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Abstract

Face relighting is the challenging task of estimating the
illumination cast on portrait images by a light source vary-
ing in both position and intensity. As shadows are an im-
portant aspect of relighting, many prior works focus on
estimating accurate shadows using either a shadow mask
or face geometry. While these work well, the rendered
images do not look aesthetic/photo-realistic. We propose
a novel method that combines the features from attention
maps at higher resolutions with the lighting information
to estimate aesthetic relit images with accurate shadows.
We created a new relighting dataset using a synthetic One-
Light-At-a-Time (OLAT) lighting rig in Blender software
that captures most of the variations encountered in face
relighting. Through extensive experimental validation, we
show that the performance of our model is better than the
current state-of-art face relighting models despite training
on a significantly smaller dataset of only synthetic images.
We also demonstrate unsupervised domain adaptation from
synthetic to real images. We show that our model is able
to adapt very well to significantly different out-of-training
light source positions.

1. Introduction

Face relighting from a single image is the problem of
changing the illumination on the face of a source image
based on a given target light direction. It is an active area
of computer vision research and has various applications
such as photo editing, face recognition [10,15,26] and back-
ground lighting transfer [23, 24].

The most important considerations in face relighting are
preserving facial details and accurate rendering of shad-
ows. The current state-of-the-art methods use the estimated
intrinsic components such as albedo and surface normal
to appropriately relight the source image [8, 9, 47]. Ad-
ditional information of shadow masks [9] or face geome-
try [8] is also used to estimate better shadows. While these
two methods estimate accurate shadows, the relit image is

not aesthetic/photo-realistic. This could be due to several
reasons. Firstly, these models were mainly trained on the
DPR dataset [47] which used the ratio image to generate
the ground truth relit images. This assumes the human face
to be a Lambertian surface and thus, the ground truth data is
not photo-realistic. Secondly, the models estimated only the
luminance channel and the colour channels were appended
from the input image. However, this ignores the changes in
appearance (skin tone) caused by the illumination. Thirdly,
the cascaded errors from the estimated image intrinsic maps
(albedo and surface normal) can lead to artifacts in high fre-
quency details of the relit image.

We propose several modifications to improve upon the
prior works. Since there are no existing datasets with ac-
curate & photo-realistic relit images and dense variations in
light source positions, we created our own dataset by de-
signing a synthetic OLAT lighting rig in Blender software.
This enabled generating accurate and photo-realistic ground
truth relit images (Fig 1(c)). To improve the aesthetic qual-
ity of the estimated relit images, we propose a novel con-
volutional transformer-based architecture that uses Multi
DConv Head Attention (MDHA) modules at multiple dif-
ferent image resolutions. This enables the network to learn
fine-grained facial and shadow details which get lost at
lower resolutions. Unlike prior works which model the
shadows separately and then render the relit image, our ap-
proach enables the network to implicitly learn the relation-
ship between illumination and shadows.

Since we have trained the model on only synthetic
dataset, generalization to real images is very challenging
as synthetic and real images have very different data dis-
tributions. Many prior works fine-tune their models on
real images in a second-stage training to address this is-
sue [24, 45]. However, it is very expensive to obtain real
input-relit image pairs. Hence, we propose an approach for
unsupervised domain adaptation using a Generative Adver-
sarial Network (GAN) framework [11]. Through extensive
experimental validation, we show that our results are better
than the state-of-the-art (SOTA) methods on multiple differ-
ent real image datasets despite our model being trained only
on synthetic images. Also, our network is able to accurately
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adapt to out-of-training light source positions.
In summary, our contributions are:

• New photo-realistic relighting dataset with dense vari-
ations in light source positions & intensities, generated
using synthetic OLAT lighting rig in Blender software.

• Novel convolutional transformer-based architecture
with MDHA attention modules at higher resolutions
for learning fine-grained facial and shadow details.

• An approach for unsupervised domain adaptation from
synthetic to real images using GANs.

2. Prior Work
There are four distinct approaches explored in literature

for face relighting: 1) intrinsic image decomposition and
rendering [3–5, 15–18, 20, 23, 27, 28, 31, 37–40, 42, 44], 2)
image-to-image translation [2, 21, 35, 36], 3) style trans-
fer [19, 22, 30, 31] and 4) ratio image estimation [25, 29,
34, 43].

