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Abstract

Over the years, space scientists have collected terabytes
of Mars data from satellites and rovers. One important set
of features identified in Mars orbital images is pitted cones,
which are interpreted to be mud volcanoes believed to form
in regions that were once saturated in water (i.e., a lake or
ocean). Identifying pitted cones globally on Mars would be
of great importance, but expert geologists are unable to sort
through the massive orbital image archives to identify all ex-
amples. However, this task is well suited for computer vision.
Although several computer vision datasets exist for various
Mars-related tasks, there is currently no open-source dataset
available for cone detection/segmentation. Furthermore, pre-
vious studies trained models using data from a single region,
which limits their applicability for global detection and map-
ping. Motivated by this, we introduce ConeQuest, the first
expert-annotated public dataset to identify cones on Mars.
ConeQuest consists of >13k samples from 3 different regions
of Mars. We propose two benchmark tasks using ConeQuest:
(i) Spatial Generalization and (ii) Cone-size Generalization.
We finetune and evaluate widely-used segmentation mod-
els on both benchmark tasks. Results indicate that cone
segmentation is a challenging open problem not solved by
existing segmentation models, which achieve an average IoU
of 52.52% and 42.55% on in-distribution data for tasks (i)
and (ii), respectively. We believe this new benchmark dataset
will facilitate the development of more accurate and robust
models for cone segmentation. Data and code are available
at https://github.com/kerner-lab/ConeQuest.

1. Introduction
With the advancement of camera technology and as data

downlinking rates have improved, the entirety of the Martian
surface has been imaged by multiple instruments that have
acquired terabytes of data. Analyzing the data returned
by spacecraft instruments is the only current way to gain
insights into Mars surface processes as humans have yet
to land on a planetary body other than the Moon. Finding
evidence of past water is a top goal of the Mars science
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community [1,3,35]. Mapping the presence of water-related
features improves scientists’ understanding of the planet’s
past climate and its potential to have oceans or localized
habitable environments, and helps identify key sites to send a
future rover or human mission. One important set of features
on the martian surface is pitted cones that are believed to be
mud volcanoes [2,6,10,17,19,21,34,36,43]. These rounded
mound-shaped features range in diameter from meter-sized
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to a few kilometers and are believed to form in regions that
were once saturated in water (i.e., lakes or oceans). Three
billion years ago, this water receded underground and turned
to ice, or was buried by other deposits, only to emerge later
as a mud volcano when tectonic compression, impact events,
and other processes squeezed buried mud back to the surface
along cracks and faults [43].

Manually reviewing the growing volumes of high-
resolution remote sensing data of Mars to identify and char-
acterize cones is prohibitively time-consuming and labor-
intensive. Hence, an automated process is necessary to
detect/segment and analyze the characteristics of cones.
Machine learning methods provide a promising solution
for developing an automation pipeline. However, training
these models requires a substantial amount of data. De-
spite the availability of numerous Mars-related datasets,
there is currently no open-source dataset for cone detec-
tion/segmentation.

Our study introduces a novel dataset called ConeQuest,
which has been annotated by experts enabling ML methods
to identify cones on Mars. This dataset comprises more than
13k samples from the Isidis Planitia, Acidalia Planitia, and
Hypanis regions of the martian surface. Additionally, we
provide metadata for every data sample, such as latitude-
longitude, area, and bounding box. We formulated cone
detection as a binary segmentation problem and developed
two benchmarks (BMs) tasks based on ConeQuest: Spatial
Generalization (BM-1) and Cone-size Generalization (BM-
2). Figure 1 shows the overview of both BMs. The evaluation
of spatial generalization examines the model’s performance
across different regions, in which test data is from a region
not used for training. Similarly, cone-size generalization
assesses the model’s performance based on variations in
cone size within the data, involving training on specific size
ranges and combining different size ranges.

We conduct training on commonly used segmentation-
based models which include U-Net [41], FPN [29], DeepLab
[8], and MA-Net [16] for both BMs. We evaluate the model
on in-distribution (id) as well as out-of-distribution (ood)
data (i.e., data from region/size model has seen and unseen
during training, respectively) to assess the efficiency of mod-
els. The average IoU for the id category is 52.52% and
42.55% for BM-1 and BM-2, respectively. Additionally, the
average IoU on ood data is 15.04% (BM-1) and 26.92%
(BM-2). The results obtained from the evaluation of ood
data suggest that the model struggles to generalize on ood
data and the evaluation of id data indicates that the model
performs poorly in segmenting cones. These outcomes show
that the cone segmentation task is not solved by existing
segmentation models and there is a need for new solutions to
segment cones accurately in future work. In summary, our
contributions are as follows:

1. We introduce ConeQuest, the first expert-annotated pub-
licly available dataset for cone segmentation across
three different regions on Mars, along with metadata
for each sample.

