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Abstract

Most face identification approaches employ a Siamese
neural network to compare two images at the image em-
bedding level. Yet, this technique can be subject to oc-
clusion (e.g., faces with masks or sunglasses) and out-of-
distribution data. DeepFace-EMD [40] reaches state-of-
the-art accuracy on out-of-distribution data by first com-
paring two images at the image level, and then at the patch
level. Yet, its later patch-wise re-ranking stage admits a
large O(n3 log n) time complexity (for n patches in an im-
age) due to the optimal transport optimization.

In this paper, we propose a novel, 2-image Vision Trans-
formers (ViTs) that compares two images at the patch level
using cross attention. After training on 2M pairs of im-
ages on CASIA Webface [58], our model performs at a com-
parable accuracy as DeepFace-EMD on out-of-distribution
data, yet at an inference speed more than twice as fast as
DeepFace-EMD [40]. In addition, via a human study, our
model shows promising explainability through the visual-
ization of cross-attention. We believe our work can inspire
more explorations in using ViTs for face identification.

1. Introduction
Face identification (FI), the technology that enables au-

tomatic identification of individuals from photographs, is
widely used in law enforcement [18, 43, 44], private busi-
nesses [2], smartphones [19], and so on. With growing data
volumes, fast and high FI systems are paramount for pro-
cessing and analyzing real-time data to identify faces and
patterns effectively.

Unfortunately, facial information may not always be
obtained in ideal conditions, and out-of-distribution data
(OOD) e.g. faces with masks, sunglasses, or other adver-
sarial components, poses challenges to correctly identify-
ing the targets. FI accuracy may drop substantially on OOD
data, e.g., from 98.41% to 39.79% on LFW when the query
face is wearing masks [40] or adversarially modified [3,64].
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Figure 1. Actual running time in seconds (lower is better) for the
re-ranking computation in face identification under occlusion. Our
proposed model is at least two times faster than the state-of-the-art
DeepFace-EMD [40] over all the datasets.

Besides the accuracy of FI for OOD data, the field faces
two practical challenges. The first challenge is the rapid
identification of faces under OOD settings. Swift iden-
tification can improve user experience by reducing wait-
ing time during unlocking devices, accessing accounts [19],
and security checks [2], increasing people’s trust towards
machine-generated results [17], and lowering emergency
response [35]. The second challenge is how to explain
FI decisions to the end-users, which is interestingly un-
derstudied. In reality, FI systems are often operated by
end-users [41] who expect to get real-time answers and the
reasons why such answers are given. The current limited
machine-user interoperability causes numerous false deci-
sions [7, 22, 26, 43]. Specifically, only a few studies have
produced explanations for FI predictions [40, 48] and none
have evaluated the explanations from interpretable FI mod-
els on users.

In this work, we explore the design space of ViTs that en-
able cross-image attention between two input images for FI.
On three important criteria (1) accuracy on in-distribution
and OOD data, (2) computational complexity, and (3) ex-
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plainability, we compare ViTs, CNNs, and EMD-based
patch-wise re-ranking methods (Fig. 3) and find that: 1

• With cross-image attention, our 2-image Hybrid-ViT
model is an effective re-ranking approach. It outper-
forms traditional FI models (based on CNNs and 1-
image ViTs) on both in-distribution and OOD data.

• Our 2-image Hybrid-ViT performs on par with
DeepFace-EMD [40]—a state-of-the-art approach to
OOD face identification. In addition, our proposed
model is more scalable as shown in Fig. 1, i.e. running
over 2⇥ faster in practice than DeepFace-EMD, which
is slow due to the optimal transport optimization phase
(Sec. 5.3).

• In a 21-person human study, the users of Hybrid-
ViTs and DeepFace-EMD explanations scored sub-
stantially higher than the users of Siamese neural net-
works (SNNs) in face verification (Sec. 5.4). We are
the first to report that visual explanations improve end-
user accuracy in face verification.

To our knowledge, our work is the first to (1) explore
the design space of ViTs [16] for the FI problems on OOD
data; (2) compare ViT-based and EMD-based image simi-
larity approaches [40, 59, 60, 62]; and (3) study how visual
explanations improve human accuracy in face verification.

