weights are generated using a linear combination of shared
parameter templates. Each layer obtains custom weights
by using a unique set of linear coefficients, thereby in-
creasing the expressiveness of the shared parameters. The
shared templates and the coefficients are trained jointly
without altering the loss functions or network architecture
for a target task. When compared with traditional neural
networks these methods have reported improved computa-
tional and parameter efficiency [2, 31, 41], reduced training
time [2,31], and improved task performance [31,34,41,48].

A high-level overview of our approach is provided in
Fig. 1b. Specifically, we postulate that since template mix-
ing effectively shares parameters across layers, it can also
be used to initialize new layer weights after a growth step.
We investigate three research questions that were not ex-
plored in prior work. First, template mixing provides a new
mechanism for generating new layer weights after growing.
For example, let us consider increasing the width of a layer
g times, resulting in most layers in the expanded network

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2800

a. Prior Work

Weight
Generator

Data

Current
Weights

Pre-growth
Weight

Post-growth
Weight

b. Mixture Growth (ours)

Shared
Parameter
Templates

Weight
Generator

𝛂oldLinear
Coefficients

𝛂new

Figure 1. A comparison of different strategies in growing neural networks. (a) In prior work (e.g., [14,46]), network growing methods
use loss-based local measures to initialize new weights at growth time. These methods depend on performing analysis using the training data
and the current weights of existing layers, requiring significant computational overhead at the growth step; (b) In contrast, we investigate
a template-mixing based method to grow the network. Given a small trained network, we start off with training another equally-sized
network. Then, parameters of these small networks are shared across layers by template mixing schemes, where additional layer weights
are generated using new linear coefficients for existing templates.

having g2 times the weights of the original network. Since
the weights in the small network are generated using a lin-
ear combination of shared templates, we can generate the
weights of the large network by initializing g2 − 1 new
sets of linear coefficients and concatenating the generated
weights for the large layer (illustrated in Fig. 2). We find
that careful initialization of these new linear coefficients is
still necessary for the best performance, with some strate-
gies, such as replicating the existing coefficients, having a
detrimental impact on training.

The second research question we investigate is whether
we should grow from a single small model, or if fusing two
small models is better. We argue that training an extra small
model provides more diversity in terms of learned features
for the growth process. In a setting where we grow from a
model that is half the width of the large one, then a small
network would only take around 25% of the FLOPs of the
large network making it relatively inexpensive.

The final research question we explore, following up on
the previous question, is to find the optimal time to stop
training the second network and start training a fully grown
one. Given a fixed FLOPs budget, growing early gives more
time to optimize all the layer parameters in the large net-
work. However, this also limits the ability of the second
network, thereby raising the question of when to grow. We
find that our approach is relatively insensitive to the exact
training stage at which a growth step occurs, and could be
used to grow late with minimal impact on task performance.

In summary, our contributions are:
• We develop MixtureGrowth, a novel approach for grow-

ing a neural network over time by concatenating together
weights of the old (small) network to fresh weights gen-
erated from newly initialized linear coefficients used to
combine existing shared parameter templates.

• Our experiments show that MixtureGrowth is an effec-
tive growth method by outperforming the top-1 accuracy
of prior work by 2-2.5% on CIFAR-100 and ImageNet,

demonstrating the effectiveness of our approach.
• We analyze our approach for growing neural networks

along axes such as sensitivity to growth point, the charac-
teristics of learned features, and the effect of fusing two
small models as opposed to growing from a single model.

2. Related Work
Growing Neural Networks has long been an active area
of research; In early work, Ash et al. [1] added neurons in
single-layer systems, which later was extended by Fahlman
et al. [15] to the deep network regime. It became common
to pre-train neural networks greedily stacking Restricted
Boltzmann Machines [4, 20] to construct Deep Belief Net-
works [19]. This was simplified by Vincent et al. [43] with
Stacked Denoising Autoencoders. More recently, Wen et
al. [45] proposed depth growing policies to automatically
grow networks until performance stops improving. Maile
et al. [28] proposed initializing new weights to maximize
orthogonality. However, these works aim to automate net-
work size selection by progressive growth, as opposed to
minimizing the cost of training for a given network size.

In more relevant work, Wu et al. [47] and Chen et
al. [7] replicated weights of the network to progressively
increase its width, while Net2Net [7] leveraged function-
preserving transformations to transfer knowledge when
growing. These approaches replicate weights such that
the pre-growth function is preserved, and then perturb or
add noise to break symmetry to grow. Firefly [46] also
learned an overgrown network and then pruned uninfor-
mative weights. GradMax [14] and NeST [9] initialized
weights to maximize gradient norms. Although these meth-
ods are more efficient than retraining from scratch, many of
them still require a significant computational cost to analyze
how the network should initialize the new network.

Template Mixing improves upon hard parameter sharing,
which directly reuses parameters across layers [8, 50], by

2801

!
!∈#… %!

𝛼#!# 𝑡!#In
pu

t

Output
Network 1 (trained)

Before Growth

Growth

𝑇!

