
ZEETAD: Adapting Pretrained Vision-Language Model for
Zero-Shot End-to-End Temporal Action Detection

Thinh Phan∗, Khoa Vo∗, Duy Le†, Gianfranco Doretto‡, Donald Adjeroh‡, and Ngan Le∗
∗AICV Lab, University of Arkansas, Fayetteville, Arkansas, USA

†FPT Software AI Center, Vietnam
‡West Virginia University, Morgantown, West Virginia, USA

{thinhp, khoavoho, thile}@uark.edu, duylda1@fpt.com
{gianfranco.doretto, donald.adjeroh}@mail.wvu.edu

Abstract

Temporal action detection (TAD) involves the localiza-
tion and classification of action instances within untrimmed
videos. While standard TAD follows fully supervised learn-
ing with closed-set setting on large training data, re-
cent zero-shot TAD methods showcase the promising open-
set setting by leveraging large-scale contrastive visual-
language (ViL) pretrained models. However, existing zero-
shot TAD methods have limitations on how to properly con-
struct the strong relationship between two interdependent
tasks of localization and classification and adapt ViL model
to video understanding. In this work, we present ZEE-
TAD, featuring two modules: dual-localization and zero-
shot proposal classification. The former is a Transformer-
based module that detects action events while selectively
collecting crucial semantic embeddings for later recogni-
tion. The latter one, CLIP-based module, generates seman-
tic embeddings from text and frame inputs for each tem-
poral unit. Additionally, we enhance discriminative capa-
bility on unseen classes by minimally updating the frozen
CLIP encoder with lightweight adapters. Extensive experi-
ments on THUMOS14 and ActivityNet-1.3 datasets demon-
strate our approach’s superior performance in zero-shot
TAD and effective knowledge transfer from ViL models to
unseen action categories. Code is available at https:
//github.com/UARK-AICV/ZEETAD.

1. Introduction
With the rapid growth of video content on the internet

and social media, video understanding, which is about ana-
lyzing and interpreting action sequences, has gained a lot of
interest. While video action recognition requires categoriz-
ing a standardized snippet with a single label, temporal ac-
tion detection (TAD) aims to both localize and classify ev-

ery action instances from long untrimmed videos. This task
is challenging because existing supervised methods needs
training with large amount of video data to attain decent
performance. At the same time, obtaining multiple anno-
tation pairs of temporal regions and corresponding action
labels per video is laborious and expensive. These issues
restrict current TAD works to closed-set learning setting,
where the same set of categories apply to training and infer-
ence stage. Hence, there has been an increasing demand for
expanding TAD methods to unseen classes with little addi-
tional annotation cost via few-shot or preferably zero-shot
(ZS) learning strategies.

The recent achievements on vision-language (ViL) pre-
trained models with representatives such as CLIP [40],
ALIGN [16], UniCL [52], Grounding DINO [30], have
not only been beneficial to ZS image understanding tasks
[5, 11, 12, 29, 36, 39, 56, 60] but promoted the generalizabil-
ity of video analysis issues [19, 28, 41, 49–51]. Their suc-
cess is ascribed to the rich semantics aligned with strong
visual representation acquired from web-scale image-text
pairs. The ZS transferability is accomplished by matching
the similarity between query text embeddings and novel im-
age features, or vice versa. Based on pretrained ViL mod-
els, there have been many literature that centered around ZS
image recognition [12, 36, 56], open-vocabulary image seg-
mentation [5, 11, 29, 60], interpretable AI in medical [36]
and some related to ZS action recognition [19,28,49], video
captioning [50, 51], objects tracking [41]. ZS TAD, which
is the extension of ZS video action detection, has recently
also received more attention and demonstrated promising
performance in detecting actions within open-set settings.