2. Related Work
For face recognition, previous deep approaches typi-

cally adopt a CNN architecture (e.g. VGGNet [47], ResNet
[23], etc.) as the backbone to extract deep face features
and then use metric learning methods [12, 45] to classify
identities. This design often achieves impressive results
for in-distribution but fails on OOD data. A recent work,
DeepFace-EMD [40], provided an Earth Mover’s Distance
(EMD) distance to obtain cross-image information from
CNN outputs, improving face OOD. Similar to DeepFace-
EMD, we explore Transformers to exploit cross-attention
information between inputs.
Out-of-distribution face identification. Identifying faces
under occlusion [40, 42, 52] or adversarial changes [64]
is challenging. FI systems using SNNs are vulnerable to
images containing sunglasses, masks, or adversarial per-
turbations. A line of approach re-trains deep CNN fea-
ture extractors on images with partially-occluded faces
[21,39,50,52,56,56]. However, data augmentation on a spe-
cific type of occlusion (e.g. face masks) does not guarantee
generalization to new OOD changes (e.g. in hairstyles) in
the input image [40]. An alternative technique for OOD

1Code, demo and data are available at https://github.com/
anguyen8/face-vit

face data is to reconstruct the missing pixels before per-
forming FI [25, 32, 55, 57, 61, 66]. Yet, the de-occlusion
process [8, 15, 20] may fail to preserve the identity of the
target person and add another level of abstraction over how
the FI system computes its decisions, further opaquing the
decision-making process.
Siamese networks for patch-wise comparison. A com-
mon FI technique involves adopting the Siamese archi-
tecture, feeding a pair of input images into two weight-
shared, CNN-based feature extractors, and comparing the
cosine similarity between two output image-level embed-
dings [12, 34, 45, 54]. Recent EMD-based image similar-
ity work found that combining both image-level and patch-
level similarity yields higher accuracy on in-distribution
data [62] and OOD data [40,60]. DeepFace-EMD [40] con-
sistently outperforms traditional methods [12, 45, 54] that
are based on the cosine similarity of two image embeddings
from a SNN. Such approaches, however, only conduct a
global, image-level comparison and may discard useful lo-
cal, patch-level information. Researchers are looking for
more accurate and efficient architectures for FI tasks.
Vision Transformers for patch-wise comparison. Op-
erating at the patch level, ViTs are increasingly popular in
computer vision [16, 29, 49, 67], were shown to achieve re-
markable image classification accuracy, and do not need ex-
plicit feature extraction like in CNN-based models. Most
ViT research focuses on a single-image architecture where
self-attention [51] is leveraged to compare the similar-
ity between intra-image patches [65] or between image-
patches and text-tokens in image-text architectures [27,31].
CrossViT [11] proposed to use two Transformers but for
two differently scaled versions of the same image, not for
two images. The only work utilizing ViTs in FI that we
are aware of is the concurrent work by [65], which uses
the vanilla ViT on a single image and therefore offers no
cross-image interaction. A few other concurrent works also
explore ViTs for 2-image inputs but rather for person re-
identification [33, 53], a different task that involves a more
unconstrained image distribution than the images typically
cropped and aligned in FI. These leave us great room for
exploring cross-image interaction to compare two face im-
ages.
Model interpretability of Vision Transformers. Vari-
ous efforts have been made to visualize the effects of ViTs.
Black et al. [6] proposed a novel method to combine cross-
correlation and an attention flow approximation between
two images, each processed by a different 1-image ViT. For
multimodal, vision-language Transformers, Kim et al. [27]
use the similarity flow between text and image tokens as
explanations for its similarity score. Chefer et al. [9, 10]
leveraged the aggregate cross-attention across layers and its
gradients to derive a visualization of similarity between two
inputs. In our work, we visualize all ViTs using the tech-
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nique proposed by [48].

3. Method
We propose a novel ViT architecture (denoted as Model

H2L) for FI on OOD data. It takes in two images as input to
leverage both self-attention and cross-attention to compute
a similarity score for two images.