!
!∈#… %"

𝛼&!# 𝑡!&In
pu

t

Output
Network 2

!
!∈#… %!

𝛼#!# 𝑡!#

!
!∈#… %"

𝛼&!# 𝑡!&!
!∈#… %!

𝛼#!& 𝑡!#

!
!∈#… %"

𝛼&!& 𝑡!&

After Growth

In
pu

t

Output

𝑇"

𝑇"𝑇!

Figure 2. Illustration of the growth process in MixtureGrowth models where g = 2 (i.e., double the size): We explore how to grow
models that have weights constructed from linear combinations of templates, which we call Template Mixing Models (see Sec. 3.1). Before
growth, assume that one already has a fully-trained model (denoted as network 1, left) and wishes to expand it. To this end, we first train
another equally-sized model using a different set of templates (network 2) for some number of epochs. Then, we merge the weights of
the two networks so that their weights are tiled in the corners along the diagonal. In this example, we form a model 4x the size and
resume training on the fully grown model (target model, rightmost). Quadrants that share templates but have different linear combination
coefficients are presented as different shades of the same color. The squares correspond to layer weights whose input and output correspond
to the input and output dimensionality. Note that all templates and alpha coefficients are learnable parameters.

representing layer weights as a linear mixture of shared tem-
plates (e.g., [2, 31, 34, 41, 48]). Savarese et al. [34] found
they could use template mixing to boost performance by
sharing across multiple layers within a single network. Iso-
morphic networks [33, 51] can push cross-layer parameter
sharing further by constraining the network to have lay-
ers of identical shape and size. Plummer et al. [31] re-
moved the need to have many identical layers by upsam-
pling/downsampling templates when shared between lay-
ers of different shapes. Interestingly, these methods exhibit
similarities to the concept of modular learning, where net-
work layers are shared across multiple tasks, as explored in
prior research [29, 30]. While modular learning relies on
shared layer weights tailored to individual tasks, template
mixing, in contrast, combines shared templates to dynam-
ically generate layer weights. In this paper, we expand on
the study of template mixing by asking new research ques-
tions not addressed in prior work. Specifically, prior work in
template mixing assumes the network being trained retains
the same size over time. However, in this work, we lever-
age the unique structure of template mixing to generate new
weights when expanding the network during training.

Shrinking Neural Networks alters the size of a model dur-
ing training typically aimed to increase its computational
efficiency at test time. There are two broadly used methods
for this: distilling and pruning neural networks. In neural
network distillation, the goal is to transfer knowledge from
a larger network to a smaller network. The technique, in-
troduced in Hinton et al. [18], replaced one-hot labels with
the predictions of a larger network (i.e. teacher network). In
this way, knowledge from the teacher network is transferred
to the smaller network called student network. Examples of

subsequent work include methods that distill ensembles into
a single model [36] and highlight the importance of the stu-
dent and teacher seeing identical augmentations over long
training periods [6]. In parameter pruning, the goal is to
find and remove unimportant weights (e.g., [27,38,42]), re-
sulting in a more computationally efficient network at a cost
of increases training time as it assumes one has trained the
fully parameterized network until convergence. Contrary to
these tasks, our goal is to reduce the training time of the
large network by growing a neural network over time.

3. Growing via shared parameter initialization

Given a pre-trained small neural network architecture
FS with layers ℓS1,...,N , our goal is to generate the weights of
a larger neural network architecture FL with layers ℓL1,...,M .
Following [14, 46], we evaluate settings where networks
have the same number of layers (i.e., M = N), even though
our approach could be used to grow in depth as well [31,34].
Instead, we vary in the width of each layer, i.e., |ℓLi | > |ℓSi |,
where the operator | · | returns the number of weights in a
layer. In our experiments, set the size of the FL to be twice
that of FS , although other settings are possible with minor
changes to layer weight construction (e.g., as in [31, 41]).
The task then is to generate weights for FL that enable it to
converge quickly using what has been learned in FS . Meth-
ods are ranked on both the computational efficiency of ob-
taining the fully trained model FL as well as the quality of
the final solution measured as task performance.

Prior work for growing neural networks relies on per-
forming a computationally expensive per-layer analysis of
the gradients or training loss to initialize any new param-

2802

eters in FL (e.g., [14, 46]). We avoid this issue by learn-
ing how to generate new weights using a weight generator
based on shared parameters. Note that we refer to weights
as the matrix of numbers used by a layer operation, such as
the filters used by convolutional layers, and parameters as
the matrices being optimized using backpropagation. In tra-
ditional neural networks, weights and parameters typically
refer to the same set of matrices, but in this paper, we gen-
erate layer weights using trainable parameters. The param-
eters are linear combinations of templates which are the re-
sults of a process we refer to as template mixing [31,34,41]
which we briefly review in Sec. 3.1. Next, we discuss our
strategy for learning more expressive parameter templates
using model fusion (Sec. 3.2). Finally, we introduce a pro-
cess of initializing any new weights needed by FL by tiling
weights generated using the templates initially learned from
our small network FS (Sec. 3.3).

