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Abstract

Achieving robust and real-time 3D perception is funda-
mental for autonomous vehicles. While most existing 3D
perception methods prioritize detection accuracy, they of-
ten overlook critical aspects such as computational effi-
ciency, onboard chip deployment friendliness, resilience to
sensor mounting deviations, and adaptability to various ve-
hicle types. To address these challenges, we present NVAu-
toNet: a specialized Bird’s-Eye-View (BEV) perception net-
work tailored explicitly for automated vehicles. NVAutoNet
takes synchronized camera images as input and predicts 3D
signals like obstacles, freespaces, and parking spaces. The
core of NVAutoNet’s architecture (image and BEV back-
bones) relies on efficient convolutional networks, optimized
for high performance using TensorRT. Our image-to-BEV
transformation employs simple linear layers and BEV look-
up tables, ensuring rapid inference speed. Trained on
an extensive proprietary dataset, NVAutoNet consistently
achieves elevated perception accuracy, operating remark-
ably at 53 frames per second on the NVIDIA DRIVE Orin
SoC. Notably, NVAutoNet demonstrates resilience to sen-
sor mounting deviations arising from diverse car models.
Moreover, NVAutoNet excels in adapting to varied vehicle
types, facilitated by inexpensive model fine-tuning proce-
dures that expedite compatibility adjustments.

1. Introduction

Autonomous vehicles must accurately understand their
3D surroundings, but achieving this by camera sensors only
is complex. In early days, individual monocular camera
perception modules are run separately, and their outputs
are then merged to create a unified 3D picture. However,
this approach faces challenges. Errors from independent
monocular modules, like under or overestimation, vary and
their error models are often unknown. Consequently, merg-
ing these results becomes tricky, often causing false posi-
tives. Nonetheless, maintaining camera independence en-
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hances product safety by reducing shared failure risks.
Another vital consideration is production scalability. Car

manufacturers typically produce various car models like
SUVs, sedans, sport cars, and trucks, each with distinct
sizes and camera positions. Thus, a camera perception sys-
tem that can handle diverse camera angles, positions, radial
distortions, and focal lengths becomes essential for scalabil-
ity. Equally important, the system must operate in real-time,
within a low-powered, shared compute budget on a System
on Chip (SoC), especially since other independent radar or
ultrasonic modules might run concurrently.

Design principles: We aim to design a perception net-
work with the following principles: (1) Precise 3D Percep-
tion: The projected 3D predictions seamlessly align with
the content of 2D image views. (2) Extended Range Detec-
tion: The network excels in detecting objects at consider-
able distances, reaching up to 200 meters. (3) Efficiency at
Its Core: Operating in real-time on edge devices, such as
the NVIDIA DRIVE Orin SoC, the network ensures seam-
less responsiveness. (4) Resilience to Camera Variability:
The network maintains robust functionality even in the pres-
ence of camera dropouts. (5) Holistic Machine Learning:
Requiring no post-processing, the network’s performance
scales effectively with the volume of data. (6) Adaptive
Scalability: Straightforward customization for diverse ve-
hicle platforms underscores the network’s scalability.

Key components and features: Guided by the afore-
mentioned design principles, we introduce NVAutoNet, a
camera perception network featuring the following essential
components and attributes. (1) CNN based image feature
extractors are meticulously tailored using hardware-aware
neural architecture search (NAS) to achieve both high accu-
racy and low latency. (2) Multi-camera fusion occurs at the
BEV level, combining the strengths of early and late fusion
methods. (3) Perspective-to-BEV view transformation is ef-
ficiently executed through column-wise MultiLayer Percep-
tron (MLP) layers and BEV look-up tables. (4) All percep-
tion tasks, including freespace perception, are structured as
set prediction tasks, streamlining processes and negating the
need for resource-intensive post-processing like clustering,
boundary extraction, and curve fitting.
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Figure 1. NVAutoNet overview. Surround view images are input to CNN backbones to extract 2D features, which are uplifted and fused
into a unified BEV feature map. The generated BEV features are then encoded by a BEV backbone. Finally 3D signals are predicted by
various 3D perception heads.