3.1. Problem Formulation
Similar to DeepFace-EMD [40], our method identifies

a person in a query image by ranking all gallery images
based on their pair-wise similarity with the query. After
ranking (ST1) or re-ranking (ST2), we take the top-1 nearest
image as the predicted identity. For the scope of this paper,
we only consider data consisting of frontal faces without
gestures.

3.2. Architecture: a two-Image Hybrid ViT
The overall architecture of the model is shown in Tab. 1.

and Fig. 2. It takes in patch embeddings from a pre-trained
CNN (ArcFace [12]). The Transformer encoder consists
of a block of a multiheaded self-attention (MSA) layer and
an MLP layer. After N layers of the Transformer encoder,
which contains both self-attention and cross-attention from
2 input images, the patch embeddings of the input images
go through two linear layers.
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Figure 2. The architecture of the proposed ViT-based Model H2L.

Face embeddings. For a zero-shot face problem, deep
metric learning works efficiently [34,45,54]. Besides [CLS]
(classification tokens) [13, 16] for feature embeddings, we
also use the remaining 2-output to separate linear layers to
extract features that are deployed to a deep metric learning
fashion (see Fig. 2 for details).

Given two input 2D face images x1,x2, we reshape them
to have dimensions 2 RH⇥W⇥C . The face embeddings
xp1,xp2 2 RP

2⇥D are extracted from either CNNs or a

linear embedding layer, where P is the number of the face
patches and D is the size of the patch embedding. Here in
the loss function ArcFace [12], we use D = 512 and P = 8.

We denote the learnable embeddings as E and Epos 2
R(2⇥P

2+2)⇥D, the two extra learnable embeddings as
XCLS and XSEP , and the intermediate layers of the Trans-
former encoder as zi. f1 and f2 are the features from two lin-
ear layers that contain cross-attention information between
two images. Our proposed two-image-based model can be
formulated as follows.

z0 = [xCLSE,xp1E,xSEP E,xp2E] + Epos, (1)

z
0

l
= MSA(LayerNorm(zl�1)), l = 1 . . . L (2)

zl = MLP(LayerNorm(z
0

l
)) + z

0

l
, l = 1 . . . L (3)

zl ⌘ [zCLS , z1
L
, zSEP , z2

L
], z1

L
, z2

L
2 RP

2⇥D (4)

f1 = LayerNorm(Linear1(z1L)) (5)

f2 = LayerNorm(Linear2(z2L)) (6)
loss = Arcface loss(f1, f2) (7)

Position embeddings in vanilla Transformers [51] indi-
cate the position of words in sentences for machine transla-
tion. Here, they are also used with the face inputs. When
parts of the face are arranged in a constrained order, e.g.
position of eyes, mouth, etc. this positioning information
maintains the facial structure.

Attention-based outputs. The outputs z0

l
from a multi-

head-attention (MSA) layer are obtained through a combi-
nation of self and cross-attention processes. Previous ViT
works [4, 11, 16, 28] usually apply [CLS] as an extra learn-
able embedding for specific tasks. However, similar to
spatial patch embeddings in CNNs, the two-image-input-
based model exploits the patch embedding output z1

L
, z2

L

which contain information from both images, then put them
into linear layers for extracting cross-image features. We
provide an ablation study to compare the performance of
these cross-image features and [CLS] in Sec. 4. Similar
to previous deep metric learning methods in face recogni-
tion [34, 45, 54], here we use the ArcFace as our loss func-
tion [12] to separate and learn cross-image margins to their
corresponding labels.

3.3. Dataset

The model is trained on the CASIA Webface [58]
dataset, containing 494,414 face images of 10,575 real-
world identities, widely used for FI tasks such as [45]. We
sample 2M pairs (1M positives and 1M negatives) consist-
ing of all identities from the processed and clean CASIA
Webface dataset.
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Name Architecture Patch
Embedding Input Transformer

output

Inter-image,
Image-wise
comparison

Intra-image,
patch-wise
comparison

Inter-image,
patch-wise
comparison

C CNN [12] CNN [1] 1-image 1 feature 3 Local (CNN-based) 7
V ViT [16] learned 1-image 1 feature 3 3 7
H1 Hybrid-ViT CNN 1-image 1 feature 3 3 7
H2 Hybrid-ViT CNN 2-image CLS 7 3 3
H2L Hybrid-ViT (ours) CNN 2-image 2-Linear 3 3 3
D DeepFace-EMD [40] CNN 2-image 2 features 3(↵ = 0.3) Local (CNN-based) 3(↵ = 0.7)