3.1. Generating weights with template mixing

Template mixing networks (e.g., [2, 31, 34, 41, 48]) gen-
erate layer weights by combining parameter templates and
have shown they provide superior parameter efficiency and
performance than traditional neural networks. We use the
setting where each parameter template T 1,..,t is the same
size as its corresponding layer in the small neural network
FS (i.e., |T k

i | = |ℓSi |), although parameter templates of dif-
ferent sizes could be also used [41]. Thus, the weights of
the ith layer, donated as ℓSi , are generated via,

ℓSi =
∑

k∈1,...,t

αk
i T

k
i , (1)

where αk
i is a trainable parameter that controls the contri-

bution of template T k
i in generating weights for layer ℓSi .

We begin by pretraining our small network FS using
template mixing. Following [34], we share templates be-
tween any pair of layers of the same size (with a maximum
grouping of two layers in a row that share templates) for the
new weights. For example, if Ti and Ti+1 are used to gener-
ate weights for identical layers ℓSi and ℓSi+1, then they refer
to the same set of shared parameters, and they would not
share templates with layer ℓSi+2, even if was the same size.
The total number of trainable parameters over a standard
neural network only increases by the number of coefficients
αk
i used to generate the weights (resulting in a hundred or so

extra parameters in our experiments during training). Both
the coefficients αk

i and the templates T i are learned jointly
via backpropagation from the task loss, with no additional
loss terms over a standard neural network used during train-
ing. Note that this weight generation process does introduce
some overhead during training, but this increase is negligi-
ble, accounting for just 0.03% of the FLOPs in a forward
pass for a batch size of 64 samples [31].

3.2. Learning robust templates for growing

A primary difference between our MixtureGrowth and
prior work in template mixing (e.g., [2, 31, 34, 41, 48]) is
that the architecture in our first training stage is not the final
network architecture. Instead, we use a standard neural net-
work procedure for learning a small network and then grow
to a larger network, similar to prior work on network growth
(e.g., [14, 46]). Prior work in network growth would ini-
tialize new trainable parameters using a heuristic built from
the small network. This could result in unfavorable initial-
ization as the expressiveness of the large network is much
more significant (due to having many more weights) than
the small network. The methods of prior work in network
growth could be seen as focused on trying to recover (some)
of that additional expressiveness missing in the small net-
work. In contrast, our approach assumes that many of the
templates we have learned in FS will generalize to the new
weights needed after growing to the target network FL.

We explore two variants of our method: one we grow di-
rectly from a single trained model and reuse the templates
for new weights after growth, and another where we learn
an extra model using an independent set of templates before
growth. We call this second approach model fusion, illus-
trated in Fig. 2. Our method is motivated by the idea that in-
dependently trained models learn substantially independent
features [11, 26]. Thus, fusing two models creates a more
robust feature representation, which in turn boosts perfor-
mance. From a pair of small trained networks FS1 , FS2 ,
we use them to initialize and train our target network FL,
which we discuss in the next section.

3.3. Generating weights for the target network

After obtaining the pair of pre-trained small networks
FS1 , FS2 using the approach in Sec. 3.2, the goal is to use
these networks to construct the weights of the large network
FL. From FS , we want to grow it g times larger to obtain
FL. Thus, most layers in the large network require g2 times
the weights. The only exception is the first and last layers,
which are only g times the size as the dimensions of the in-
put and outputs have not changed. Fig. 2 illustrates a tiling
for the weights of each layer where g = 2.

Since our small networks have been trained using tem-
plate mixing, we can generate new weights by using a new
set of coefficients (α in Eq. 1). Therefore, if we need to
generate g2 tiles of weights for a layer, then we would
learn g2 tile-specific coefficients, but the templates would
be shared with other tiles generated from the same small
subnetwork. Of these g2 tile-specific coefficients, we can
generate g2 − 2 new tiles by reusing our existing small sub-
networks FS1 , FS2 , but we must initialize the new coef-
ficients. We investigate multiple strategies for initializing
these coefficients that are described below.

2803

Random coefficients simply initializes new coefficients
randomly from a standard normal distribution. By jointly
optimizing all coefficients and shared templates, the neural
network finds new low-loss regions after growth. However,
it remains uncertain whether a random initialization would
substantially increase diversity for network growth.
Coefficient copying is motivated by the idea that the en-
tire subspace of weights spanned by a linear combination
of templates does not correspond to low loss. Finding new
low-loss combinations without performing a thorough anal-
ysis is challenging, so instead we copy the coefficients of
the subnetworks FS1 , FS2 as the initial starting point for
the new weights. These copied coefficients are not shared,
so although they begin as the same values, they are changed
independently while training FL. This can be seen as pro-
viding a starting initialization that increases the response of
each subnetwork g times in every layer after growing.
Orthogonal coefficients uses orthogonal coefficients when
sharing templates to encourage diversity in the generating
weights, introduced by Savarese et al. [34]. In other words,
when each set of α coefficients can be considered a vector,
all such α vectors that are associated with the same tem-
plates are initialized to be orthogonal following [35].