As a foundational study, Efficient-Prompt [20] focuses
on enhancing CLIP’s text encoder to maximize similar-
ity between visual proposals and textual embeddings. To
achieve this, frame embeddings extracted from CLIP visual
encoder are passed through a lightweight Transformer [43],
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Figure 1. Network comparison between our ZEETAD and Efficient-Prompt [20], STALE [35]. Efficient-Prompt acquired the class-
agnostic action proposals from pretrained action localization model and applied ZS video action recognition model on them. STALE used
CLIP visual encoder for localization instead of 3D video backbone and predicted the action category and event duration on every snippet
features. In our approach, we fuse CLIP text and visual features into temporal semantic representation, which we then correlate with a
dynamic foreground mask to facilitate subsequent classification. Moreover, to enhance transferability, our technique employs Adapters in
lieu of Text Prompt Tuning as in existing works.

capturing temporal information and encapsulating them into
proposal embeddings. Nonetheless, due to the utilization
of independently obtained proposal boundaries from a pre-
trained action localization model, the framework lacks inte-
gration between localization and classification [35] (limita-
tion 1). Recognizing this limitation, STALE [35] designed
a one-stage TAD model that reserved the foreground fea-
tures through representation masking and jointly accom-
modated and classified every snippet embeddings. Addi-
tionally, the authors adopted text prompt tuning (TPT), a
finetuning technique on CLIP, to determine optimal textual
action descriptions. They also introduced a cross-modal
adaptation to guide text features using contextual-level in-
formation. However, there is a dilemma of the localiza-
tion input (limitation 2). According to CLIP’s formation,
novel classes are distinguished by comparing the similar-
ity among CLIP-encoded visual and text embeddings. In
STALE, the action localizer receives CLIP-encoded frame
features as input. This impedes localization, as these fea-
tures lack temporal relations and motion cues. Despite
the subsequent temporal modeling module, the improve-
ment remains marginal. Replacing this with conventional
3D video encoders for better localization results in an im-
paired action classifier, given the incongruity between vi-
sual features and text embeddings. Another issue is that
STALE classified every video frames, instead of sequence
of frames, and tied them to action proposals. Regarding
the activity with several sub-actions, local temporal feature
cannot be representative of an entire action (limitation 3).

Both STALE and Efficient-Prompt adopt ViL model
leveraging learnable textual tokens from CLIP’s text en-
coder to enhance ViL model adaptation. However, as noted

in [53], TPT struggles to generalize to new classes and grap-
ples with high intra-class variance in visual features (limita-
tion 4). To address the aforementioned issues, in this work,
we design an effective end-to-end model architecture with
the aid of CLIP pretrained model for ZS TAD called ZEE-
TAD. The network differences between the existing meth-
ods and ours are highlighted in Fig.1.

Our method focuses on solving two primary concerns: i)
enhancing the ViL model for novel action detection; (ii) in-
tegrating the action localizer and classifier within the frame-
work of TAD for an open-set scenario. Our network is a
one-stage TAD model with learnable dual-localization mod-
ule and ZS proposal classification module to address limi-
tation 1. To rectify the limitation 2 identified in STALE,
snippet features extracted from pretrained 3D convolutional
neural network (CNN) are used for localization module
while frame embeddings from CLIP’s image encoder are
allocated to the classification module, aligning with their
respective objectives. Inspired by semantic image seg-
mentation, the localization module employs video seman-
tic embeddings generated by the classifier module to ascer-
tain regions relevant to the action. Consequently, based on
this segmented data, action proposals from seen or unseen
classes are determined. Specifically, the frame embeddings,
after being modeled with temporal relationship, are com-
bined with their counterpart ones to generate a semantic
representation that describe the action probabilities for each
frames. Recognizing that not all frames contribute equally
to action discrimination, we introduce the dual-localization
module, facilitating the gathering of exclusively action-
relevant embeddings. The classification of a class is at-
tained by combining selected embeddings and identifying
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the category with the highest matching score. Moreover, to
achieve better transferability on video domain, we opt for an
efficient finetuning technique known as AdaptFormer. As
shown in [9], AdaptFormer merely updates the lightweight
adapters injected inside the frozen CLIP Transformer sub-
layers, however, it surpasses the full-tuning solution by ap-
proximately 10% in video recognition task. The selection
of the aforementioned components offers a simple pipeline
as well as low computation cost but yields remarkable per-
formance.

The main contributions are summarized as follows:

• We introduce a dual-localization mechanism designed
not only to determine proposal boundaries but also to
segment the semantic embeddings synthesized from
CLIP.

• We integrate an efficient finetuning method, known as
Adapters, to adapt a large-scale ViL model to the video
domain.