Table 1. Properties of the six networks evaluated in this work. We categorize into 2 types of models: 1-image and 2-image. 1-image
models include CNN (C) and ViT (V) while the 2-image group contains DeepFace-EMD (D). Hybrid-ViT can be 1-image (H1) or 2-image
(H2 and H2L). The difference between H2 and H2L is the Transformer output of [CLS] vs. 2-Linear, respectively.
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Figure 3. The architecture of the six networks evaluated in this work including our proposed H2L.

3.4. Evaluation against various network structures

Here, we study six models with various architectures
for face recognition, including a SNN with ArcFace [12],
DeepFace-EMD [40], and Transformer ViTs, whose prop-
erties are summarized in Tab. 1.

The Siamese CNN model (denoted as C in the table) is
used as a baseline in our study. The ViT-based model (de-
noted as V) operates at the patch level instead of the im-
age level. The 1-image hybrid-ViT [16] (Model H1) is the
same as the original ViT except that the patch embeddings
are from a pre-trained CNN, which serves as the baseline
for ViT-based models. The 2-image Hybrid-ViT (Model
H2) uses [CLS] for binary cross-entropy loss for one single
softmax classifier layer, which we will compare to the 1-
image model. The 2-image Hybrid-ViT (Model H2L) uses
2-output features for computing a cosine similarity. The 1-
image model has separate ViTs for each input while the 2-
image one has put two features into a single Transformer to
implement cross-attention. DeepFace-EMD [40] (D) uses
entire CNN features but in two stages: First, compare im-

ages using image embeddings and then re-rank using patch
embeddings. Models H2, H2L, & D perform cross-image,
patch-wise comparison—via ViT attention (H2 & H2L) or
optimal transport (D) between 2 image inputs.

For Model H2L, the spatial features embeddings (e.g.
8 ⇥ 8 in ResNet-18 [24]) are re-used to compute a feature
vector through the linear layers which are deployed to Ar-
cFace [12] loss function. Utilizing this loss function for
cross-image features can help transfer knowledge quickly
as well as further improvements. For more details about
parameter selection, see Tab. 1 and Sec. 3.4.

4. Ablation Studies
For model understanding and parameter selection, we

conduct two major ablation studies for networks with dif-
ferent settings: (1) Cross-attention 2-image vs. no-cross-
attention 1-image, for both in-distribution data and OOD
(Sec. 4.1), and (2) With cross-attention, 2-output linear vs.
1-output [CLS] (Sec. 4.2). In addition, we provide a study
for how to select the depth and the head of Transformers
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model depth head LFW MLFW
C CNN - - 98.02 70.75
V ViT 20 8 97.77 57.62

H1 Hybrid-ViT
(1-image)

1 4 96.38 56.00
2 2 96.13 57.85
4 6 96.20 57.75
8 1 58.00 57.92

H2L Hybrid-ViT
(2-image)

1 4 99.28 73.00
2 2 99.27 71.60
4 6 99.30 71.92
8 1 99.22 71.90

Table 2. Comparison of 1-image (no-cross-attention) and 2-image
(cross-attention). 2-image hybrid model H2L outperforms 1-
image models (C, V, and H1) on in-distribution (LFW) and occlu-
sion OOD (MLFW) domains. In addition, the accuracy of the low
depth is similar to higher depth so that we can use the low depths.
Therefore, we can rule out models: C, V, and H1, and choose the
lower depth of H2L.