Intrinsic image decomposition methods estimate the in-
trinsic image components such as albedo, surface normal,
reflectance and lighting, from a given input image. These
intermediary maps are then used to render the relit image
for a given light source position. These methods rely heav-
ily on accurate estimates of each intermediary image map.
The errors and artifacts are often cascaded downstream and
this leads to inaccurate estimates of relit image which lacks
high frequency details.

To overcome the issue of cascading errors,others have
explored solving for relighting as an image-to-image trans-
lation task. These methods are able to estimate relit im-
ages to varying degrees of accuracy [35,47]. However, they
suffer from inaccurate shadow estimates and are unable to
adapt to varying light intensities. A similar approach is
photo and portrait style transfer, where a source and refer-
ence images are provided as input and the style/lighting of
reference image is transferred to the source image. These
methods require high-quality non-occluded source and ref-
erence image pairs with multiple different lighting varia-
tions. Our approach is different from these approaches in
that it can relight a single image for a given light source
position. It does not require any reference images and can
relight the image for out-of-training light source positions
very accurately.

Many others have explored estimating the ratio between
source and target image illuminations to learn a per-pixel
multiplier map for accurate relighting. However, these
methods require require multiple images as input [25, 29]
or both source and target images [34], which limits their
generalization to real-world deployments. Another signif-
icant challenge in face relighting is accurate estimation of
shadows. Some have tried to estimate the shadow mask and

learn a weighting function for accurate rendering [9], while
others have used geometric principles to accurately estimate
the shadow pixels [8]. While these approaches are able to
estimate shadows with good accuracy, the rendered relit im-
ages are not photo-realistic as the estimated shadow regions
have hard boundaries. Shadows are diffused and have soft
boundaries.

We address the limitations of prior works using a novel
architecture for face relighting from a single image. Our
approach is most similar to image-to-image translation ap-
proaches for face relighting. We train a residual convolu-
tional autoencoder that uses attention maps at higher reso-
lutions to accurately model the shadows. Our network es-
timates fine-grained facial and shadow details that get lost
at lower resolutions. Additionally, we propose a new com-
position for the relighting dataset and show that with our
proposed approach, we are able to train a lightweight model
on a significantly smaller dataset and achieve better perfor-
mance.

3. Dataset
In this section, we introduce our synthetic dataset gener-

ated for face relighting. Any dataset used to train a model
for face relighting should consist of input-relit image pairs
for different light source positions. This can be achieved
using a One Light At a Time (OLAT) spherical lighting
rig [41], where light sources are positioned at fixed dis-
tances from a human who is positioned at the center of the
sphere. Each light is turned ON sequentially, with only one
light being illuminated at any given time instant. Thus, for
each light source position, the input image and the corre-
sponding relit image are captured.

(a) (b) (c)

Figure 1. (a) Sample images obtained from the 3D human models.
(b) Synthetic lighting rig in Blender software. (c) Sample relit
image generated using Blender software.

Creating such a physical lighting rig is very expensive
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and time consuming. Hence, we created a synthetic OLAT
lighting rig using Blender software. We used this synthetic
dataset to generate input-relit image pairs for face relight-
ing. We used 8 freely available synthetic 3D human mod-
els [1] to create the dataset. A few sample images obtained
using the 3D human models are shown in Fig 1(a). The
synthetic lighting rig was positioned in front of the subject
(Fig 1(b)). Light sources were randomly positioned in this
unit hemisphere volume and input-relit image pairs were
captured. The amount of illumination on the face is depen-
dent on both the position and intensity of the light source.
A light source positioned close to the face with low inten-
sity generates a similar looking relit image as that by a light
source positioned farther from the human with higher inten-
sity. Thus, in addition to random variations in positions, we
also randomly varied the light source intensity. The light
vector is represented as a 4D couplet of (x, y, z, i) where
the light source positions (x, y, z) are randomly sampled
from the unit hemisphere volume such that x ∈ [−1,+1],
z ∈ [−1,+1], y ∈ [0.5, 1], and the light source intensity(i)
is varied such that i ∈ [0.3, 1]. The X-Z plane is in the
front of the 3D human model (face) and Y -direction indi-
cates the frontal distance of the 3D human model from the
light source.