2. Related Work

Perception for Self-Driving. In the realm of self-
driving, the perception module’s responsibility encom-
passes the detection and identification of all static and mov-
ing objects in the surrounding environment. This roster
includes obstacles, road markings, lanes, road boundaries,
traffic lights, traffic signs, parking spaces, free spaces, and
more. Existing research has predominantly focused on the
3D object detection task, with notable methodologies like
DETR3D [25], PETR [9], BEVFormer [8], BEVDet [4],
and BEVDepth [6]. In contrast, our NVAutoNet network
tackles multiple tasks concurrently, including 3D obstacles,
3D freespaces, and 3D parking spaces. Modern 3D object
detection methods have embraced set prediction approaches
to obviate the need for NMS post-processing, a trend that
NVAutoNet seamlessly follows. Recently, the domain of
online mapping perception [10, 16] has also attracted con-
siderable attention. NVAutoNet is well-equipped to extend
its capabilities to address these tasks with ease.

Multi-camera Fusion and BEV Perception. Monoc-
ular camera perception tasks are well-established in com-
puter vision, but multi-camera perception has recently
gained attention [1, 13, 15, 18, 21, 22, 25]. Current methods,
including ours, have shifted toward mid-level fusion, where
information from various cameras is fused at the feature
level. This demands a shared representation, often achieved
through the BEV approach. BEV representation is advanta-
geous for fusing data from multiple sensors and timestamps
and can be directly used by downstream tasks like predic-
tion, planning, and control.

Perspective to 3D/BEV View Transformation. Con-
verting a perspective (image) view into a 3D/BEV per-
spective presents a challenging problem. Existing methods
fall into four categories: homography-based, depth-based,
MLP-based, and attention-based approaches. Homography-
based methods (e.g., [18]) assume a flat-world model to
shift pixels from a perspective view to a BEV view. How-
ever, this assumption often doesn’t hold in real-world au-
tonomous driving scenarios. Depth-based methods (e.g.,
[15,17,23]) require per-pixel depth information for transfor-

mation, but they face challenges. Inaccurate predicted depth
can lead to poor-quality 3D feature maps, and the method’s
efficiency is hindered by high-dimensional 3D voxel feature
maps. MLP-based methods (e.g., [2, 3, 12, 14, 26]) are pop-
ular due to MLP’s ability to transform data between spaces.
However, these methods are camera-dependent and neglect
key geometric information like camera intrinsic and ex-
trinsic parameters, limiting their application to new sensor
configurations. Their computational expense stems from
stretching 2D feature maps into 1D vectors and performing
a full connection operation. Recent work (e.g., [20–22]) al-
leviates computational demands by independently applying
MLP operations to image columns. In contrast, attention-
based methods (e.g., [1,22,25]) work backward (3D to 2D).
They construct 3D or BEV queries that cross-attend to im-
age features for 3D or BEV feature creation. While ef-
fective, these methods can be costly for cost-sensitive au-
tonomous driving systems, especially with dense queries.
For a more comprehensive understanding of these view
transformation methods, refer to [11].

In our quest to create a real-time self-driving car per-
ception system, we use an MLP-based method for our
2D-to-BEV view transformation. However, we take a
unique approach by independently elevating individual im-
age columns, inspired by techniques found in [20–22]. Our
method differs these references in several ways. Firstly, we
don’t assume that each image column corresponds to a BEV
ray, which doesn’t hold for wide-field-of-view cameras like
fish-eye cameras. Secondly, we expand the application of
these techniques to fuse BEV features from multiple cam-
eras using camera intrinsic and extrinsic parameters. Lastly,
to ensure efficiency, we avoid using attention-based layers
(e.g., as in done [22]), opting instead for smaller MLP lay-
ers. Furthermore, in contrast to methods such as LSS [15],
which initially construct a 3D volumetric feature map from
2D feature maps and depth information and subsequently
reduce it to a BEV feature map, our approach generates a
BEV feature map directly from 2D features. As a result, it
is more computational and memory efficient. This strategy
reflects our goal of achieving a balance between accuracy
and computational efficiency.
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3. NVAutoNet

3.1. Overview

NVAutoNet takes a set of Nview camera images
{Ii}Nview

i=1 , covering a full 360-degree view of the surround-
ings, along with camera parameters. These images undergo
2D encoders to derive image features, which are then trans-
formed into BEV features. BEV features specific to each
camera are combined into a unified BEV feature map, fed
into a shared BEV encoder to extract advanced features.
Subsequently, this encoded BEV map enters task-specific
encoders to generate 3D outputs such as obstacle cuboids,
parking spaces, and driveable spaces. Refer to Figure 1 for
an overview of the NVAutoNet process.