4. Experiments
Experimental Setup. We assume a trained network is
available to grow. While our method starts with a small tem-
plate mixing model, the baselines employ small networks of
their own settings. For a fair comparison, all small networks
have the same FLOPs (25% of the target network).
Metrics. We rank methods based on their top-1 classifica-
tion accuracy averaged over three runs on all datasets. In
addition, we report the number of floating point operations
(FLOPs) required for training a model. This metric com-
pares computational costs for different models regardless
of their hardware. Thus, it is used widely to evaluate the
efficiency of a network [13, 32, 40]. For our experiments,
we normalize computational complexity across methods by
specifying a model train in the same FLOPs to ensure a fair
comparison. We use fvcore library1 to compute FLOPs.
Baselines. We employ the following baseline methods.
• Random initializes any new weights randomly during

growth. This refers to generating the weights directly,
rather than randomly initializing the coefficients used in
template mixing networks (described in Sec. 3.3).

• Net2Net [7] is based on function preserving initialization
to initialize the new weights in a way such that the predic-
tion is unchanged. This ensures the newly grown model
can have the same ability as the small one preventing the
drop in performance at growth point.

1https://github.com/facebookresearch/fvcore

• Firefly [46] grows a network using pruning. Specifically,
they overgrow the network, optimize it for a few steps,
and then prune the network by using a Taylor Approxima-
tion of the loss function to estimate the importance score
of new neurons. Note that our approach avoids this over-
head by learning to generate new weights by reusing our
shared parameters, making the growing step significantly
more computationally efficient.

• GradMax [14] proposes an approach that seeks to max-
imize the gradients of new neurons. This is motivated
by the observation that initialization with large gradients
results in quick progress on the learning problem. Grad-
Max maximizes the gradients of the loss with respect to
new parameters. It solves this approximately with SVD
at growth time, making the growth step computationally
costly when compared with our approach. We use the au-
thor’s code in our experiments2, which we also use as our
implementation of the Random and Firefly methods.

4.1. Datasets and implementation details

See the supplementary for details not described below.

CIFAR-10 and CIFAR-100 [25] contain 60K images of 10
and 100 categories, respectively. Each dataset is split into
50K images for training and 10K images for testing. We use
the WideResnet architecture [49] to grow from a WRN-28-5
to WRN-28-10. We train the model for 200 epochs on a sin-
gle GPU using stochastic gradient descent. Following prior
work in network growing [14], Batch Normalization [22] is
only used before each block for a fair comparison.
ImageNet [10] contains 1K categories with 1.2M images
for training, 50K for validation, and 100K for testing. We
train ResNet-50 models [17] for 90 epochs with a learn-
ing rate 0.1, decayed by 0.1 at 30, 60, and 80 epochs. We
use stochastic gradient descent with a momentum 0.9, batch
size 256 with cross entropy loss. Before growth, each layer
has half the channels of the final network.

4.2. Results

Tab. 1 reports the performance of growing a neural net-
work on CIFAR-10, CIFAR-100, and ImageNet. We see
that MixtureGrowth is able to get better performance com-
pared with training the target architecture from scratch
(Target network) with half of the FLOPs on CIFAR-100
dataset. As for ImageNet, our approach gets comparable
performance with Target network using just one-third of the
FLOPs. When considering the Target at the same FLOPs,
it outperforms Large Match (i.e. the Target Network but
trained with the same FLOPs as network growing base-
lines) by a significant margin. Thus, our approach is capa-
ble of utilizing the existing small models to obtain a high-
performing model in less time than a standard network.

2https://github.com/google-research/growneuron

2804

Method CIFAR-10 [25] CIFAR-100 [25] FLOPs Norm ImageNet [10] FLOPs Norm

(a) Large (Target network) 96.88% 81.39% 1.00X 76.49% 1.00X
Large Match 96.62% 80.95% 0.45X 73.85% 0.35X
Small 96.53% 80.29% 0.25X 72.48% 0.25X
Small Match 96.60% 80.30% 0.45X 72.89% 0.35X

(b) Random 95.61% 79.08% 0.45X 71.47% 0.35X
Net2Net [7] 95.47% 79.20% 0.45X 72.29% 0.35X
Firefly [46] 95.62% 78.90% 0.45X 71.30% 0.35X
GradMax [14] 95.73% 79.05% 0.45X 71.73% 0.35X
MixtureGrowth w/o fusion 96.05% 79.44% 0.45X 73.02% 0.35X
MixtureGrowth (ours) 96.66% 81.50% 0.45X 74.51% 0.35X

Table 1. Network growing comparison using top-1 accuracy averaged over three runs. (a) Performance of training the target (post-growth)
(Large) network architecture from scratch (WRN-28-10 for both CIFAR datasets and ResNet-50 for ImageNet), as well as the performance
of the small (pre-growth) (Small) architecture (WRN-28-5 for both CIFAR datasets and a ResNet-50 with half the channels as the large
network for ImageNet); (b) Performance of network growing methods, where our approach outperforms the current SOTA.