2. We designed two benchmarks based on ConeQuest:
(i) Spatial Generalization and (ii) Cone-size Gener-
alization, and assessed the effectiveness of various
segmentation-based models in segmenting cones.

3. Evaluation of models indicates that existing models
struggle to perform well on ConeQuest, highlighting
the need for specialized models that can effectively
capture the unique characteristics of cones.

2. Related Work
Deep learning has enabled researchers to develop models

for a wide range of tasks in order to gain insights into data
properties, improve labeling processes, and facilitate annota-
tion. However, the success of these models heavily relies on
the availability of large training datasets. The following sec-
tions provide an overview of the existing datasets for various
Mars-related tasks created for training deep learning models
(§2.1) and past research on cone detection on Mars (§2.2).

2.1. Mars Datasets

In Mars research, recognition of geological landforms and
terrain classification are commonly explored tasks. Among
these tasks, crater detection has been the most prominent.
A few widely used datasets for Mars crater detection are
[28, 31, 39, 40, 45, 46, 48]. In addition to crater detection,
researchers have also generated datasets for other geolog-
ical features, such as dunes, streaks, and ridges. For in-
stance, [48] introduced a dataset encompassing 15 classes
and ∼ 1k data samples per class across five distinct landform
categories: aeolian bedforms, topographic landforms, slope
feature landforms, impact landforms, and basic terrain land-
forms. Further, Wagstaff et al. have contributed landform
datasets comprising ∼ 3k and ∼ 10k data samples from six
classes [45, 46]. These datasets also include around ∼ 2.9k
and ∼ 7k images representing over 20 classes of rover parts.
Datasets are also available for terrain segmentation, encom-
passing classes such as rock, soil, sand, bedrock, and more.
Two notable datasets in this domain are AI4MARS (∼ 326k
samples from 5 classes) [44] and S5Mars (∼ 5k samples
from 9 classes) [49]. Another dataset focuses on martian
frost, classifying images as either containing frost or rep-
resenting background scenery [13]. Additionally, there are
datasets tailored for change detection, comprising pairs of
images that capture changes or the absence of changes over
the same location at different times [24]. Furthermore, nov-
elty detection and outlier detection datasets have been formu-
lated to identify novel and anomalous samples within Mars
datasets [23, 25]. Notably, there exists a dataset designed for
classifying dusty versus non-dusty images [14].
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Region CTX Mosaic Folder
(4◦× 4◦)

CTX Mosaic Tile ID
(2◦× 2◦)

Area of Masked
Region (N◦× E◦) Resolution Latitude Longitude

Isidis Planitia beta01_E084_N12 beta01_E084_N12.tif Partial (0.5◦ × 0.5◦) 5927 × 5927 13.5◦ 85.5◦

Acidalia Planitia beta01_E-016_N36 beta01_E-014_N38.tif Partial (1◦ × 0.5◦) 11855 × 5927 39.5◦ -13◦

Hypanis

beta01_E-044_N08 beta01_E-044_N10.tif Full (2◦ × 2◦) 23710 × 23710 10◦ -44◦

beta01_E-044_N12 beta01_E-044_N12.tif Full (2◦ × 2◦) 23710 × 23710 12◦ -44◦

beta01_E-048_N08 beta01_E-046_N10.tif Full (2◦ × 2◦) 23710 × 23710 10◦ -46◦

beta01_E-048_N08 beta01_E-048_N10.tif Full (2◦ × 2◦) 23710 × 23710 10◦ -48◦

beta01_E-048_N12 beta01_E-046_N12.tif Full (2◦ × 2◦) 23710 × 23710 12◦ -46◦

beta01_E-048_N12 beta01_E-048_N12.tif Full (2◦ × 2◦) 23710 × 23710 12◦ -48◦

Table 1. Metadata of each CTX tile across three regions used in creation of ConeQuest

2.2. Dataset on Cone Detection

Despite the wide range of crater and other feature
databases for Mars, there is a scarcity of cone detec-
tion/segmentation studies. Palafox et al. introduced MarsNet,
a CNN-based classifier, for the identification of volcanic root-
less cones and transverse aeolian ridges [37]. Pieterek et al.
proposed a short study on pitted cones and crater detection
by comparing a CNN with SVM [38]. Both of these studies
lack detailed information about the annotation process, in-
cluding whether the data were annotated by experts. Jiang
et al. proposed a Single Shot MultiBox Detector model for
cone and crater detection on Mars [22]. One limitation of
their work is that they did not use experts for annotation
but instead relied on an unspecified Wikipedia definition
of cones and example HiRISE images found online. Fur-
thermore, their annotations were performed at the box level,
rather than accurately masking the region of interest, which
does not fully align with the expectations of planetary scien-
tists. One common weakness among all previous studies is
that they train models using data from a single region, which
may limit the ability of the model to generalize on another
region and hinder global mapping and detection, as studies
have shown that cones have unique characteristics specific
to their region on Mars [43].