3.2. 2D Image Feature Extractors

Each unrectified input image I with dimensions W ×
H×3 undergoes feature extraction, producing multiple fea-
ture maps F k at various scales. These F k have dimen-
sions C × H

2k+1 × W
2k+1 . Our image feature extraction uti-

lizes customized convolutional architectures, meticulously
tailored for real-time operation. Comprising CNN blocks,
the CNN backbone employs specific parameters like kernel
size, stride, channel count, and repetitions. Network con-
figurations for distinct camera groups are detailed in Table
1. These parameters are searched using hardware-informed
neural architecture search [24], ensuring an optimal balance
between accuracy and speed, with the omission of resid-
ual connections for faster processing [5]. The coarser maps
merge with finer ones through upsampling, yielding multi-
level feature maps enriched with semantic content. In the
following sections, we delve into our approach for convert-
ing these 2D image feature maps into BEV representations.

3.3. Image-to-BEV Transformation and Fusion

3.3.1 BEV Plane and BEV Grid

The BEV representation is a popular choice in self-driving
for efficiently depicting object positions, sizes, and aiding
behavior prediction and planning. This representation in-
volves a plane aligned with the vehicle’s central axis, per-
pendicular to the Z axis. We divide this BEV plane into dis-
crete sections using a grid Gbev with dimensions M ×N .

3.3.2 Polar vs Cartesian Coordinates

The resolution of the BEV grid Gbev significantly impacts
detection range and accuracy. For safe and comfortable au-
tonomous highway driving, a detection range of 200 meters
is ideal. However, using a regular Cartesian grid with cells
of 0.25 meters results in a large 1600 × 1600 grid. This
consumes excessive memory and computational resources,

making it impractical to train deep neural networks and de-
ploy them on vehicle chips like NVIDIA DRIVE Orin. To
balance close and far-range resolution, we adopt an irreg-
ular BEV grid using Polar coordinates as similar to Polar-
Net [27]. This grid is defined by angular samples (ranging
from 0 to 360) denoted by M , and depth samples repre-
sented by N . For instance, by employing 1-degree angu-
lar resolution and logarithmic radial spacing, we efficiently
represent the BEV plane with a compact 360× 64 grid.

3.3.3 2D to BEV View Transformation

From a collection of 2D image feature maps originating
from various cameras, our objective is to derive a singu-
lar BEV feature map, denoted as Fbev . In our approach, we
adopt a data-centric strategy wherein we train a camera-to-
BEV transformation function using a multilayer perceptron
(MLP) network. Unlike prior MLP-based view transforma-
tion methods, our approach notably incorporates camera in-
trinsic and extrinsic parameters both during training and in-
ference phases. Consequently, once trained, the model is
capable of robustly adapting to different sensor configura-
tions. A visual overview of our image-to-BEV view trans-
formation module is provided in Figure 2.

A common observation is that there is a strong geomet-
ric relationship between row and column positions in the
image plane and radial and angular positions in the BEV
plane. In particular, each image column will correspond
to a curve passing through the camera center on the BEV
plane (see Figure 2 left). If camera images are rectified,
these curves become polar BEV rays as utilized in the pre-
vious works [21, 22]. In this work, input images are not
rectified because rectifying fisheyes camera images is of-
ten challenging due to nonlinear, non-uniform distortion.
Our goal is to learn functions (represented by neural net-
works) to transform every image column features onto the
BEV plane.

Formally, let Ic be a column from an image I (for brevity
camera index is omitted), we first project every pixel loca-
tion pi = [ui, vi] ∈ Ic onto the BEV plane (using camera
intrinsic and extrinsic parameters), and convert them to po-
lar coordinates (angles and distances), resulting in a list of
polar BEV points {bi = [ai, di]}. Here it is worth noting
that we are not merely projecting pixels to the BEV plane
for view transformation as we do not assume the world is
flat. Instead, these polar BEV points are used to fit a polyno-
mial curve (one per image column) a = f c(d) that allow us
to deduce a BEV angular position from a BEV radial posi-
tion. This is illustrated in Figure 2 (left), where examples of
projected BEV points and fitted curves are presented. These
fitted curves implicitly encapsulate camera intrinsic and ex-
trinsic information.