(Sec. S5).
Datasets. We run face verification experiments on two
datasets: the in-distribution LFW [58] and the masked-face-
occlusion MLFW [52]. The face verification task has 6,000
pairs (3000 positives and 3000 negatives, a total of 12,000
images). For the hybrid models (C, and D), we used the pre-
trained ResNet18 ArcFace model [12]. Images are aligned
and cropped to 128 ⇥ 128 by the MTCNN algorithm [45].
Inputs are normalized to [0, 1] by subtracting 127.5 and
dividing by 127.5. For Model V, images are cropped to
112 ⇥ 112 with original RGB values in [0, 255]. All mod-
els are trained on a clean and processed CASIA Webface
database [58].
Model training. We train models with a batch size
of 320 images and a learning rate of 1e�6 for the first
warm-up epoch and 1e�5 in the remaining 49 epochs. For
Transformer settings, the models are trained with depth
= 1, 2, 4, 8 and head = 1, 2, 4, 6, 8. For CNN backbones
in hybrid-ViTs, we do not update the parameters. For Arc-
Face loss [12], hyper-parameters are mentioned in Sec. S2.
All experiments are run on eight 40GB A100 SXM GPUs.

4.1. The cross-attention 2-image ViT outperforms
the 1-image

To investigate our hypothesis that using cross-attention
can improve the performance in face recognition, we com-
pare our proposed 2-image (cross-attention) model with the
1-image (no-cross-attention) one.
Experiment. For Model V, we use a depth of 20 and
a head of 8. For Model V & H1, we use [CLS] outputs to
extract 512-dimension features. For Model H2L, we use the
remaining 2-output with 512-dimension embeddings. All
features are learned with the ArcFace loss function [12] to
classify identities.

2-image Hybrid-ViT depth head LFW MLFW

H2 CLS
(1-output)

1 1 90.45 48.40
1 2 96.38 53.55
1 4 97.47 56.88
2 1 92.47 52.52

H2L 2-Linear
(2-output)

1 1 99.22 70.15
1 2 99.25 72.77
1 4 99.28 73.00
2 1 99.28 70.77

Table 3. Model H2L with 2-output features outperforms H2 (CLS
output) on both LFW and MLFW.

Results. First, we find that the 2-image (cross-attention)
model outperforms the 1-image (no-cross-attention) one
significantly on the LFW and MLFW datasets, showing
that cross-image information is useful for handling OOD
data (Tab. 2). For example, in LFW, the accuracy of H2L
(depth=4, head=6) increases ⇠ 3.14% (model H1), ⇠ 1.5%
(Model V), and ⇠ 1.25% (CNN). Furthermore, the 2-image
model H2L substantially provides more useful similarity
information than the 1-image model for OOD distribution
on MLFW (Tab. 2; Model H2L - 73% vs. C-70.75%, H1-
57.92%, and V-57.62%).

Second, interestingly, we find that the hybrid models (H1
& H2L) can achieve higher precision with a depth of only
1, i.e. adding an efficient shallow layer to Transformers can
improve performance (e.g. on LFW, 99.28% H2L vs. 98.02
% of H1). We deduce the same statement when compar-
ing it with the ViT model (V). In contrast, the 1-image no-
cross-attention model has worse performance with the in-
distribution LFW (see Fig. 4) and the OOD MLFW (Tab. 2).
With a higher depth of 8, model H1 becomes worse in LFW
(Tab. 2 H2L-99.22% vs. H1-58.00%)

4.2. Cross-Attention: The 2-linear-output ViT out-
performs the 1-output [CLS]

The previous Transformer-based FI works [14, 16] usu-
ally use an extra learnable embedding [CLS], discarding
the remaining embeddings that may contain helpful cross-
image information. Here, we experiment with the 1-output
[CLS] (model H2) and 2-output (model H2L) to study how
the embeddings can improve performance.
Experiment. In the 1-output [CLS], we deploy binary
cross entropy loss to classify identities. We train Transform-
ers with depths of 1 and 2.
Results. First, we find that the 2-linear-output model
H2L consistently outperforms the 1-output [CLS] model H2
on LFW and MLFW (Tab. 3), verifying that the remaining
embeddings cross-image information between two images
are helpful to improve models. In LFW (in-distribution),
the 2-output model improves the accuracy by +8.55 points
(Tab. 3; from 90.45% of H2 to 99.22% of H2L). In the out-
of-distribution masked-face image (MLFW) datasets, the
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a) Depth 1 head 4 b) Depth 2 head 2

c) Depth 4 head 6 d) Depth 8 head 1

Figure 4. Comparison in accuracy and convergence between training H1 (No-cross-attention) vs. H2L (Cross-attention) architectures on
LFW [58]. For different network settings, 2-input-image achieves better accuracy and more stable training when leveraging patch-wise
cross-image attention.