3. ConeQuest
This section provides information about the data source,

annotation process, and overview of ConeQuest in detail.

3.1. Source Imagery

The Mars Reconnaissance Orbiter (MRO) Context Cam-
era (CTX) acquires high-resolution images of the martian
surface and has been operational since 2006 [4]. To build
ConeQuest, we used open-source CTX data from the Murray
Lab [7]. The dataset is a seam-corrected global image mo-
saic of Mars rendered at ∼ 5.0 meters/pixel [11, 33]. Data
covers the entirety of the martian surface (> 99.5%). The
global image data is divided into 3960 tiles (4◦ × 4◦) from

88◦S to 88◦N [11,12]. Each tile is subdivided into 4 subtiles
(2◦ × 2◦). This is the highest resolution complete-coverage
global image data for Mars and is freely accessible at [7].

3.2. Data Annotation

There have been at least six fields of pitted cones on Mars
identified so far (where a leading hypotheses is formation
by mud volcanism), with each field containing hundreds
to tens of thousands of cones [43]. However, a labeled
dataset of cone annotations did not exist before our study.
To create the labeled dataset, a planetary geologist annotated
eight CTX subtiles spanning three different regions of Mars
with known pitted cone fields (Table 1). Using the CTX
mosaic subtiles as a basemap, a shapefile was created with
polygons outlining the shape of each cone. The shapefile
was then converted to a bitmask of the same resolution and
dimensions as the CTX basemap (where pixels inside a cone
shape were 1, and those not on a cone were set to 0). The
labeled dataset thus contained eight CTX subtile images and
eight corresponding bitmasks. The total number of annotated
cones was 163 in Acidalia Planitia, 325 in Isidis Planitia,
and 1691 in the Hypanis region of Southern Chryse Planitia.
For Isidis Planitia and Acidalia Planitia there was a high
density of pitted cones in the subtile, so only part of the
CTX subtile was mapped (‘Partial’ indicated in Table 1), and
the CTX image and bitmask were cropped to the mapped
extent. The latitude and longitude in Table 1 correspond to
the bottom-left corner of each annotated tile.

A planetary geologist with expertise in the morphology
of cones in the dataset regions (co-author Adler) created
all annotations of Isidis Planitia (IP) and Acidalia Planitia
(AP) for this work. The Hypanis annotation shapes were
sourced from a previously published peer-reviewed journal
article [2] and thus have gone through quality control by
other planetary mapping experts. While IP and AP regions
have not been peer-reviewed, we deem such review unneces-
sary because 1) the same cone fields have been previously
published in figures [10,17,19,34,36] (but were not digitized
at the individual cone level), 2) the geologic setting within
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a uniform background unit makes identification obvious to
experts, and 3) annotation was performed by a Mars mud vol-
cano expert trained in geologic mapping. While we cannot
be 100% certain about the annotations without ground-truth
confirmation, we think it is unlikely there are false positives
or false negatives at the object-level. In the Hypanis region,
erroneous labels may be more likely because this region is
more varied and geologically complex with compound fea-
tures (many that erode into a rounded shape) that could be
misinterpreted [2]. We estimate that no more than 5-20% of
the annotations may be erroneous.

3.3. Data Preparation

The original data provided by Murray Lab are large CTX
subtiles of size 23, 710× 23, 710 pixels (∼ 300 MB). To pre-
pare these images for deep learning models, it is necessary
to create smaller patches of the data, that can be compati-
ble with the DL-based models and the system on which the
model will be trained. We generated input samples by di-
viding each subtile into chunks measuring 512 × 512 pixels
(which covers ∼ 2.5km2 area). The patches are generated
in a column-wise manner. All the generated patches are
distinct, ensuring that there is no overlap. This approach
ensures there is no data leakage between training and test
partitions. The resulting ConeQuest dataset has a total of
13,686 patches from 8 different subtiles across 3 regions.