For a given camera with a maximum detection range of r
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Input size Blocks Kernel sizes Strides Repeats Channels
Front cam encoder 480x960 5 7-3-3-3-3 4-1-2-2-2 1-0-2-5-3 32-32-128-256-512
Side cam encoder 480x960 5 7-3-3-3-3 4-1-2-2-2 1-0-2-3-3 32-32-128-192-512
Fisheye cam encoder 480x960 5 7-3-3-3-3 4-1-2-2-2 1-0-2-3-3 32-32-64-96-512
BEV encoder 64x360 3 3-3-3 1-2-2 4-4-4 64-128-256

Table 1. Configurations of lightweight camera and BEV CNN backbones.

Figure 2. An overview of perspective to BEV view transformation. Left: Camera pixels are projected onto the BEV plane using camera
intrinsic and extrinsic parameters. The resulting polar BEV points are then used to fit polynomial functions (one for each image column).
These polynomial functions accept BEV radial distances as inputs and output corresponding BEV angular positions. Right: Image features
are transformed into pseudo BEV features which are then transformed to the BEV features using BEV indices. The BEV indices are
pre-computed using the fitted polynomial functions and a pre-defined BEV grid.

meters, we discretize the range [0, r] into D logarithmically
spaced bins. Let c ∈ RH×C represent the encoded features
corresponding to the image column Ic (again we dropped
the feature level for notation simplicity), we define a BEV
transformation network B(.) to yield b = B(c) where b ∈
RD×C . Yet, these features aren’t true BEV features at this
stage; they are pseudo BEV features that must be aligned
and combined into the global BEV feature map Fbev .

Each b feature comprises D vectors, each associated
with a radial distance bin. Consequently, the BEV plane lo-
cation of each cell in b is determined using its distance (cen-
ter of the distance bin) and the fitted polynomial function
f c. The same procedure is extended to all image columns
and images, facilitating the transformation of image fea-
tures from the image plane to the BEV plane. To opti-
mize computational efficiency, only one feature map level
at stride 8 is transformed to the BEV plane per image.

BEV Pooling. Leveraging a predefined BEV grid Gbev ,
we generate the final BEV feature map Fbev by combin-
ing all the computed BEV feature points described earlier.
Specifically, the BEV feature points that belong to the same
BEV grid cell are directly added together.

BEV Indexing. Assuming accurate camera calibration
parameters, we can treat them as constants. In this con-
text, we have the option to pre-calculate BEV indices, fa-
cilitating the mapping of pseudo BEV features to corre-
sponding BEV grid cells. This BEV look-up-table expe-
dites the image-to-BEV transformation process, ensuring
remarkable efficiency for both training and inference op-
erations. The computational overhead is notably minimal,

requiring just 0.3ms per image.

3.3.4 BEV Transformation using MLP

The BEV transformation function B(.) is modeled using an
MLP block with only one hidden layer, and the MLP pa-
rameters are shared by different image columns. Unlike
convolutional layers, MLP layers have a capability to en-
code global contextual information (aka global attention),
which we found very crucial for assigning image features
into correct BEV positions as depth information has been
lost and objects appears at different heights.

3.4. BEV Feature Extractor

Similar to 2D image feature extractors, we adopt a CNN
backbone to extract high-level features from the fused BEV
feature map. See Table 1 for network configration details.
The output of the BEV feature extractor, dubbed F̂bev , will
be consumed by different 3D detection heads.

4. Perception Tasks
3Dobject detection: A pivotal capability for au-

tonomous driving, 3D object detection encompasses local-
izing, classifying, and estimating dimensions and orienta-
tions of objects in 3D space. Each object is uniquely defined
by its category and a 3D cuboid.

3D freespace detection: While 3D obstacle detection
traditionally covers specific categories like vehicles and
vulnerable road users (VRUs), safe navigation demands
broader insights. This encompasses addressing unforeseen
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road hazards such as tire debris, traffic cones, and immobile
obstacles like dividers, curbs, and guardrails—scenarios
that exceed standard 3D obstacle detection. To ensure se-
cure movement within road limits, autonomous vehicles
must adeptly navigate through various obstacles. The open
space within these confines emerges as the drivable area,
also known as the freespace region. In this work, the
freespace regions are represented using radial distance maps
(RDM), i.e., a representation that assigns a radial distance
value to every angular ray extending from a central point.