• As a result, we employ the dual-localization mecha-
nism and Adapters to propose a highly effective end-
to-end model architecture for Zero-shot Temporal Ac-
tion Detection (ZEETAD), encompassing two mod-
ules: temporal action dual-localization and Zero-Shot
(ZS) proposal classification.

• We conduct experiments on the THUMOS14 and
ActivityNet-1.3 datasets. Our ZEETAD model, fea-
turing dual-localization and conceptual-based classifi-
cation, significantly outperforms other state-of-the-art
(SOTA) methods. We also present comprehensive ab-
lation studies to demonstrate the effectiveness of each
individual component.

2. Related Works
2.1. Pretrained Vision-Language Models

Vision-Language models have rapidly evolved in recent
years with the intention of improving vision models’ gen-
eralizability upon unseen object classes. The key idea is
to capitalize on large scale of pairs of images and natural
language descriptions and then train a network to align the
image representation with text embeddings through noise
contrastive learning. While early approaches explored the
semantic representation through word embeddings of class
name [1] or attributes [22], recent works with representa-
tives as CLIP [40] and ALIGN [16] augmented the train-
ing procedure with millions of image-text pairs as well as
the backbone with modern Transformer [43]. Their rich
vision-language correspondence knowledge serves as effec-
tive pretrained model for many few-shot to ZS tasks such
as image captioning [33, 50, 51], image retrieval [32], se-
mantic segmentation [11,42], medical imaging [37,39], ob-
ject tracking [24, 41] . Along with that, adaptation meth-
ods [17, 18, 23] for large-scale ViL models have been be-

coming favored research which is about minimally finetun-
ing these computation-heavy models but still boost the gen-
eralization capability on new tasks. In this work, we utilize
CLIP for ZS action classification branch in TAD and fur-
ther improve its performance on unseen video categories by
incorporating adapters [9] to the text encoder backbone.

2.2. Temporal Action Detection

Temporal action detection is one of the key task in video
understanding topic. Current methods could be roughly cat-
egorized into two-stage methods and one-stage methods.
The former ones initially generate action proposals or fore-
ground instances and then assign them with action cate-
gories. Commonly, more effort was put on the first stage
and action labels were obtained from external classification
scores. DCAN [8] followed the anchor-based localization,
adjusting the pre-defined anchors based on boundary level
and proposal level scores. BSN [27] and BMN [26] fall
into action-guided localization direction, evaluating candi-
date proposals with probability of being a potential action.
ABN [47] and [48] formulates TAD as a interaction be-
tween environment and agent. AEI [44], [46], AOE-Net
[45] are also two stages TAD but they are are designed with
explainable capability. Single-stage method [25, 54], also
known as anchor-free localization method, simultaneously
classifies every temporal units and regresses their bound-
aries. Our proposed model follows the single-stage method
but it concurrently generates the action proposals and cate-
gorizes them. A Transformer encoder-decoder as the back-
bone is responsible for action boundary detection and pro-
posal ranking through actionness score.

2.3. Zero-shot Temporal Action Detection

Zero-shot learning considers the model awareness of
novel classes absent during training. Zero-shot learning in
TAD is challenging because it deals with the joint localiza-
tion and classification of multiple unseen instances. ZSTAD
[55] adopted the R-C3D framework and optimized activity
label mapping by considering common semantics between
seen and unseen activities. However, ZSTAD allowed the
unseen semantic embeddings to support the training stage
via super-class classification loss, which is impractical in
real-world scenarios. To address this issue, TranZAD [34]
used semantic information of only seen classes at training
phase and also proposed a network that learns to group ac-
tion visual features and their corresponding class-specific
semantic embedding. The semantic embeddings in these
two methods are acquired from Word2Vec [13] or GLoVe
[38]. More recent approaches, such as Efficient-Prompt
[20] and STALE [35], harness large-scale pretrained ViL
models, which inherently possess visual-textual alignment
capabilities. he experiments clearly illustrate the effective-
ness of incorporating ViL capabilities to address agnostic-
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Figure 2. Overall architecture of ZEETAD. The classification module associates frame embeddings and textual categories embeddings
from CLIP encoders to generate the temporal semantic embeddings. The dual-localization receives the 3D encoded video snippet features
and passes them through Deformable Transformer for class-agnostic action proposal generation. Segment generator is proposed in the
dual-localization module to dynamically mask the appropriate semantic embeddings for each event. Finally, the selected proposal segment
of semantic representation are aggregated and classified. Adapters as a finetuning technique are attached to CLIP text encoder to increase
the generalizability of zero-shot classification.