0.30 0.35 0.40 0.45 0.50 0.55

FLOPs Norm

79

80

81

A
cc

u
ra

cy
(%

)

Gradmax

Firefly

Random

Net2Net

MixtureGrowth (ours)

Target Network

(a) Growing methods by FLOPs

0.26 0.30 0.36 0.40 0.45

FLOPs Norm

74

76

78

80
A

cc
ur

ac
y

(%
)

Orthogonal coef.
Random coef.
Coef. copying

(b) Coefficient initializations

Figure 3. Top-1 Accuracy on CIFAR-100. (a) Network growing methods under varying FLOPs. The dashed line represents the Tar-
get network’s performance trained from scratch using a full training schedule. We find MixtureGrowth not only outperforms Random,
FireFly [46], and GradMax [14], but also outperforms the target network with half the FLOPs; (b) Performance of different coefficient
initialization methods (Sec. 3.3) from growth point. See Sec. 4.3 for discussion.

Prior work on network growth (Tab. 1b) struggles to
boost performance after growing when compared to simply
training a regular small network (Tab. 1a), denoted as Small
and Small Match (i.e. the Small network but trained with
the same FLOPs as network growing baselines). Note that
compared to prior work, we explore larger network archi-
tectures in our experiments (e.g., a ResNet-50 on ImageNet
in our work vs. a VGG11 [37] evaluated in [14]), suggest-
ing these prior methods find generalizing to larger networks
challenging. In contrast, our method can allow the model
to gain improvement over growth and even surpass the tar-
get model on CIFAR-100 with half of the FLOPs. When
compared with other growing methods, our MixtureGrowth
approach gets around 1% higher performance on CIFAR-
10, 2.5% on CIFAR-100, and 2% on ImageNet.

Fig. 3a demonstrates the efficiency and effectiveness of
our method compared with four baselines: Random [5],

Net2Net [7], Firefly [46], and Gradmax [14] across various
FLOPs budgets. Using WRN-28-10 as the target network,
our method consistently outperforms the baselines with the
same budget while being on par with or even outperforming
the target network with half of the FLOPs.

Tab. 3 compares growing in a single step using Mixture-
Growth to growing many times with the long growth sched-
ule used by prior work [14]. In this setting, not only do we
obtain a significant boost in performance compared with the
current state-of-the-art, but do so in half the FLOPs. The
additional FLOPs required by prior work are due to their
growth overhead (discussed at the beginning of Sec. 4).

4.3. Discussion

How should we initialize linear coefficients? The first
research question we explore is how to effectively initial-
ize the coefficients used to generate new layer weights af-

2805

Second Network Training Time (FLOPs)

Dataset 0.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0

CIFAR-100 79.24% 80.16% 80.46% 81.08% 80.9% 81.09% 81.44% 81.27
ImageNet 73.02% 73.74% 73.75% 74.09% 74.16% 74.51% 74.33% 74.31

Table 2. Ablation on growth points where we stop training the second network to train the full model. The first column is the extreme
case where we grow without training the second network (i.e. MixtureGrowth w/out fusion). The rest shows MixtureGrowth’s performance
on varying growth points. Second Network Training Time indicates the proportion of full-training FLOPs that was used to train the second
network, e.g., 0.5 means we train the second network half of its full train before growth. We find that late growth where we almost fully
train the second network before growing gains the best performance (boldface). All runs report top-1 accuracy at the same 0.35X FLOPs.

ter growing. In Sec. 3.3 we describe three different meth-
ods for initializing these new coefficients. We report their
performance in Tab. 4, where we find orthogonal initializa-
tion, which helps promote the most diversity in the gener-
ated weights, outperformed both random initialization and
coefficient copying. Notably, random initialization also per-
forms well and approaches the performance of orthogonal
initialization. Note, for coefficient copying’s results, we
also tested adding some small random noise to break the
symmetry, but it did not substantially affect performance.

To obtain insights into how coefficient initialization
methods perform at the growth step, we plot top-1 accu-
racy starting from the growth step until the end in Fig. 3b.
We find that both orthogonal and random can maintain task
performance despite being provided with new weights at the
moment of growth and start improving performance with
the large network. However, coefficient copying struggles
at the growth step as its performance drops significantly.
We suspect this may be due to the redundancies caused by
reusing and replicating the same coefficients, making it dif-
ficult to learn new informative weights.

Is growing by fusing two small models more effective
than growing from a single model? The second question
we explored was whether we could take advantage of hav-
ing two small networks during growth. Having a pair of net-
works would improve robustness as discussed in Sec. 3.2.
Tab. 1 compares growing with and without model fusion
(last 2 rows), where we find that fusing two models gains a
consistent boost after normalizing by FLOPs.