3D parking space detection: Another essential facet of
autonomous driving pertains to the accurate localization and
classification of parking spaces. Each parking space is rep-
resented as an oriented rectangle, parameterized by values
such as center coordinates, length, width, and orientation.

All three tasks are structured as set prediction tasks [19].
The network predicts a set of objects, subsequently matched
against a corresponding set of ground truth objects to steer
the training process. Due to space constraints, we direct
readers to the supplementary material for comprehensive
details concerning head network architectures, object rep-
resentation, and loss calculations.

5. Multi-task Learning and Loss Balancing
NVAutoNet functions as a multitask network, adeptly

handling various tasks simultaneously. These tasks inher-
ently vary, making a uniform training approach less opti-
mal. Additionally, distinct task losses occupy different ter-
rains. A simple combination of loss components with equal
weights might underemphasize certain tasks or let some
tasks dominate the overall loss.

Adaptive Weight Adjustment: With T number of
tasks, the combined training loss for batch b is Ltotal =∑T

t=1 wtL
b
t , where wt is the task-specific loss weight, and

Lb
t is the task loss for batch b. We introduce a straightfor-

ward yet powerful algorithm to dynamically modify the loss
weights {wt}Tt=1 for each loss component. In a dataset of S
samples, Lt,s represents the loss for task t on sample s. At
the start of each epoch, the total losses for each task t across
all samples are computed. The loss weight wt is then set as
the reciprocal of this loss sum, proportionally adjusted by a
predefined task loss prior ct, i.e.,

Lt =

S∑
s=1

Lt,s, ŵt =
ct
Lt

, wt =
ŵt∑T
t=1 ŵt

. (1)

ct is a configurable loss multiplier for task t that can be
used to boost or reduce a task’s loss. The approach of scal-
ing losses by their reciprocal loss sums intuitively aligns all
losses on a comparable scale, thereby minimizing dispari-
ties in gradient magnitudes. The inclusion of loss multipli-
ers ct becomes valuable when specific tasks are either more
significant or present higher complexity.

In the initial epoch, we manually set all task loss weights
wt = 1 for all t ∈ [1, T ], since we lack previous epoch’s
loss sum data. After each epoch, we iteratively update wt,
ensuring a progressive refinement process.

Two-Stage Approach: Our approach unfolds in two
stages. Initially, in the first training round, we uniformly es-
tablish ct values at 1. Subsequently, we assess the outcomes
of multi-task training in comparison to single-task training.
By gauging improvements or declines in key performance
indicators (KPIs) for individual tasks, we tune suitable ct
values. Equipped with these ct values, we proceed to re-
train the network in subsequent iterations. Notably, while
ct values are fine-tuned manually, our observations suggest
that the pursuit of optimal ct values is notably simpler com-
pared to directly searching for wt values.

6. Experimental Evaluation
This section highlights NVAutoNet’s latency and ac-

curacy achievements. Ideally, comparing NVAutoNet to
state-of-the-art methods would be insightful. However, we
encountered various challenges. Firstly, while there ex-
ist BEV object detection methods and benchmark datasets,
freespace and parking space detection are rare. Secondly,
many existing BEV perception methods, like 3D object de-
tection, prioritize accuracy, unlike NVAutoNet which opti-
mizes for both accuracy and latency. Thirdly, NVAutoNet
is tailored for real self-driving applications with a required
detection range of up to 200 meters. This makes some de-
sign choices (like image to BEV view transformation, po-
lar BEV representation) less favorable for public datasets
like nuScenes, which primarily consider shorter ranges (less
than 70 meters). Consequently, our evaluation predomi-
nantly focuses on our in-house dataset and the NVIDIA
DRIVE Orin SoC platform.

6.1. Datasets and Evaluation Metrics

6.1.1 Datasets

Our in-house datasets consist of real, simulated reality and
augmented reality data. In total, there are 2.2M training
scenes, 400K validation scenes and 177K testing scenes.
The data was collected from more than 20 countries, and
from different weather, lightning and road conditions. More
detail information about the datasets such as percentage of
each condition can be found in the supplementary material.