action scenarios in ZS TAD. Both Efficient-Prompt and
STALE have outperformed all existing ZS TAD methods.
In our approach, we harness the power of the CLIP pre-
trained model within the action classifier module to accu-
rately identify unseen classes. Specifically, we adapt CLIP
to produce temporal semantic embeddings, which are sub-
sequently clustered for each action candidate and ultimately
result in the assignment of the final action class.

3. Methodology

As shown in Fig.2, our framework is the unification of
two sub-tasks, action proposal localization and action clas-
sification. In the upper part of Fig.2, CLIP pretrained model
encodes the RGB frames and action category contents and
the frame and text embeddings are subsequently multiplied
to create semantic embeddings for all frames. A deformable
Transformer encoder-decoder model receives the 3D en-
coded video features, predicting the action intervals and
confidence scores. Unlike supervised TAD that assigns la-
bels by distinguishing video features, ZS TAD indirectly
classifies action by assessing the matching score of visual
and textual embeddings. Hence, segment generator is de-
signed to generate foreground mask of the semantic em-

beddings pertinent to the corresponding action boundary.
Finally, the assembled semantic embeddings are fed to an
classifier to yield the activity label.

3.1. Problem Definition

Our work focuses on the problem of ZS TAD. Given
a training set of untrimmed videos Dtrain = {Vi}ni=1,
we have an input set of RGB frames Xi = {ft}Tt=1,
where T is the number of video snippets from input se-
quence. As a TAD task, annotation is demonstrated as
Yi = {sk, ek, csk}Ki

k=1 where Ki is the amount of action
events, s and e are respectively the start and end of each
event and cs is activity category. The testing set Dtest

shares the same data structure of Dtrain; regarding the ZS
scenarios, the activity classes in Dtrain and Dtest are non-
overlapping Ctrain ∩ Ctest = ∅. Our proposed method aims
to predict all video segments in an open-set scenario guided
by word embeddings of Ctest.

3.2. Semantic Representation

We adopt CLIP [40] pretrained Vision-Language model
to set up the ZS action recognition module. To fit CLIP into
ZS TAD, our idea is to fuse each frame embedding with
entire set of textual category embeddings, creating the se-
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mantic embedding for every frames. The semantic repre-
sentation brings the probabilities of every classes at each
temporal unit. Multiple action proposals in a video input
are assigned with labels via segmenting and aggregating re-
lated semantic embeddings. Specifically, video frame em-
beddings Frgb ∈ RT×d are acquired by passing middle
RGB frames of video snippets through CLIP visual encoder
ΦCLIP−v(.). To inject the temporal context into unattached
frame embeddings, we apply a temporal Transformer [43]
on Frgb. The temporal modeling module includes layers
of Residual Attention Blocks constructed from Multi-head
self-attention, Layer Norm, QuickGELU and MLP:

Frgb−t = ΦTEMP ({Frgb(1), ...,Frgb(T )}) (1)

In terms of text embeddings F text ∈ RC×d, a set of action
categories are prepended with prompt template ”a video of
action” and then passed through the CLIP language encoder
ΦCLIP−t(.). For ZS video action recognition task, a mean
pooling is commonly followed by Frgb−t to get the aggre-
gated video embedding, which is then used to find the high-
est matching score with F text. This cannot be naively ap-
plied in TAD because there are multiple events in individual
video input. Therefore, we generate temporal semantic rep-
resentation S ∈ RT×C made up of visual and text features:

S = Frgb−t · (F text)T (2)

To recognize the category of an action proposal, we find
the corresponding region on semantic embedddings and de-
duce the activity label from them. The embedding selection
and aggregation on semantic representation are supported
by dual-localization module. We analyze it in the next sec-
tion.