Most of the prior works train their models mainly on the
DPR dataset [47]. This dataset consists of input-relit image
pairs where the ground truth relit images were estimated us-
ing the ratio image [29, 47]. This assumes that the face is
a Lambertian surface and accounts only diffuse reflection,
which results in ground truth relit images are not photo-
realistic/aesthetic. Further, this dataset consisted of around
135,000 training examples obtained using 27,000 different
images (humans) from the Celeb-FFHQ dataset [12]. For
each image, 5 different light source positions were ran-
domly sampled along a unit sphere. We believe that it is
easier to reconstruct the input image as opposed to learn-
ing the correlation between the input image, light source
position & intensity and rendered relit image. Thus, the
dataset should consist of significantly more light source po-
sitions for a given input image as this would provide the
network enough training examples of rendering the same
image (human) for different light source positions and in-
tensities. Hence, we inverted the dataset composition and
created a new synthetic face relighting dataset of 24,000
input-relit image pairs obtained from 8 different synthetic
3D human models. We generated 3,000 input-relit image
pairs using each 3D human model such that the light source
positions and intensities were densely sampled in a unit
hemisphere volume. We randomly varied the position of the
3D model w.r.t the camera by rotating the 3D human model
by r deg about the vertical axis (left-right rotation), where
r ∈ [−60o,+60o]. We also varied the position of the cam-
era w.r.t the center of the face of 3D human model through a

randomized displacement dx, dz , where dx ∈ [−0.3,+0.3]
and dz ∈ [−0.3,+0.3] and dx, dz are the displacements
along X and Z directions respectively (sample input images
can be seen in the supplementary material). Recall that the
X-Z plane is in front of the 3D human model.

Our dataset has several advantages over the DPR
dataset [47]. Since we used a synthetic lighting rig in
Blender software, we customized the software to account
for both specular and diffuse reflections. Thus, our ground
truth data (relit image) is significantly more photo-realistic
and has accurate shadows. The dataset consists of densely
sampled light source positions in a unit hemisphere volume
in front of each 3D human model. Unlike the DPR model,
our dataset composition enables the network to better learn
the relationship between light source position & intensity
and the illumination on the face. Further, the range of light
intensity variations is significantly larger in our dataset. In
order to enable better generalization of the model, we also
varied the position and orientation (through left-right rota-
tion) of the 3D model w.r.t the camera. Thus, our dataset is
much more representative of the variations encountered in
face relighting as compared to DPR dataset. We will share
the dataset upon request after publishing this paper.

4. Method
In this section we describe our proposed two-stage train-

ing pipeline for face relighting. In the first stage, we train a
residual convolutional autoencoder for face relighting. The
light features embedding learnt using the lighting network
are combined with the encoded image features learnt from
the input data. This is then passed to a decoder which es-
timates the relit image. To improve the quality of shad-
ows in the estimated relit image we used Multi DConv
Head Attention (MDHA) modules [33] for each skip con-
nection between the encoder and decoder. In the second
stage, we used adversarial training to improve the percep-
tual quality of the first stage network. The network from
first stage was used as a generator in a Generative Adver-
sarial Network (GAN) [11] framework and a discriminator
was trained to distinguish between real (ground truth) and
fake (estimated relit) images. Using several augmentation
techniques, we achieved unsupervised domain adaptation
between synthetic and real images with the proposed two-
stage pipeline (Fig 2). Next, we describe each component
of our system in more detail.

4.1. Lighting Network

As described in Section 3, the target light position is
passed as 4D couplet of (x, y, z, i) where (x, y, z) and i re-
fer to the light source position and intensity, respectively.
In a similar manner to [47], we also encode the light source
position as a 9-dimensional Spherical Harmonics (SH) vec-
tor. The intensity value is appended with the 9-D vector to
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Figure 2. Proposed convolutional transformer-based architecture for face relighting is shown. In the first stage of training, the residual
convolutional autoencoder is trained to estimate the relit image. In the second stage of training, the first-stage network is used as a generator
in a GAN framework to improve model performance. Figure best viewed in colour.

create a 10-D light vector (L∗) which is given as input to
the lighting network that consists of 3 fully connected lay-
ers of dimensions 128, 512 and 128 (Fig 3). The output of
this network is the estimated 10-D light vector (L̂). The out-
put of the middle layer is a 512-D light features embedding
that is concatenated with the image features learnt from the
input data using the Residual Convolutional Autoencoder.