6.1.2 Evaluation Metrics

For obstacle and parking space detection, we use standard
metrics such as F1 score, AP, mAP for evaluation. For
true positive detections, we also provide regression errors
such as position errors, orientation errors and shape errors.
Regarding freespace detection, we calculate classification

7380



Components Latency (ms) Total (ms)
Front Cam Encoder 1.80 × 2 3.61
Side Cam Encoder 1.60 × 2 3.21
Fisheye Cam Encoder 1.39 × 4 5.58
3D Uplifting + Fusion 0.30 × 8 2.40
3D Encoder + Heads 3.91 × 1 3.91

18.72

Table 2. NVAutoNet latency (ms) measured on NVIDIA DRIVE
Orin embedded GPU. The model runs at 53 FPS.

accuracy and regression error for individual angular bins.
These outcomes are then averaged across angular bins and
frames, resulting in the final metrics. A detailed elabora-
tion of each metric’s precise definition can be found in the
supplementary material.

6.2. Latency Performance

NVAutoNet is deployed using NVIDIA TensorRT and
evaluated on the NVIDIA DRIVE Orin platform. The total
latency and individual latency figures for distinct NVAu-
toNet components are presented in Table 2. Notably, our
network operates at an impressively low duration of just
18.7 ms (for an 8-camera input), enabling a remarkable
frame rate of 53 FPS.

In comparison to BEVDET [4], a highly efficient BEV
object detection method, NVAutoNet showcases a 7.5x
speed boost, even though BEVDET’s latency measurement
was conducted on the more potent NVIDIA GeForce RTX
3090 GPU, surpassing the NVIDIA DRIVE Orin SoC’s
capabilities. Compared to Fast-BEV [7], an approach
highly tailored for real-time use cases, NVAutoNet still out-
performs with 53 FPS against Fast-BEV’s 45 FPS. Both
NVAutoNet and Fast-BEV were evaluated on the identical
NVIDIA DRIVE Orin SoC.

6.3. Qualitative Performance

Figure 3 shows visual results of a single NVAutoNet
model tested on different scenarios (i.e., parking lot, ur-
ban and highway) and different car models (i.e., Sedan and
SUV). More qualitative results can be found in the video.

6.4. Quantitative Performance

6.4.1 3D Obstacles

Presented in Table 3, the obstacle detection accuracy out-
comes are showcased. The overall mAP score achieves
0.465. Notably, the network excels in detecting vehicles,
attaining an AP score of 0.648, while it faces challenges in
identifying persons/pedestrians, with an AP score of 0.351.
This observation aligns with the typical size discrepancy
between persons and vehicles. When focusing solely on a
safety region (within 100 meters ahead and behind the ego

V T P B mAP s-mAP
AP 0.63 0.38 0.35 0.48 0.46 0.59
PE (meters) 0.98 1.93 0.61 0.7 - -
OE (degrees) 6.54 5.29 53.4 12.33 - -

Table 3. Obstacle detection accuracy for different classes.
PE=Position error, OE=Orientation error. V=Vehicle, T=Truck,
P=Person, B=Bike. s-mAP is the mAP measured for the safety
region only.

Class Range (m) F1 PE OE SE
Vehicle 0-50 0.715 0.741 7.213 0.173
Vehicle 50-100 0.481 2.231 11.295 0.246
Vehicle 100-150 0.371 4.098 12.304 0.306
Vehicle 150-200 0.250 6.647 9.193 0.339
Truck 0-50 0.481 1.099 8.463 0.362
Truck 50-100 0.430 2.269 7.064 0.453
Truck 100-150 0.419 3.554 6.854 0.420
Truck 150-200 0.386 5.334 6.778 0.411
Person 0-30 0.491 0.500 37.772 0.435
Person 30-50 0.413 1.259 51.483 0.480
Person 50-100 0.313 2.283 60.708 0.528

Bike/Rider 0-30 0.574 0.437 11.876 0.297
Bike/Rider 30-50 0.482 1.152 16.516 0.352
Bike/Rider 50-100 0.387 2.055 19.197 0.428

Table 4. Obstacle detection accuracy at different radial distance
ranges. PE=Position error, OE=Orientation error, SE=Shape error.

vehicle, and 10 meters to its sides), the mAP score notably
improves to 0.595.

The network demonstrates reasonable accuracy in esti-
mating orientations for vehicles and trucks, displaying av-
erage errors below 7 degrees. However, orientation errors
for bikes and persons are relatively high, averaging at 12.3
and 53.4 degrees, respectively. For more detailed insights
into detection results, Table 4 provides a granular break-
down. Generally, detection accuracy drops steadily as dis-
tances increase.