a) Depth 1 head 1 b) Depth 1 head 2 c) Depth 1 head 4 d) Depth 2 head 1

Figure 5. Training performance of CLS (model H2) and ArcFace hybrid-ViT (model H2L) on LFW. Model H2L consistently outperforms
and achieves more stability in the training process.

improvement is even more significant when the accuracy in-
creases by +21.75 points (Tab. 3; 48.40% of H2 vs. 70.15%
of H2L).

Second, the training of the 2-output Model H2L per-
forms better and is more stable than the 1-output Model H2
in only a few iterations (Fig. 5). For instance, the 1-output
[CLS] Model H2 only achieves 80% in accuracy over LFW
while the 2-output model H2L can reach 99% in accuracy
within fewer iterations (Fig. 5a, b, and d).

To sum up, we can improve model performance on OOD
by using a low depth of 1, which saves computational costs
and proves that H2L performs better in both in-distribution
and OOD domains. In addition, with higher depths, H2 per-
forms worse.

5. Main Results
In Secs. 5.1 and 5.2, we experiment on different OOD

query types including masks, sunglasses, and adversarial

faces. Here, we select the best settings from ablation stud-
ies in Sec. 4 including depth of 1 and head of 1, 2, or 6. In
Sec. 5.3, we show that our model has a faster time complex-
ity compared with other layer types. Sec. 5.4 discusses our
model’s face explainability. To boost the performance, our
proposed Model H2L can be used in a 2-stage fashion like
DeepFaceEMD, i.e. selecting the top 100 Stage 1’s candi-
dates (k = 100) with CNN w.r.t cosine similarity scores and
then re-ranking these candidates with cross-image features
— 2 outputs from Transformers. We also re-use a com-
bination of two stages with ↵ = 0.7, which works best for
occlusion cases [40]. The models trained with settings men-
tioned in Sec. 4 are reported with 2 stages (ST1 and ST2)
compared with the original ArcFace and DeepFaceEMD.
The results are computed by three metrics: P@1, RP, and
M@R [37,62]. For the details of these metrics, see Sec. S3.
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dataset name model stage depth head P@1 RP M@R

CALFW
(Mask)

C CNN ST1 - - 95.58 51.59 50.01
H2L Hybrid-ViT ST1 1 2 95.03 43.70 42.36
D DeepFaceEMD ST2 - - 99.79 56.77 55.75
H2L Hybrid-ViT ST2 1 2 99.29 51.00 50.01

CALFW
(Sunglasses)

C CNN ST1 - - 51.11 29.38 26.73
H2L Hybrid-ViT ST1 1 6 50.23 28.08 25.15
D DeepFaceEMD ST2 - - 54.95 30.66 27.74
H2L Hybrid-ViT (ST2) ST2 1 6 54.00 31.00 27.87

AgeDB
(Mask)

C CNN ST1 - - 96.31 39.22 30.41
H2L Hybrid-ViT ST1 1 1 98.73 20.68 14.86
D DeepFaceEMD ST2 - - 99.84 39.22 33.18
H2L Hybrid-ViT ST2 1 1 99.28 33.93 26.69

AgeDB
(Sunglasses)

C CNN ST1 - - 84.64 51.16 45.00
H2L Hybrid-ViT ST1 1 2 86.01 49.34 43.03
D DeepFaceEMD ST2 - - 87.06 50.04 44.27
H2L Hybrid-ViT ST2 1 2 86.75 51.16 44.88

TALFW
vs.

LFW

C CNN ST1 - - 93.49 81.04 80.35
H2L Hybrid-ViT ST1 1 2 94.59 77.66 77.00
D DeepFaceEMD ST2 - - 96.64 82.72 82.10
H2L Hybrid-ViT ST2 1 2 94.03 81.63 81.09

Table 4. Face occlusions and adversarial images. Model H2L
achieves comparable accuracy on the OOD of CALFW and
AgeDB compared to CNN and DeepFace-EMD [40].