3.3. Dual Localization

The backbone for dual-localization framework is moti-
vated by Deformable DETR [59], an encoder-decoder ob-
ject detection model based on the Transformer. While the
predecessor DETR [6] takes long time to converge and its
attention modules fails to generate high-resolution image
feature maps, Deformable DETR requires remarkably less
time to train and more importantly, achieves better perfor-
mance at detecting small objects. This characteristic brings
advantage in coping with the vagueness in action bound-
aries, temporal redundancy in long videos and short action
detection. Initially, RGB frames are sampled into length T
and pretrained 3D video encoder (e.g., I3D [7] or TSP [2])
extracts the video snippet features F3D ∈ RT×l. A 1D con-
volutional is followed by to match video feature dimension
with CLIP feature dimension. The encoder with LE Trans-
former layers models the relations among video features via
deformable attention modules and returns feature sequence
Fenc ∈ RT×d carrying temporal context. The decoding

network consists of LD deformable cross attention layers
and receives the encoded feature sequence Fenc (served as
key) and Nq learnable embedding queries q ∈ Rd. For each
query q, the decoder outputs an embedding Fdec ∈ Rd,
which are later utilized by three prediction heads.

Boundary regression head predicts the normalized ac-
tion middle point and duration of an activity. The two vari-
ables are computed by applying a feed-forward network
(FFN) then a sigmoid function into the output embedding:

Ŷb = {m, d} = sigmoid(FFN(Fdec)) (3)

Actionness prediction head: Conventionally, image ob-
ject detection model uses classification score to rank the du-
plicate queries and pick the best bounding boxes. Since 3D
encoded snippet feature does not comprehend strong dis-
criminative power and adjacent frames of an action event
share high similarity with the main ones, classification score
is not a reliable ranking indicator for localization quality.
Hence, we adopt the actionness score from TadTR [31] to
support proposal selection. In detail, the ROIAlign [14]
along with predicted boundaries B is applied on the encoder
output features Fenc to extract the small feature map within
the action interval:

fRoI = RoI(Fenc, B) (4)

Subsequently, the aligned feature fRoI is fed to an FFN
with sigmoid activation to regress the actionness score. Ac-
tionness score is effective because it guides the model to be
more sensitive to the local features [31].

Segment generator head is the continuation of section
3.2. To classify an event, we should attentively accumulate
relevant semantic embeddings based on the action bound-
ary. Using the start and end timestamps straight from the
boundary regression head as binary segmentation is not op-
timal. For instance, the action ”high jump” and ”long jump”
both comprise of striding and jumping. Equal attentions
to these sub-actions could lead to classification uncertainty.
Based on this observation and motivated by the mask for-
mulation of MaskFormer [10], we propose the proposal seg-
ment generator module. The semantic mask M ∈ RT is
created by multiplying the video snippet feature F3D with
the prediction embedding Fdec via dot product:

M = sigmoid(F3D · Fdec) (5)

The semantic mask is kept flexible (M ∈ [0, 1]) instead of
applying thresholding to binarize them. The region mask
helps localize the events on the semantic embeddings and
put more concentration on semantic units that provide de-
cent classification clues. The final class of a action proposal
is determined by follow:

Ŷc = argmax
1

T

T∑
t=1

(M(t) ⊙ S(t)) (6)
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Figure 3. Adapter-based finetuning mechanism in our ZEETAD.

3.4. Vision-Language Model Finetuning

Fully finetuning on large-scale datasets has been well-
known to instill the knowledge to downstream tasks. Con-
sidering the massive scale of the Transformer model, full
finetuning takes tremendous amount of time and computa-
tion. Furthermore, full finetuning tends to overfit the down-
stream task and loses the generalization acquired in the
large-scale pretraining stage, which is extremely harmful to
ZS tasks. To address the above challenges, existing works
[17, 21, 58] focused on parameter-efficient finetuning tech-
nique that adjusts minimum amount of learnable parame-
ters and keep the entire backbone frozen. In this paper, we
leverage AdaptFormer [9] to implement our Adapter-based
finetune the pretrained CLIP text encoder. As displayed in
Fig.3, our Adapter-based finetune replaces the original MLP
sub-layers in Transformer blocks with AdaptMLP, which is
a bottleneck module parallel to the original one. During
finetuning, only the added parameters are optimized and the
entire encoder is frozen. The additional modules only occu-
pied for 1.46% of model parameters.