6.4.2 3D Freespace

Table 5 offers a comprehensive overview of the freespace
evaluation outcomes. For more detailed insights, Table 6
presents segmented regression metrics across various angu-
lar and radial sectors. Notably, regions in close proxim-
ity demonstrate higher accuracy compared to distant ones.
Moreover, the front area exhibits greater accuracy than the
rear section. This discrepancy arises from the fact that the
front region benefits from coverage by three distinct cam-
eras: 120FOV, 30FOV, and fisheye 200FOV.

Notably, precision and recall for the ”Other” and ”Vehi-
cle” categories surpass those of the ”VRU” category. This
variance can be attributed to the inherent complexity of
VRU classification. VRUs are often captured within fewer
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Figure 3. NVAutoNet’s qualitative results. Left: Parking space detection in a parking lot. Middle: Obstacle and freespace detection in an
urban area with a sedan car. Right: Obstacle and freespace detection in a highway area with a suv car.

angular bins compared to other categories, contributing to
the increased difficulty in their precise classification.

Relative gap Absolute gap Success rate Smoothness
44.14 1.95 77.59 0.77

Vehicle VRU Other
Precision 0.92 0.73 0.98

Recall 0.92 0.66 0.98

Table 5. 3D freespace regression metrics (top) and classification
metrics (bottom).

6.4.3 3D Parking space

Displayed in Table 7, the parking space detection outcomes
are presented. It’s noteworthy that the mean IoU for true
positive detections hovers around 86%, suggesting a strong
alignment between the majority of detections and the actual
ground truth labels. However, it’s observed that the paral-
lel parking space category exhibits the lowest performance.
This can be attributed to labeling intricacies. The dimen-
sions of parallel parking spaces exhibit significant variabil-
ity, contributing to difficulties in accurate labeling. More-
over, many curbside parking spaces lack precise width regu-
lations, compelling labelers to rely on subjective judgments
for width determination. Consequently, the labeling process
for such spaces becomes inherently inconsistent.

6.5. Single task vs Multi-task Learning

For this experiment, we establish distinct ct parameters
(as introduced in Section 5) specifically as [5, 3, 1] for the
individual obstacle, parking space, and freespace tasks. The
rationale behind this selection is to emphasize obstacle de-
tection by assigning a higher weight, while relatively less
emphasis is placed on the freespace task due to its rela-
tively lower complexity. Performance comparison between
the multi-task model and single task models is detailed in
Table 8. It’s observed that obstacle and parking detection

Radial Angular Success Rate Absolute gap
(meters) (degrees) (%) (meters)
0-10 [-45, +45] 86.43 0.91
10-20 [-45, +45] 83.02 1.40
20-30 [-45, +45] 73.74 2.70
30-50 [-45, +45] 64.52 4.72
50-80 [-45, +45] 57.05 8.21
80-120 [-45, +45] 42.39 18.96
120-200 [-45, +45] 1.81 54.38
0-10 [-135, +135] 82.68 0.93
10-20 [-135, +135] 76.54 1.67
20-30 [-135, +135] 67.85 3.11
30-50 [-135, +135] 58.96 5.31
50-80 [-135, +135] 51.46 9.31
80-120 [-135, +135] 38.84 15.39
120-200 [-135, +135] 0.04 61.2

Table 6. Freespace regression metrics for different radial ranges
and field-of-views.

AP mean IoU F1
Angled 0.68 0.86 0.75
Parallel 0.19 0.82 0.37

Perpendicular 0.57 0.85 0.67
All 0.58 0.85 0.68

Table 7. Parking space detection performances.

accuracies hold up comparably to those achieved by the sin-
gle task models. Although the freespace task experiences a
9.5% drop, its accuracy remains commendable. This out-
come underscores the substantial efficacy of our proposed
multi-task loss balancing algorithm.

Obstacle Freespace Parking space
mAP Success rate F1

Single task 0.46 77.59 0.68
Multi-task 0.46 70.19 0.68

Table 8. Single task vs. multi-task benchmarking results.
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6.6. IPM vs MLP View Transformation

This study aims to showcase the advantages of employ-
ing a learning-based technique over an IPM method to con-
vert 2D image features to BEV features. For this exper-
iment, we focus on the obstacle detection task. The out-
comes are summarized in Table 9, where our proposed 2D-
to-BEV approach demonstrates a remarkable performance
improvement over the traditional IPM method.