Figure 3. Proposed light network consists of 3 fully connected lay-
ers and estimates the 10-D light vector. The 512-D light features
embedding are used in the residual convolutional autoencoder.

4.2. Residual Convolutional Autoencoder

The image features are learnt using a residual convolu-
tional autoencoder. The input data (ID) consists of 4 chan-
nels which is obtained by concatenating the RGB image
(IRGB) and luminance channel (IL). This data is passed
to a residual encoder as seen in Fig 4. The residual encoder
is a modified ResNet-34 architecture. It consists of four
ResNet blocks having 16, 32, 64 and 128 channels, respec-
tively. The feature maps are downsampled by a factor of
2 at each block and the output of the encoder is combined
with the 512-D light features embedding, as described in
Section 4.1. This combined output is then passed through a
residual decoder that estimates the relit image. In a similar
manner to the residual encoder, the residual decoder also
consists of four ResNet blocks having 16, 32, 64 and 128
channels, and the feature maps are upsampled by a factor of
2 at each block.

Figure 4. The architecture of the proposed Residual Convolutional
Autoencoder is shown. The encoder and decoder consists of four
ResNet blocks each. Five MDHA modules (indicated in yellow)
are used on each connection between the encoder and decoder.
Figure is best viewed in colour.

One of the main challenges in face relighting is render-
ing the shadows in an accurate and photo-realistic manner.
While some methods are able to render the shadows effec-
tively [8, 9], the relit images do not look photo-realistic.
This could be because these methods estimate sharp bound-
aries for the shadows, but shadows are generally diffused
in nature and have soft boundaries. Thus, to render a more
photo-realistic relit image, it is important to accurately es-
timate the fine-grained facial and shadow details. As the
input image is continually downsampled at each residual
block of the encoder, these fine-grained features are lost at
lower resolutions. To overcome this issue, we propose a
novel idea of using attention blocks at higher resolutions.
More specifically, we use Multi DConv Head Attention
(MDHA) layers [33] for each level of skip connection be-
tween the encoder and decoder blocks, as shown in Fig 4.

Each MDHA layer [33] consists of one attention block
and one feedforward block, as seen in Fig 5. In each MDHA
layer, the attention block has 8 heads. We designed an
MDHA module by stacking four such MDHA layers, as
seen in Fig 5(c). From the experimental results in Table 2
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(and Fig 3 in supplementary material), we find that the at-
tention modules at higher resolutions enables the network
to reconstruct more fine-grained facial and shadow details,
and consequently render more photo-realistic relit images.

(a) (b) (c)

Figure 5. The Multi DConv Head Attention (MDHA) layer pro-
posed in [33] consists of an attention block and a feed-forward
block whose architectures are seen in (a) and (b). Our MDHA
module is created by stacking 4 MDHA layers as seen in (c).

4.3. Stage 1 training

The proposed two-stage training approach is shown in
Fig 2. In the first stage of training, the residual convolu-
tional autoencoder and light network are trained to estimate
the relit image (R̂1). In this section, we discuss the loss
functions and other training details for stage 1 training.

4.3.1 Training losses

We train the model with multiple different losses to estimate
a photo-realistic relit images. We define the light loss as
Llight = ||L∗ − L̂||22, where L∗ and L̂ are the ground truth
and estimated 10-D light vector, respectively. We obtain L̂
as L̂ = NL(L

∗), where NL refers to the lighting network.
We measure the image reconstruction loss at both local

and global scales. The image reconstruction loss has two
components: 1) Smooth L1 loss (Lsmooth) and 2) structural
dissimilarity (DSSIM) loss (Ldssim). We define the smooth
L1 loss as

Lsmooth(R
∗, R̂1) =

{
1
2 (R

∗ − R̂1)
2 if |R∗ − R̂1| < 1.0,

|R∗ − R̂1| − 1
2 otherwise

(1)
where R∗ and R̂1 are the ground truth and estimated relit
image (stage 1), respectively. We define R̂1 = NR(ID),
where NR refers to the residual convolutional autoencoder
network and ID is the 4-channel input data. The smooth
L1 loss is less sensitive to outliers and it enables the net-
work to accurately render the lighting disparities in the relit
image. Similar to [8, 9], we define the structural dissimi-
larity (DSSIM) loss as Ldssim(R∗, R̂1) =

1−SSIM(R∗,R̂1)
2 .