5.1. Comparable accuracy
Experiment. We demonstrate our models for FI on
two datasets: CALFW [63] and AgeDB [36]. The 12,173
CALFW images and 16,488 AgeDB images have age-
varying of 4,025 and 568 identities, respectively. We re-use
OOD queries of these datasets from DeepFaceEMD [40]
consisting of masks and sunglasses.
Results. First, in ST1, 2-image (model H2L) achieves com-
parable accuracy with the original ArcFace [12]. In the
AgeDB dataset, ST1’s P@1 of model H2L improves around
+2 points over model C on Mask (98.73% vs. 96.31%;
Tab. 4) and Sunglasses (86.01% vs. 84.64%; Tab. 4), in-
creasing the accuracy on occlusion in the cross-age domain.

Second, ST2 of Model H2L significantly outperforms
ST1 (e.g. CALFW (mask) 99.29% vs. 95.58% P@1 in
Tab. 4) and achieves better results compared with Deep-
FaceEMD in sunglass images (ST2 on RP and M@R met-
rics in Tab. 4), verifying the boost performance in the 2-
stage process.

5.2. Comparable robustness
Experiment. To illustrate the effectiveness of adversarial
attacks, we run the experiment on the TALFW dataset [64].
TALFW contains 13,233 images perturbed adversarially to
fool face models.
Results. First, in ST2, model H2L achieves better re-
sults than model H1 on all 3 metrics, P@1 (H2L-94.03%
vs. H1-93.49%), RP (H2L-81.63% vs. H1-81.04%), and
M@R (H2L-81.09% vs. H1-80.35%). See the last row of
Tab. 4), verifying that our proposed model H2L also im-
proves the precision in adversarial images with a re-ranking
algorithm. Second, DeepFace-EMD (model D) achieves the
best results in all metrics both ST1 and ST2 (see the last
row of Tab. 4). These results show that these models (mod-

els H2L & D) are robust to adversarial images, which is a
grand challenge in computer vision [30, 38].

5.3. Faster inference time

Layer type Complexity
per layer

Actual
runtime
(s)

Maximum
path
Length

C. Convolutional O(k · n · d2) - O(log
k
n)

V. ViT, Self-Attention O(n2 · d) - O(1)
V. Self-Attention (restricted) O(r · n · d2) - O(n/r)
H2L Hybrid-ViT O(k · n · d2 + n

2 · d) 24.33 O(log
k
n)

D. DeepFace-EMD [40] O(k · n · d2 + n
3 · log n) [46] 53.35 O(1)

Table 5. Time complexity of different type layers. n is the number
of patches, d is the dimension of embeddings, k is the kernel size
of convolutions, and r is the size of the neighborhood in restricted
self-attention.

The run-time complexities of Model C, V, H2L, and D
are shown in Tab. 5 and detailed in Sec. S4. Our Model
H2L has a lower complexity, O(n2), than that of DeepFace-
EMD, O(n3). In practice, Model H2L performs at least 2
times faster than Model D when used as the re-ranking pro-
cess (ST2) in face identification (see Tab. S1, Fig. 1). More-
over, in ST2, DeepFace-EMD is slow to solve EMD for
higher dimension patch-wise similarity [40] while hybrid-
ViT simply computes the cosine similarity of cross-image
features and low-depth Transformers, i.e. enhancing the
scalability. For example, in AgeDB (sunglasses), the com-
putation is sped up to ⇠ 3⇥ for 16,409 sunglass-query im-
ages in settings of 8 ⇥ 8 patches (see Tab. S1 for details).
Therefore, model H2L is a good choice for more scalable
architectures.