3.5. Training and Inference

Training: Following [59], we include boundary refine-
ment on each decoding layer and set dropout rate as zero
within the transformer. Bipartite matching is used to find
the lowest matching cost among targets to their correspond-
ing predictions (one-to-one mapping) and the loss is com-
puted on the matching pairs. While the matching cost re-
gards the classification probabilities and the resemblance
between target and output bounding boxes, the total training
loss is defined as follow:

L = λ1.Lcls + λ2.Lbbox + λ3.Lactionness (7)

To maximize the alignment between the frame sequence
embeddings and corresponding text embeddings, cross-

entropy loss with temperature parameter τ is used:

Lcls = −
∑
i

log
exp(fi · tj/τ)∑
j exp(fi · tj/τ)

(8)

Lbbox regresses the midpoint and the duration of the ac-
tion proposal via L1 loss and the generalized IoU loss:

Lbbox = α1.||bgt − bi||1 + α2.gIoU(bgt, bi) (9)

Actionness score is supervised by the offset of the
IoU between the predicted bounding box and its closest
groundtruth segment. The higher overlap rate is equivalent
to higher actionness score a, and vice versa. Lactionness is
a L1 loss that minimizes the ranking loss of all action pro-
posals:

Lactionness =
∑

||ai − IoU(bgt, bi)||1 (10)

Inference. For each video input, we have Nq pro-
posal boundaries, labels, classification scores and action-
ness scores. The proposal labels are obtained by applying
argmax on the classification head’s logits. The final pro-
posal confidence score is obtained by multiplying classifi-
cation scores and actionness scores. We gather the predic-
tions in top-k order according to the confidence score. At
last, Soft-NMS [3] is applied to remove duplicate and low-
quality predictions.

4. Experimental Results
4.1. Dataset and Metrics

We conduct experiments on THUMOS14 [15] and
ActivityNet-1.3 [4] datasets. THUMOS14 collects videos
from 20 sports action classes, containing 200 and 213
videos for training and testing, respectively. ActivityNet-
1.3 contains 200 classes of daily activities with the total of
19994 videos. We follow previous literature [20] to adopt
two validation splits (75% seen training classes - 25% novel
testing classes and 50% seen training classes - 50% novel
testing classes) for zero-shot scenarios. To ensure the legiti-
mate generalization, the final results are averaged on 10 ran-
dom splits. We compare to only existing methods that com-
ply with this evaluation scheme. Following existing TAD
and ZS TAD methods, the mean average precision (mAP)
at different IOU thresholds is reported as main evaluation
metrics.

4.2. Implementation Details

Similar to other TAD methods, available 3D video fea-
tures are used as the input of the localization module.
The selection of video features is centered around the best
performance on action boundary localization. On THU-
MOS14, we utilize the two stream I3D [7] video encoder
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Table 1. Performance comparison between our ZEETAD with SOTA ZS TAD methods on ActivityNet-1.3 and THUMOS14. mAPs at
different IOU thresholds of 0.3, 0.4, 0.5, 0.6, 0.7 and averaging (AVG) are reported.

Train-Test split Method THUMOS14 ActivityNet-1.3
0.3 0.4 0.5 0.6 0.7 AVG 0.5 0.75 0.95 AVG

75%-25%

B-II [35] 28.5 20.3 17.1 10.5 6.9 16.6 32.6 18.5 5.8 19.6
B-I [35] 33.0 25.5 18.3 11.6 5.7 18.8 35.6 20.4 2.1 20.2

Eff-Prompt [20] 39.7 31.6 23.0 14.9 7.5 23.3 37.6 22.9 3.8 23.1
STALE [35] 40.5 32.3 23.5 15.3 7.6 23.8 38.2 25.2 6.0 24.9

ZEETAD 61.4 53.9 44.7 34.5 20.5 43.2 51.0 33.4 5.9 32.5

50%-50%

B-II [35] 21.0 16.4 11.2 6.3 3.2 11.6 25.3 13.0 3.7 12.9
B-I [35] 27.2 21.3 15.3 9.7 4.8 15.7 28.0 16.4 1.2 16.0

Eff-Prompt [20] 37.2 29.6 21.6 14.0 7.2 21.9 32.0 19.3 2.9 19.6
STALE [35] 38.3 30.7 21.2 13.8 7.0 22.2 32.1 20.7 5.9 20.5