Thus, we define the global image reconstruction loss as

Lglobal = λ1 Lsmooth(R
∗, R̂1) + λ2 Ldssim(R∗, R̂1) (2)

where λ1 and λ2 are weights for each loss function.
To ensure that fine-grained facial and shadow details are

learnt by the network, we computed the image reconstruc-
tion loss at a local scale as well. We divide the image into
128 × 128 pixel patches, overlapping by 50%. The image
reconstruction loss is computed for each patch. Thus, the
local image reconstruction loss is defined as

Llocal =
∑
k

λ5 Lsmooth(P
∗, P̂1) + λ6 Ldssim(P ∗, P̂1)

(3)
where P ∗ and P̂1 are the image patches from the ground
truth and estimated relit images (stage 1), respectively, and
k is the total number of patches. λ3 and λ4 are the weights
for each loss function.

Additionally, we also used VGG loss (Lvgg) to further
improve the perceptual quality of the estimated relit image.
We computed the 4096-dimensional feature vector output
of the first fully connected layer of the pre-trained VGG-19
network [32] for both the ground truth and estimated relit
images. We define the VGG loss as Lvgg = ||Nvgg(R

∗) −
Nvgg(R̂1)||22, where Nvgg refers to the pre-trained VGG-19
network.

Thus, the total loss used for optimizing the face relight-
ing network in stage 1 is

Ltotal1 = Lglobal + λ3 Llight + λ4 Lvgg + Llocal (4)

where λ3 and λ4 are the weights for each loss function.

4.3.2 Training details

We combine a carefully designed data generation process
with several data augmentation techniques during training
to improve the generalization of the first stage model on
real images. As shown in Fig 1(a) (and Fig 1 in the sup-
plementary material), we randomly change the position and
orientation of the 3D human model w.r.t to the camera.
We also randomly change the ambient lighting present in
the scene. Further, we use several different augmentation
techniques during training : 1) image flipping; 2) bright-
ness+contrast jitter; 3) colour jitter or luminance jitter. The
image is flipped horizontally and the light source position
is appropriately updated. The brightness and contrast of the
RGB image are tweaked by b and c, where b ∈ [−20,+20]
and c ∈ [0.8, 1.2]. In the colour jitter augmentation, the
intensity of each channel of the RGB image is tweaked
by p, where p ∈ [−20,+20]. In luminance jitter aug-
mentation, the luminance intensity is tweaked by q, where
q ∈ [−20,+20]. Note that b, p and q are integer val-
ues. We only apply one of colour jitter or luminance jitter.
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These augmentations result in a training dataset that cap-
tures multiple different variations of the input images and
thus, improves the generalization capabilities of the relight-
ing model to vastly different data distributions.

The relighting model was trained on a dataset of 21,000
images and validated on 3,000 images. The input data to
the network consisted of 4-channels - RGB image (IRGB)
and luminance channel (IL). The input data was resized to
512 × 512 pixels and passed to the residual convolutional
autoencoder, which estimated the relit image. The loss was
optimized using Adam optimizer [13] with L2 regulariza-
tion of 0.01. The initial learning rate of 0.0001 was decayed
by 0.9 after each epoch and the network was trained for 25
epochs with a batch size of 8. The weights for each loss
term is λ1 = λ3 = λ4 = 1, λ2 = λ5 = 10, λ6 = 100.