What is the right point during training to grow? The pre-
vious question sheds some light on the importance of having
a second trained model. However, how long we should train
the second network is remain open. If we train the second
one for a long schedule, then there is not much budget left to
optimize the parameters of the large network. Conversely,
if we grow it too early, then the second network is not suffi-
ciently trained, which in turn may lead to a drop in overall
performance. From this perspective, we can consider Mix-
tureGrowth w/out fusion as an extreme case of early growth
where we do not train the second network but instead grow

0 8 16 24 32 40 48 56 64 72 80 88 96
training epoch

0
8

16
24
32
40
48
56
64
72
80
88
96

tra
in

in
g

ep
oc

h

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0 8 16 24 32 40 48 56 64 72 80 88 96
training epoch

0
8

16
24
32
40
48
56
64
72
80
88
96

tra
in

in
g

ep
oc

h

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0 8 16 24 32 40 48 56 64 72 80 88 96
training epoch

0
8

16
24
32
40
48
56
64
72
80
88
96

tra
in

in
g

ep
oc

h

0.0

0.2

0.4

0.6

0.8

1.0

(c)

0 8 16 24 32 40 48 56 64 72 80 88 96
training epoch

0
8

16
24
32
40
48
56
64
72
80
88
96

tra
in

in
g

ep
oc

h

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 4. CKA of different models at last convolutional layer
over time. (a) Target Network: A smooth pattern that becomes
lighter along the diagonal toward the end of training when training
from scratch; (b) Random: More dark and noisy pattern compared
with the target when growing with random weights; (c) Mixture-
Growth w/out fusion: Without model fusion, the pattern is some-
what similar to the Target, but the representations between epochs
have smaller similarities; (d) MixtureGrowth: In our full model,
we see a clear phase change at the growth point (epoch 63), sug-
gesting rapid learning that occurs after fusing the 2 small models.

to a full network directly. Tab. 2 shows the performance of
different growth points under the same FLOPs budget on
CIFAR-100 and ImageNet datasets. We observe that late
growth where the second network was almost fully trained
gives the best performance. This confirms our assumption
that growing with two networks is more robust.

4.4. Feature analysis

We use Centered Kernel Alignment (CKA) [24] to ana-
lyze the similarity of features over training. For this analy-
sis, we set up MixtureGrowth by training 2 small networks
for 63 epochs, then training the fully grown network af-
terward until reaching 100 epochs in total. For Mixture-

2806

Method Top-1 Acc. FLOPs Norm

(a) Random 79.12% 0.77X
Firefly [46] 78.94% 0.77X
GradMax [14] 79.24% 0.77X

(b) MixtureGrowth 81.50% 0.45X

Table 3. Network growing comparison on CIFAR-100. (a) Us-
ing the long growing schedule used by the authors of GradMax;
(b) MixtureGrowth with single growth for reference.

Method Top-1 Accuracy

Random coefficients 81.41%
Coefficient copying 79.05%
Orthogonal coefficients 81.50%

Table 4. Ablation on coefficient initialization methods (de-
scribed in Sec. 3.3) for MixtureGrowth on CIFAR-100. Orthogonal
initializations perform best, suggesting the importance of having
independent instantiated weights.

0 2 4 6 8 10121416182022242628
Small Net 1's layer

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

Sm
al

l N
et

 2
's

la
ye

r

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0 2 4 6 8 10121416182022242628
Large Net's layer

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

Sm
al

l N
et

's
la

ye
r

0.0

0.2

0.4

0.6

0.8

1.0

(b)

0 2 4 6 8 10121416182022242628
Large Net's layer

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

Sm
al

l N
et

 1
's

la
ye

r

0.0

0.2

0.4

0.6

0.8

1.0

(c)

0 2 4 6 8 10121416182022242628
Large Net's layer

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28

Sm
al

l N
et

 2
's

la
ye

r

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 5. CKA between layers of MixtureGrowth. (a) Mix-
tureGrowth: Small Network 1 vs. Small Network 2; (b) Mixture-
Growth w/o model fusion: Large Network vs. Small Network 1;
(c) MixtureGrowth with model fusion: Large Network vs. Small
Network 1; (d) MixtureGrowth with model fusion: Large Network
vs. Small Network 2; We analyze the similarity of representations
for each pair of layers of a WRN-28-10 on CIFAR-100 dataset.
See Sec. 4.4 for discussion.

Growth w/out fusion, only one small model was trained for
63 epochs, and then we grew. The target network refers to
a full network trained from scratch for 100 epochs.

Fig. 4 shows how features evolve during training over
time using CKA procedure described above. In Fig. 4d,
which visualizes feature similarity, a very clear phase
change in similarity is visible at the growth step at epoch 63.
This indicates that learning at the growth point is very rapid,
suggesting we effectively fuse two independent models in
the growth step. Random weight initialization (Fig. 4b)
reflects a similar change seen in Fig. 4d, but with more
noisy patterns. In contrast, training the target network from
scratch (Fig. 4a), and MixtureGrowth w/out fusion (Fig. 4c)
have a more gradual transition from the beginning of train-
ing towards the end without clear quadrants like Mixture-
Growth. Thus, learning during growth is not rapid, but grad-

ual instead. This provides insight into the effectiveness of
our approach, especially with low FLOP budgets.