3.4. Data Overview

The ConeQuest dataset includes input image and target
segmentation mask pairs as well as metadata for every sam-
ple pair. Figure 1 shows the example of input data and their
corresponding ground truth mask from each region. Each
input-output pair has a unique name prefixed by its CTX
Mosaic Tile ID. Generated input-output pairs can be used to
train and evaluate segmentation or object detection models.

Additionally, ConeQuest provides the metadata of every
CTX Mosaic Tile used in its creation (as displayed in Table
1), and a set of attributes about each patch, which can be
further used for model training and evaluation, and mapping
cones on Mars. These attributes are crucial as they record
the specifics of every cone found across all the patches. The
description of each attribute is as follows:

• Patch Id: Unique name of each input-output pair (e.g.,
E-044_N10_00516.tif ). For Isidis Planitia and Acidalia
Planitia name follows _P which indicates a patch from
a partially annotated tile (e.g., E084_N12_00068_P.tif ).

• Region: Denotes the region name to which each patch
belongs (e.g., Isidis Planitia).

• CTX Mosaic Folder: CTX Mosaic folder from where
subtile of CTX Mosaic Tile is taken (e.g., beta01_E-
044_N08).

• CTX Mosaic Tile ID: CTX Mosaic Tile ID which

was annotated and patch created from (e.g., beta01_E-
044_N10.tif ).

• Latitude-Longitude Bounding Box: This attribute
provides the latitude-longitude coordinates of the
bounding box for each cone present in the patch in
the below format:

[Polygon ((left-top, right-top, left-bottom,
right-bottom)), Polygon ((left-top, right-top,
left-bottom, right-bottom)), ...]

Here, each Polygon element represents the coordinates
of the bounding box of a single cone, where each coor-
dinate represents (longitude, latitude) pair.

• Latitude-Longitude Perimeter: This attribute pro-
vides the latitude-longitude vertices of the perimeter for
each cone present in the patch in the below format:

[Polygon ((v0, v1 v2, v3, ...)), Polygon ((v0,
v1 v2, v3, ...)), ...]

Here, each Polygon element represents the vertices of
the perimeter of a single cone, where each vertex (vi)
represents (longitude, latitude) pair.

• Bounding Box: Lists of bounding box list (e.g., [[xmin,
ymin, width, height], [xmin, ymin, width, height],
...], here, each element in the list is a bounding box of a
single cone).

• Perimeter: Lists of polygon vertices list (e.g., [[x1, y1,
x2, y2, ...], [x1, y1, x2, y2, ...], ...], here, each element
in the list is a polygon of a single cone).

• Area: Area of every cone in the patch1 (e.g., [A1, A2,
...], here, each Ai is a float value).

• Average Cone Diameter: This attribute shows the
average cone diameter of all cones in the patch. To cal-
culate this, we have used the following formula which
assumes the cone has a round shape:

D =
1

N

N∑
i=1

2 ∗
√

Ai ∗ 25
π

(1)

Where N is the number of cones in the patch; Ai is
the area of cone i; and we multiplied the area by 25 to
convert the area into meter2 (as 1 pixel covers an area
of 5× meters).

• Number of Cones: A total number of cones in the
patch (N ).

Latitude and Longitude for the bounding box and perime-
ter follow a standard format, which simplifies the process for
users to plot individual cones or clusters of cones from any
patch on Mars using any Geographic Information Systems
(GIS) software. Bounding Box, Area, and Perimeter are
given in a similar format as the COCO dataset [30].

1calculated using contourarea function from OpenCV
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It is crucial to note that ConeQuest includes samples
that do not contain any cones, and these are referred to as
negative samples or non-cone patches. Samples that contain
cone/s are referred as positive samples or cone-patches. It is
essential to recognize the significance of negative samples
as they help to identify characteristics in the data that do
not represent cones. For non-cone patches, attribute values
contain empty list values or 0 accordingly.

4. Benchmarks
As discussed in §3.4, the ConeQuesttask is binary seg-

mentation where the goal is to segment the cones in the input
data and to mask (segment) the particular region where the
cone is present (as shown in Figure 1). Cone segmentation
is a very difficult task as shadows, contrast, and lighting
change due to the time of day and season the images were
acquired which strongly affects whether cones stand out
from the background terrain and have similar shadow an-
gles and lengths. Also, cones present in each of the three
regions exhibit variations in terms of size, shape, and other
characteristics [43]. For example, the morphology of cones
in the Hypanis region is highly variable (small-large, bright-
dark, circular-elongated-clustered) [2]. These characteristics
make global segmentation of cones challenging, similar to
other remote sensing tasks with high intra-class variance
(such as building damage detection [5]). Based on this, we
defined two benchmark tasks using ConeQuest: (i) Spatial
Generalization (BM-1) and (ii) Cone-size Generalization
(BM-2).