4.4. Stage 2 training

As described in Section 3, we trained our model on a
dataset of only synthetic images. These images have a
vastly different data distribution to real image datasets such
as Celeb-FFHQ [12] and Multi-pie [6]. Even the images
obtained using the 3D models of real humans (We will re-
fer to this as the real human test dataset henceforth.) have
a vastly different data distribution to the synthetic images.
In the qualitative results shown in Section 5, we observed
that the skin tone (colour) of the estimated relit image from
stage 1 is different from both the the input and ground truth
image. Many prior works have faced similar issues when
generalizing from synthetic images to real images [24, 45].
They have fine-tuning the model on real images to over-
come the issue. However, this is expensive and requires a
physical OLAT lighting rig to capture accurate input-relit
image pairs.

We propose a novel solution for unsupervised domain
adaptation from synthetic to real images. We used the stage
1 model as the generator in a GAN framework [11] and ad-
versarially trained it against a discriminator to improve the
perceptual quality of the stage 1 model. The architecture of
the discriminator was same as that of the residual encoder
from stage 1. The discriminator tries to distinguish between
the estimated relit image (fake) and the ground truth relit
image (real), while the generator tries to fool the discrimi-
nator.

We used three losses to train the GAN: 1) Smooth L1
loss (Lsmooth), 2) DSSIM loss (Ldssim) and 3) Relativistic
adversarial loss (Ladv). In a similar manner to stage 1 train-
ing, L1 loss and DSSIM loss were computed at both local
and global scales. In stage 2 training, the local loss was
computed as the relativistic adversarial loss (Ladv) [14] on
fifty 70× 70 pixels image patches. These patches were ran-
domly generated by sampling the full image. We define the
loss used for stage 2 training as

Ltotal2 = α1 Lsmooth + α2 Ldssim + α3 Ladv (5)

where α1 = 0.5, α2 = 0.1, α3 = 0.01.
For the second stage training, only the bright-

ness+contrast jitter and luminance jitter data augmentations
were applied. The training dataset, input data, optimizer,
learning rate and batch size were retained to be the same
for both first stage and second stage training. However, in
the second stage the initial learning rate was kept constant
throughout and L2 regularization was not used. The model
was trained for 25 epochs.

5. Results

In this section, we discuss the quantitative and qualita-
tive performance of our model. We evaluated the quantita-
tive performance on two datasets of real images: 1) Multi-
pie dataset and 2) our real human test dataset. Most prior
works evaluate the performance of their model on the pub-
licly available Multi-pie dataset [6]. It consists of input-relit
image pairs captured across 4 sessions for multiple different
subjects using different camera positions and light source
positions. We created a test dataset using the first session
data which consisted of 6,474 images - 249 subjects with 2
different expressions and 13 different light source positions.

The Multi-pie dataset had limited variations in the light
source positions and no variations in their intensities. Thus,
we created our own test dataset using the synthetic OLAT
lighting rig in Blender software. We varied the y and z po-
sition of the light source such that y ∈ {+0.4,+1.0,+1.5}
and z ∈ {−1.5, 0.75,+1.5}. Recall that the y-coordinate
indicates the distance of the light source from the human
and the X-Z plane is the plane in front of the subject where
the light source is positioned. For each value of y or z, the
light source position was sampled along the unit hemisphere
volume. We generated a test dataset (real human dataset) of
432 images - 72 samples each for 6 different real-human 3D
models. For each position of y or z, 12 different light source
positions were generated, thus totaling 72 input-relit image
pairs (samples). The test dataset consisted of out-of-training
light source positions along y and z directions.1

We compared the performance of our model against
three prior works [8, 9, 47] which estimated face relighting
given a single input image and (x, y, z) light source posi-
tion. We evaluated the performance based on four metrics:
1) MSE on RGB image, 2) MSE on Hue channel of HSV
image, 3) DSSIM and 4) LPIPS [46]. Both DSSIM and
LPIPS have been shown to be highly correlated with the
perceptual quality of the images [23, 46]. The quantitative
results can be seen in Table 1.

We observed that despite being trained only on synthetic
dataset, our model outperforms the prior works on both real
image test datasets. Most of the metrics are significantly

1Recall that for generating the training dataset, we had y ∈ [0.5, 1.0]
and z ∈ [−1,+1].
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(a)
Input
image (b)

Target
lighting (c) Zhou [47] (d) Hou [9] (e) Hou [8] (f) Ours (stage1) (g) Ours (stage2) (h)

Ground
truth

Figure 6. Qualitative comparison of our model against other methods on real human test dataset (row 1, 2), Celeb-FFHQ dataset (row 3, 4)
and Multi-pie dataset (last row). We do not have ground truth relit images on the Celeb-FFHQ dataset. Images are best viewed in colour.