Vehicle Truck Person Bike-rider
Method AP AP AP AP mAP
IPM 0.49 0.32 0.27 0.33 0.30
MLP 0.63 0.38 0.35 0.48 0.46

Table 9. IPM versus MLP based 2D-to-BEV view transformation
for obstacle detection.

PT T/F Dataset size (Truck Platform)
50K 75K 100K 125K 150K

MA ✗ ✓ 0.14 0.18 0.19 0.20 0.21
MB ✓ ✗ 0.16 0.16 0.16 0.16 0.16
MC ✓ ✓ 0.28 0.29 0.29 0.29 0.30

Table 10. Transfer learning experiments for NVAutoNet.
PT=Pretrained, T=Trained, F=Finetuned. mAP scores for obsta-
cle detection are reported. Model-A (MA) trained from scratch
using different dataset sizes collected from the truck platform;
Model-B (MB) previously trained using data collected from the
car platform; Model-C (MC) fine-tuned from model-B using data
collected from the truck platform.

6.7. Generalization to Different Vehicle Lines

In order to validate the robustness and scalability of our
proposed architecture, we assess the performance of NVAu-
toNet on a truck platform, despite its initial development
for a car platform. While there exist minor disparities in in-
trinsic parameters between the two platforms, the variations
in extrinsic parameters are notably significant. Neverthe-
less, we demonstrate that deploying our perception model
on a distinct platform doesn’t necessitate extensive model
redesign or extensive data collection. Remarkably, achiev-
ing satisfactory results only requires fine-tuning the model
using a limited training dataset.

Datasets: This study focuses on the 3D obstacle de-
tection task. We gathered data from both car and truck
platforms for training purposes. Specifically, we collected
850K scenes for car model training (car-dataset-train) and
150K scenes for truck model training (truck-dataset-train),
along with 26K scenes for truck model validation (truck-
dataset-val). The label distribution is roughly similar be-
tween the two platforms. To explore the effect of training
set size, we created smaller subsets from the 150K truck-
dataset-train, ranging from 50K to 150K scenes.

Our comparison involves three models: Model-A trained
solely with truck-dataset-train, Model-B pretrained with
car-dataset-train, and Model-C fine-tuned from Model-B
using truck-dataset-train. All models are tested on truck-
dataset-val, and the results are presented in Table 10. As
anticipated, Model-A’s performance improves as the dataset
size increases. Interestingly, even with only 50K scenes,
Model-B, which has never seen data from a truck plat-
form, outperforms Model-A. This illustrates the network’s
generalization capability. Notably, Model-C outperforms
both Model-A and Model-B by a significant margin. It’s
worth noting that Model-C’s performance improvement
with larger fine-tuning datasets is not as substantial as
Model-A’s. This suggests that only a small amount of data
is required for fine-tuning when deploying the NVAutoNet
model, previously trained for one platform, onto another.
These findings reaffirm the robustness and scalability of our
proposed NVAutoNet, crucial qualities for practical produc-
tion applications.

7. Conclusion

NVAutoNet emerges as a specialized perception network
designed to meet the unique demands of autonomous ve-
hicles. Unlike many existing 3D perception methods, it
strikes a balance between accuracy and computational effi-
ciency, onboard chip compatibility, and adaptability to di-
verse vehicle types. NVAutoNet processes synchronized
camera images to predict 3D signals such as obstacles,
freespaces, and parking spaces. Its architecture employs
efficient convolutional networks for image and BEV back-
bones, optimized for efficiency with TensorRT. The image-
to-BEV transformation uses simple linear layers and BEV
look-up tables for rapid yet accurate inference.

Trained extensively on proprietary data, NVAutoNet
consistently attains high perception accuracy while main-
taining real-time performance, achieving 53 frames per sec-
ond on the NVIDIA DRIVE Orin SoC. It excels in han-
dling sensor mounting deviations across car models and
adapts seamlessly to various vehicle types through stream-
lined model fine-tuning procedures. NVAutoNet stands as a
significant advancement in autonomous vehicle perception,
addressing key challenges and offering efficient and reliable
3D perception for real-world scenarios.
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