ZEETAD 45.2 38.8 30.8 22.5 13.7 30.2 39.2 25.7 3.1 24.9

while on ActivityNet-1.3,TSP features [2] is adopted. In
terms of ActivityNet-1.3, we resize the video features to
standard length T of 100 by linear interpolation. For THU-
MOS14, we follow previous papers [25] to divide the long
video features into windows of length 128 with overlap rate
of 0.75 for both training and testing. Regarding the ZS clas-
sification module, the model version of CLIP model is ViT-
B/16. The input frames are picked from the middle frame of
a snippet and thus, the length of the CLIP video features are
equal to length T of the 3D video encoded features. We set
LE = 4, LD =4, and Nq = 10 on ActivityNet and Nq = 40 on
THUMOS. All parameters of the network including add-in
adapters are learnable except the CLIP vision encoder and
text encoder. Adam optimizer with learning rate of 10−4

and batch size of 16 are set as the model hyperparameters.
ZEETAD is trained for 30 epochs on both datasets. The
threshold for Soft-NMS is 0.3.

4.3. Main Result

Table 1 displays results of ZEETAD and other existing
methods on open-set scenarios of TAD. We also include
two baseline experiments (B-I and B-II) from STALE [35].
Overall, we achieve the state-of-the-art results at nearly all
IoU thresholds on two datasets as well as two ZS settings.
Specifically, on THUMOS14, in terms of average mAP, we
surpass the second-best method, STALE, by 19.4% on 75%-
25% data split and by 8.0% on 50%-50% data split. The
large gain margins are also perceived on ActivityNet-1.3.
ZEETAD achieves average mAPs of 32.5% and 24.9% on
the mentioned dataset. The reported performance validates
the effectiveness of our approach towards the problem of
temporal action detection generalization.

4.4. Ablation Study

We implement experiments on THUMOS14 dataset and
evaluate the options of constituent components and model
structures in this section.

Vision-Language model finetuning: Different methods
of CLIP model finetuning are investigated in Table 2. The
average mAPs for not applying finetuning techniques are
37.2% and 27.1% on 75%-25% and 50%-50%, respectively.
We implement Text Prompt Tuning based on CoOp [58] and
use the appended learnable context length of 16. We ob-
serve the performance drop in both dataset splits compared
to the one not using TPT. The performance gap between
TPT and baseline in 50% setting is bigger than the 75%
setting, which could be an overfitting problem. According
to [57], the learned context is prone to overfitting on the
seen classes and cannot be generalizable to unseen classes.
By integrating adapter [9], we improve the average mAP by
6% and 3.1% on two data settings.

Encoded feature utilization: To demonstrate the input
problem of STALE, our network takes in uni-visual feature
encoder backbone for both localizer and classifier. Exper-
imented on 75%-25% setting, Table 3 describes the place-
ment of two types of visual features (CLIP and I3D) for
localization and classification modules. We can easily ob-
serve in Table 3 that using encoded features with no re-
gard to their dedicated purpose results in big drop in per-
formance. CLIP visual encoder have no capability to con-
vey the temporal context and using online temporal learning
model is trivial compared to 3D pretrained video encoder
like I3D. This could be derived from the fact that using I3D
on both branches yields better results.

Component effectiveness: We assess the importance of
supporting components proposed in our method in Table 4.
Although the model is still able to elaborate the ZS TAD
task if these components are omitted, their improvement
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Table 2. The effectiveness of different finetuning methods on two data split settings on THUMOS14 dataset. mAPs at different IOU
thresholds of 0.3, 0.4, 0.5, 0.6, 0.7 and averaging (AVG) are reported.