Model
Trained on
real images

# parameters
(in Millions)

# training
examples Dataset MSE (RGB) MSE (Hue) DSSIM LPIPS

Zhou et al. [47] ✓ 6.94 135,000 RH 0.0716 ± 0.0496 0.0326 ± 0.0135 0.2988 ± 0.0450 0.3736 ± 0.0609
Hou et al. [9] ✓ 6.42 180,000 RH 0.0090 ± 0.0031 0.0231 ± 0.1419 0.1906 ± 0.0172 0.2650 ± 0.0271
Hou et al. [8] ✓ 12.04 180,000 RH 0.0152 ± 0.0079 0.0226 ± 0.1306 0.0787 ± 0.0202 0.1522 ± 0.0181
Ours (Stage 1) ✗ 4.45 21,000 RH 0.0057 ± 0.0039 0.0407 ± 0.0191 0.0373 ± 0.0112 0.0863 ± 0.0211
Ours (Stage 2) ✗ 4.45 21,000 RH 0.0049 ± 0.0036 0.0323 ± 0.0140 0.0336 ± 0.0100 0.0741 ± 0.0189
Zhou et al. [47] ✓ 6.94 135,000 MP 0.0845 ± 0.0457 0.2285 ± 0.0548 0.3548 ± 0.0387 0.4389 ± 0.0563
Hou et al. [9] ✓ 6.42 180,000 MP 0.0125 ± 0.0056 0.2239 ± 0.0534 0.2801 ± 0.0262 0.2538 ± 0.0424
Hou et al. [8] ✓ 12.04 180,000 MP 0.0118 ± 0.0047 0.2247 ± 0.0537 0.2850 ± 0.0223 0.2607 ± 0.0437
Ours (Stage 1) ✗ 4.45 21,000 MP 0.0103 ± 0.0049 0.2391 ± 0.0636 0.0988 ± 0.0137 0.1454 ± 0.0315
Ours (Stage 2) ✗ 4.45 21,000 MP 0.0096 ± 0.0049 0.2218 ± 0.0593 0.0639 ± 0.0178 0.1361 ± 0.03001

Table 1. Performance comparison of our model against prior works on the real human test dataset (RH) and multi-pie dataset (MP). Note:
The metrics of prior works on multi-pie dataset are different to that in [8] because of the differences in size/composition of the test dataset.

Model name
Attention
modules

Local
Loss (LL)

Global
Loss (GL) MSE DSSIM LPIPS

Without Attention ✗ ✓ ✓ 0.0123 ± 0.0044 0.0609 ± 0.0034 0.1204 ± 0.0050
With LLA A3, A4∗ ✓ ✓ 0.0114 ± 0.0031 0.0512 ± 0.0032 0.1015 ± 0.0041
With HLA A3, A4∗ ✓ ✓ 0.0090 ± 0.0034 0.0455 ± 0.0031 0.0934 ± 0.0041

Without GL A1 A2, A3, A4 ✓ ✗ 0.0107 ± 0.0054 0.0752 ± 0.0058 0.1313 ± 0.0035
Without LL A1 A2, A3, A4 ✗ ✓ 0.0062 ± 0.0024 0.0564 ± 0.0043 0.1037 ± 0.0030

Full model (stage 1) A1 A2, A3, A4 ✓ ✓ 0.0057 ± 0.0039 0.0373 ± 0.0112 0.0863 ± 0.0211

Table 2. Ablation study to evaluate the benefit of various network design choices for stage 1 model.

lower than the prior works, indicating that our estimated
relit images are more accurate and photo-realistic. Since
the real human test dataset consists of out-of-training light

source positions, the metrics indicate that our model gen-
eralizes significantly better than prior works. The stage 2
model is able to correct the skin tone (colour) issues of the
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stage 1 model as seen from the MSE (Hue) metric. The
MSE (Hue) for prior works is better than our model be-
cause they append the colour channels from the input im-
age. However, from the other metrics we can observe that
our model is significantly better.