Fig. 5 illustrates how networks have changed from the
point of growth to the final representation with CKA. In
Fig. 5a, we compare the two small networks right before
growth. We observe that several layers across networks
have similar features (light color on the diagonal, which
represents highly similar features from the same layer), and
some early and late layers differ (dark color). We find
a similar pattern growing from a single model (i.e., Mix-
tureGrowth w/out fusion, Fig. 5b). This suggests that af-
ter growth (w/o fusion), the large network learns additional
features that differ from the small net in a similar way as
two independently trained small nets. In contrast, in Mix-
tureGrowth w/fusion, from Fig. 5c and 5d, we see the full
net shares more similarity with each of the small nets in
the early and late layers than MixtureGrowth w/out fusion.
Thus, little learning happens after fusing two small nets, and
lightweight training after growth is sufficient.

5. Conclusion
In this paper, we propose MixtureGrowth, a new method

to grow networks with weights constructed from linear
combinations of shared templates that employs model fu-
sion to boost diversity in our pretrained templates. We an-
alyze our approach by answering several questions about
the impact of linear coefficients initialization and finding a
good growth point. We find that without model fusion, Mix-
tureGrowth already achieves comparable or higher accuracy
than the state-of-the-art. However, with fusion the benefits
over prior work increases, resulting in a 2-2.5% improve-
ment over the state-of-the-art on CIFAR-100 and ImageNet.
We believe MixtureGrowth to represent an interesting step
forward in learning to grow networks by leveraging tem-
plate mixing to generate new weights.

Acknowledgements This material is based upon work
supported, in part, by DARPA under agreement number
HR00112020054 and the NSF under award DBI-2134696.
Any opinions, findings, and conclusions or recommenda-
tions are those of the author(s) and do not necessarily reflect
the views of the supporting agencies.

2807

References
[1] Timur Ash. Dynamic node creation in backpropagation net-

works. Connection science, 1(4):365–375, 1989. 2
[2] Hessam Bagherinezhad, Mohammad Rastegari, and Ali

Farhadi. Lcnn: Lookup-based convolutional neural network.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017. 1, 3, 4

[3] Pouya Bashivan, Mark Tensen, and James J DiCarlo.
Teacher guided architecture search. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 5320–5329, 2019. 1

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo
Larochelle. Greedy layer-wise training of deep networks.
Advances in neural information processing systems, 19,
2006. 2

[5] Christopher Berner, Greg Brockman, Brooke Chan, Vicki
Cheung, Przemysław Debiak, Christy Dennison, David
Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al.
Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680, 2019. 6

[6] Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva,
Rohan Anil, and Alexander Kolesnikov. Knowledge distilla-
tion: A good teacher is patient and consistent. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10925–10934, 2022. 3

[7] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net:
Accelerating learning via knowledge transfer. arXiv preprint
arXiv:1511.05641, 2015. 2, 5, 6

[8] Ronan Collobert and Jason Weston. A unified architecture
for natural language processing: Deep neural networks with
multitask learning. In Proceedings of the 25th international
conference on Machine learning, pages 160–167, 2008. 2

[9] Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Nest: A neural
network synthesis tool based on a grow-and-prune paradigm.
IEEE Transactions on Computers, 68(10):1487–1497, 2019.
2

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5, 6

[11] Thomas G Dietterich. Ensemble methods in machine learn-
ing. In International workshop on multiple classifier systems,
pages 1–15. Springer, 2000. 4

[12] Xuanyi Dong and Yi Yang. One-shot neural architecture
search via self-evaluated template network. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 3681–3690, 2019. 1

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 5

[14] Utku Evci, Max Vladymyrov, Thomas Unterthiner, Bart van
Merriënboer, and Fabian Pedregosa. Gradmax: Growing
neural networks using gradient information. arXiv preprint
arXiv:2201.05125, 2022. 1, 2, 3, 4, 5, 6, 8

[15] Scott Fahlman and Christian Lebiere. The cascade-
correlation learning architecture. Advances in neural infor-
mation processing systems, 2, 1989. 2

[16] J Gou, B Yu, SJ Maybank, and D Tao. Knowledge distilla-
tion: A survey. corr. arXiv preprint arXiv:2006.05525, 2020.
1

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 5

[18] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015. 1, 3

[19] Geoffrey E Hinton. Deep belief networks. Scholarpedia,
4(5):5947, 2009. 2

[20] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A
fast learning algorithm for deep belief nets. Neural compu-
tation, 18(7):1527–1554, 2006. 2

[21] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden,
and Alexandra Peste. Sparsity in deep learning: Pruning
and growth for efficient inference and training in neural net-
works. J. Mach. Learn. Res., 22(241):1–124, 2021. 1

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International Conference on Machine Learn-
ing (ICML), 2015. 5