75%-25% 50%-50%
0.3 0.4 0.5 0.6 0.7 AVG 0.3 0.4 0.5 0.6 0.7 AVG

w/o Finetuning 52.3 46.6 38.9 29.2 19.1 37.2 39.2 34.2 28.1 20.6 13.2 27.1
Text Prompt Tuning 53.5 47.0 37.5 27.0 16.9 36.4 37.1 31.5 25.12 18.4 11.6 24.7
Adapter 61.4 53.9 44.7 34.5 20.5 43.2 45.2 38.8 30.8 22.5 13.7 30.2

Table 3. The effect of encoded feature utilization for localization
and classification modules on 75%-25% setting on THUMOS14
dataset. mAPs at different IOU thresholds of 0.3, 0.5, 0.7 and
averaging (AVG) are reported.

Localizer Classifier 0.3 0.5 0.7 AVG

CLIP CLIP 47.3 29.7 11.5 29.7
I3D I3D 43.4 33.0 16.9 31.5
I3D CLIP 61.4 44.7 20.5 43.2

cannot be denied. Action proposal confidence score is fused
from classification score and actionness score. Without ac-
tionness prediction, the average mAP is reduced by 0.9%.
Temporal modeling module helps inject temporal context
into CLIP encoded frame features, creating a temporal-
coherent semantic representation. Directly generating se-
mantic embeddings from frame embeddings decreases the
performance from 43.2% to 41.7%. Segment generator is in
charge of providing the soft masks of semantic embeddings
corresponding to action proposals. Should it be excluded,
we need to segment the semantic representation via action
boundaries, which is analogous to hard (binary) mask pre-
diction. The average mAP is declined to 33.4% if segment
generator is not employed, making it the key component in
our network.

Model structure: To ascertain the advantage of one-
stage ZS TAD over two-stage counterpart, ZEETAD is com-
pared to its variant in Table 5. To convert ZEETAD to two-
stage framework, the localization branch is trained sepa-
rately and the predicted action proposals are given to gather
the semantic embeddings of the classification branch. This
setup resembles Efficient-Prompt [20]. We obtain the final

Table 4. Ablation study of proposed components on 75%-25% set-
ting on THUMOS14 dataset. mAPs at different IOU thresholds of
0.3, 0.5, 0.7 and averaging (AVG) are reported. Actionness Pre-
diction, Temporal Modeling and Segment Generator are denoted
as AP, TM and SG, respectively.

0.3 0.5 0.7 AVG

ZEETAD 61.4 44.7 20.5 43.2
- AP 62.6 (+1.2) 43.9 (-0.8) 19.7 (-0.8) 42.3 (-0.9)
- TM 59.6 (-1.8) 43.4 (-1.3) 20.3 (-0.2) 41.7 (-1.5)
- SG 47.6 (-13.8) 34.5 (-10.2) 17.0 (-3.5) 33.4 (-9.8)

Table 5. Analysis of model structure on 75%-25% setting on THU-
MOS14 dataset. mAPs at different IOU thresholds of 0.3, 0.4, 0.5,
0.6, 0.7 and averaging (AVG) are reported.

0.3 0.4 0.5 0.6 0.7 AVG

Two-stage 40.3 36.1 28.9 21.4 14.2 28.2
One-stage 61.4 53.9 44.7 34.5 20.5 43.2

average result of 28.2%, which is much lower than the re-
sult of one-stage setup. Compared to the result of [20] on
the same setting, we still achieve better performance. This
could be attributed to the stronger class-agnostic proposal
detection backbone (Deformable DETR [59]) and also the
more efficient deep prompt tuning technique.

5. Conclusion
In this work, we propose the Transformer-based end-to-

end framework for Zero-shot Temporal Action Detection
model, titled ZEETAD. The model is designed as a one-
stage TAD method that unite the localization and classifica-
tion tasks. Large-scale Vision-Language pretrained model
plays an important role to empower the zero-shot classifica-
tion capability. ZEETAD revises the CLIP zero-shot mech-
anism in image recognition and transforms it into video
action proposal classification. Concurrently, the localiza-
tion branch enhances the action recognition rate by seg-
menting the appropriate semantic embeddings with strong
discriminative features. In addition, an efficient finetun-
ing method known as adapter is integrated to CLIP text
encoder. Adapter helps augment the text embeddings so
that they could increase the matching score with their cor-
responding video embeddings. The experimental results on
THUMOS14 and ActivityNet-1.3 verified the effectiveness
of our approach and ZEETAD significantly outperforms ex-
isting methods.
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