5.4. Better model explanation by human evaluation
As face identification systems in the real world are of-

ten customer-facing [7, 22, 26, 43, 44], we study how CNNs
(model C), 1-image ViTs (model V), 2-image Hybrid-ViT
(model H2L), and DeepFace-EMD (model D) help users in
understanding face verification results. For each image pair,
we generate a visual explanation from a model (examples in
Fig. 6), and ask a user to look at both images and the expla-
nation and decide whether the two faces are of the same
person.
Experiment. Similar to [40, 62], we use the cross cor-
relation method from [48] to generate similarity heatmaps
for the CNNs and ViTs. This method produces a heatmap
by taking the dot product between every patch embedding
of image 1 and the global average pooling feature of image
2. For DeepFace-EMD, we plot their flow visualizations as
in [40].

The explanation heatmaps are generated for models C,
H2L, and D using their last convolutional layers, which
have the same spatial dimension of 8⇥8. For model V,
the spatial dimension of the heatmap is 14⇥14. In prelim-
inary experiments, we find the raw cross-attention matrices
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(C) CNN (V) ViT (H1) ViT-attn (H2L) Hybrid-ViT (D) DeepFace-EMD

Mask

Sunglass

Figure 6. Comparison of face models’ explainability on LFW OOD domains. ViT-attn is visualized through the method of Chefer et
al. [9]. Our proposed H2L can highlight the important area in images (e.g. eyes, mouth, etc.) and remove occluded areas (e.g. mask and
sunglasses). In contrast, Model V contains noisy heatmaps and H1 does not provide any interpretable clues of how two faces match.
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Figure 7. Human explainability across various networks. The
mean and standard deviation of the accuracy of 21 users when
presented with 4 explanations: Cross-correlation (CC) method on
CNNs [48]; flow visualization in DeepFace-EMD [40]; CC on 2-
image Hybrid-ViT; and a baseline of no explanations. The expla-
nations of Model D and H2L result in substantially higher user
accuracy than those of Model C and the No-explanation baseline,
which is close to the random baseline of 53.33%.

at the first layer of the ViT model uninformative to users
(see Fig. 6; ViT-attn). Therefore, we use cross-correlation
(CC) [48] to generate explanations for ViTs (Fig. 6; ViT).

We recruit 21 participants who are graduate students
across multiple institutions in the U.S., Vietnam, and China.
For each user, we provide them 5 training examples and 15
pairs of images per method (i.e. 15 pairs ⇥ 4 methods = 60
pairs in total). We randomly mask and place a pair of sun-
glasses on each image. Sec. S6 presents specific examples
and how we design for user study.
Results. First, we find that users without any model ex-
planations score an average accuracy of 54.60%, i.e. near
random chance (53.33%). This suggests that the face verifi-
cation task is challenging to users (which is consistent with
the qualitative feedback obtained from users).

Second, all model explanations are useful in improving
user accuracy. Model H2L and D are most useful to users
who score 73.97% and 75.24% respectively. Interestingly,

these explanations of Model H2L and D, which leverage
cross-image interaction, are more useful than the CC ex-
planations of CNNs, which do not allow cross-image inter-
action (69.84% user accuracy; Fig. 7). In sum, consistent
with the accuracy-based analysis in Sec. 5.1 & Sec. 5.2,
our user study finds models with cross-image interaction
(Model H2L and F) have higher explainability to users.

6. Discussion and Conclusion
First, we find that using models that leverage cross-

image interaction as the re-ranker substantially improves
FI accuracy under occlusion and adversarially perturbed
queries. Second, we train a 2-image Hybrid-ViT model
that not only achieves similar accuracy but also two times
faster than state-of-the-art models. Note that the 1-image
models remain the fastest due to efficient image embedding
caching. Finally, visual explanations in cross-image inter-
action models greatly enhance lay-user face verification ac-
curacy. We also conduct the inaugural study comparing
state-of-the-art FI approaches based on accuracy, complex-
ity, and explainability.
Significance. Face identification in the wild is essentially a
hard, ill-posed zero-shot image retrieval task. We hope our
work can inspire more explorations in the use of ViTs for
face identification and to improve the speed of this system
in the real world.
Future work. The performance of hybrid-ViTs is still
slightly lower than that of DeepFace-EMD. It would be
possible to tune ViT hyperparameters [5] for higher accu-
racy and incorporate sparsity into the attention mechanism
of ViT for improved inference speed.
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