We also observed that our model outperforms prior
works on the challenging Multi-pie dataset (MP). The per-
ceptual quality metrics of DSSIM and LPIPS are signifi-
cantly better, indicating that the estimated relit images from
our model are more photo-realistic.

The qualitative results shown in Fig 6 backs up the find-
ings in Table 1. We observed that despite not being explic-
itly trained to model shadows, our method produces more
aesthetic shadows with soft edges, and perceptually it is
most similar to the ground truth images. We also observed
that the stage 2 model corrects the the skin tone (colour)
issues of the stage 1 model. While the differences in met-
rics between our stage 1 and stage 2 models might not seem
statistically significant, visual inspection shows that stage
2 model produces more accurate & dramatic shadows, and
the relit images are more aesthetic.

All the prior works have been trained on the DPR
dataset [47] which has mainly been created using the Celeb-
FFHQ [12] dataset. In spite of that, we can observe in Fig 6
(and Fig 2 in the supplementary material) that the results
from our model are better than prior works on this dataset.
The shadows are more accurate and the estimated relit im-
ages are photo-realistic. Hou et al. [8] used physics-based
analysis to accurately model the shadow regions. While
their estimates are fairly accurate, the method is sensitive to
precise estimation of the face boundary region. The perfor-
mance suffers significantly with slightly worse face masks.
Our method is not as sensitive since we segment the fore-
ground subject with a noisy segmentation mask obtained
using the pre-trained Mask R-CNN [7] model in PyTorch.

Additionally, our model is able to accurately estimate the
relit image for out-of-training light source positions as seen
in Fig 7. When the light source position moves farther away
from the subject, we can observe that the dramatic shadows
are reduced and the face is relit more uniformly.

We performed an ablation study to show the benefit of
our network design choices for the stage 1 model. We com-
pared the benefit of attention modules at higher resolution
(HLA) and the benefit of computing image reconstruction
loss at both global (GL) and local (LL) scales. We eval-
uated the performance of the models on real human test
dataset. The quantitative results are shown in Table 2. We
observed that higher-level attention (HLA) modules help in
estimating more accurate relit images as compared to lower-
level attention (LLA) modules. Global loss improves model
performance more than local loss, but the best performance
was observed with the full stage 1 model. Qualitative results
can be found in the supplementary material.

Figure 7. Our model (stage 1) is able to generalize to out-of-
training light source positions and capture the variations the re-
lit images accurately. The first two columns show the input im-
age and target lighting direction. First row: Light position is
[x,−1, 0] where x ∈ {−1,−2,−3}. Second row: Light position
is [−0.5, y, 0.866] where y ∈ {−1,−2,−3}. Third row: Light
position is [0,−1, z] where z ∈ {1, 2, 3}.

6. Limitations and future work

We have shown the effectiveness of our approach for ac-
curately modelling shadows and generating photo-realistic
relit images. However, there are some limitations with our
approach. We observe some issues with skin tone (colour)
differences on the multi-pie dataset. One of the reasons
could be that the input image has been captured in ex-
tremely low-light environment and the light has a blueish
hue as seen from the ground truth image (Fig 6). We have
not modelled the light colour. Also, a segmentation mask is
estimated to obtain the face region in input images.

Some possible future extensions of this work are to au-
tomatically understand the face region and relight & image
without using a face mask, and joint modelling of ambient
& source lighting and light colour to generate more immer-
sive relit images which are similar to studio portraits with
lighting.

7. Conclusion

We proposed a novel approach for face relighting given
a single image and a light source position. We used a
novel dataset composition strategy that enabled better train-
ing of our two-stage model for face relighting. In the first
stage, a residual convolutional autoencoder and light net-
work were jointly trained. In the second-stage, we improved
the perceptual quality of this network with adversarial train-
ing and enabled unsupervised domain adaptation from syn-
thetic to real images. We used Multi DConv Head Atten-
tion (MDHA) modules at higher resolutions to learn fine-
grained facial and shadow details. Qualitative and quan-
titative analysis showed that our model outperforms SOTA
methods on real image datasets despite training only on syn-
thetic images.
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