[23] Manas R Joglekar, Cong Li, Mei Chen, Taibai Xu, Xiaom-
ing Wang, Jay K Adams, Pranav Khaitan, Jiahui Liu, and
Quoc V Le. Neural input search for large scale recommen-
dation models. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, pages 2387–2397, 2020. 1

[24] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network represen-
tations revisited. In International Conference on Machine
Learning, pages 3519–3529. PMLR, 2019. 7

[25] Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, 2009. 5, 6

[26] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty estima-
tion using deep ensembles. Advances in neural information
processing systems, 30, 2017. 4

[27] Yann LeCun, John Denker, and Sara Solla. Optimal brain
damage. Advances in neural information processing systems,
2, 1989. 3

[28] Kaitlin Maile, Emmanuel Rachelson, Hervé Luga, and Den-
nis George Wilson. When, where, and how to add new neu-
rons to anns. In International Conference on Automated Ma-
chine Learning, pages 18–1. PMLR, 2022. 2

[29] Elliot Meyerson and Risto Miikkulainen. Beyond shared hi-
erarchies: Deep multitask learning through soft layer order-
ing. In International Conference on Learning Representa-
tions, 2018. 3

[30] Jonas Pfeiffer, Sebastian Ruder, Ivan Vulić, and
Edoardo Maria Ponti. Modular deep learning. arXiv
preprint arXiv:2302.11529, 2023. 3

2808

[31] Bryan A. Plummer, Nikoli Dryden, Julius Frost, Torsten
Hoefler, and Kate Saenko. Neural parameter allocation
search. In International Conference on Learning Represen-
tations (ICLR), 2022. 1, 3, 4

[32] Adria Ruiz and Jakob Verbeek. Anytime inference with dis-
tilled hierarchical neural ensembles. In Proceedings of the
AAAI Conference on Artificial Intelligence, 2021. 5

[33] Mark Sandler, Jonathan Baccash, Andrey Zhmoginov, and
Andrew Howard. Non-discriminative data or weak model?
on the relative importance of data and model resolution. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops, pages 0–0, 2019. 3

[34] Pedro Savarese and Michael Maire. Learning implicitly re-
current CNNs through parameter sharing. In International
Conference on Learning Representations, 2019. 1, 3, 4, 5

[35] Andrew M Saxe, James L McClelland, and Surya Ganguli.
Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks. arXiv preprint arXiv:1312.6120,
2013. 5

[36] Zhiqiang Shen and Marios Savvides. Meal v2: Boost-
ing vanilla resnet-50 to 80imagenet without tricks. arXiv
preprint arXiv:2009.08453, 2020. 3

[37] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6

[38] Nikko Ström. Sparse connection and pruning in large dy-
namic artificial neural networks. In Fifth European Confer-
ence on Speech Communication and Technology, 1997. 3

[39] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2820–2828, 2019. 1

[40] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 5

[41] Piotr Teterwak, Soren Nelson, Nikoli Dryden, Dina
Bashkirova, Kate Saenko, and Bryan A. Plummer. Learn-
ing to compose superweights for neural parameter allocation
search. In IEEE Winter Conference on Applications of Com-
puter Vision (WACV), 2024. 1, 3, 4

[42] Georg Thimm and Emile Fiesler. Evaluating pruning meth-
ods. In Proceedings of the International Symposium on Arti-
ficial neural networks, pages 20–25, 1995. 3

[43] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua
Bengio, Pierre-Antoine Manzagol, and Léon Bottou.
Stacked denoising autoencoders: Learning useful represen-
tations in a deep network with a local denoising criterion.
Journal of machine learning research, 11(12), 2010. 2

[44] Huan Wang, Can Qin, Yue Bai, Yulun Zhang, and Yun Fu.
Recent advances on neural network pruning at initialization.
arXiv e-prints, pages arXiv–2103, 2021. 1

[45] Wei Wen, Feng Yan, Yiran Chen, and Hai Li. Autogrow:
Automatic layer growing in deep convolutional networks. In
Proceedings of the 26th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, pages
833–841, 2020. 2

[46] Lemeng Wu, Bo Liu, Peter Stone, and Qiang Liu. Firefly
neural architecture descent: a general approach for growing
neural networks. Advances in Neural Information Process-
ing Systems, 33:22373–22383, 2020. 1, 2, 3, 4, 5, 6, 8

[47] Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest
descent for growing neural architectures. Advances in neural
information processing systems, 32, 2019. 2

[48] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan
Ngiam. Condconv: Conditionally parameterized convolu-
tions for efficient inference. In Advances in Neural Informa-
tion Processing Systems, 2019. 1, 3, 4

[49] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. In British Machine Vision Conference 2016. British
Machine Vision Association, 2016. 5

[50] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou
Tang. Facial landmark detection by deep multi-task learning.
In European conference on computer vision, pages 94–108.
Springer, 2014. 2

[51] Andrey Zhmoginov, Dina Bashkirova, and Mark Sandler.
Compositional models: Multi-task learning and knowl-
edge transfer with modular networks. arXiv preprint
arXiv:2107.10963, 2021. 3

2809