4.1. Spatial Generalization

In this benchmark, our objective is to assess model per-
formance across the regional variability of cones (Figure
1a). Table 2 shows the total number of patches and the
cone-patches in each region. For experiments, we train the
model on two configurations: (i) single-region: model is
trained using data from each region individually, and (ii)
multi-region: model is trained on a combination of 2 or all 3
regions. For both configurations, we evaluate the model on
each region separately where we denote regions included in
the training as in-distribution, and excluded from the training
as out-of-distribution.

Region # of patches
created

# of cone-
patches

Isidis Planitia (IP) 144 131
Acidalia Planitia (AP) 288 135

Hypanis (HP) 13,254 1,392

Total 13,686 1,658

Table 2. Number of patches and cone-patches across three regions

4.2. Cone-size Generalization

This task evaluates the capability of a model to segment
cones of different sizes which can identify any model biases
in terms of cone size, which would substantially impact the
downstream use of the model. Figure 1b shows the histogram
of cone size in terms of Average Cone Diameter of patches
and shows the variations in cone size across different patches.
The peak of the distribution is approximately 400 m. We split
all cone-patches into 3 categories: i) small, ii) medium, and
iii) large. Table 3 gives statistics of size range and number
of samples in each category. We create almost equal splits
to fairly compare a model’s performance when trained on
different size categories.

Category Size range
(Cone Diameter) # of Patches

Small (S) 5m < D ≤ 400 537
Medium (M) 400m < D ≤ 670m 569

Large (L) 670m < D 550

Table 3. Size range and number of patches across three categories

For experiments, we train the model on two configura-
tions: (i) single-category (i.e., a model trained on each size
category), and (ii) multi-category (i.e., a model trained on a
combination of two size categories). For both configurations,
we evaluate the model on each category separately where we
denote the category included in the training as in-distribution
(id), and excluded from the training as out-of-distribution
(ood). id and ood data used for evaluation in both tasks will
be denoted as Did and Dood, respectively.

5. Experiments Setup
Data split: As stated in §3.4, ConeQuest has negative
samples, and it is necessary to include those in the training.
Table 2 shows that for BM-1 in Acidalia Planitia and Hypa-
nis, there are equal and fewer negative samples compared
to positive samples, respectively. Hence, for BM-1, we use
balanced data of positive and negative samples to ensure that
the model does not overfit the majority class except for Isidis
Planitia (IP) region. Also, we have stratified positive and
negative samples across dataset splits. In BM-2, we added
negative samples to balance the data for each category. To
evaluate the effectiveness of training with negative patches,
we performed an ablation experiment in which models were
trained only on positive samples.

For all experiments, we split the data into training, val-
idation, and testing sets with a ratio of 7:1:2. To do a fair
comparison across experiments, the same dataset splits for
all regions and size categories are used for single and multi
configurations training. These splits are also provided as
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(a) Pixel IoU for BM-1 (b) Pixel IoU for BM-2

Figure 2. Results on Did and Dood for both BMs based on Pixel IoU (not a confusion matrix). IP: Isidis Planitia, AP: Acidalia Planitia, HP:
Hypanis, S: Small, M: Medium, L: Large.

part of our public benchmark dataset. As mentioned in §3.3,
non-overlapping samples were created with a stride of 512,
which is equivalent to the patch height/width. This ensures
that all samples in the data are distinct from each other.

Models: For training and evaluation, we selected
commonly-used state-of-the-art segmentation-based mod-
els: U-Net [41], FPN [29], DeepLab [8], and MA-Net [16].
For the encoder of each model, we used ResNet-101 [18] as
the backbone pre-trained on ImageNet [42].

Training Configuration: All models were trained for 200
epochs with a batch size of 8. Soft binary cross-entropy
with logits was used as the loss function with the Adam
optimizer [26]. We used early stopping to avoid overfitting
and all models were evaluated on the model from the epoch
with the lowest validation loss. All the experiments were
conducted on Tesla V100-SXM2 with 16 GB GPU RAM.

Metrics: We report standard pixel-wise segmentation met-
rics and object-wise metrics for evaluation. We use pixel-
Intersection over Union (IoU) [15] and mask IoU [30]. Pixel
accuracy, pixel precision, and pixel recall are calculated by
using all 4 quadrants of the confusion matrix as defined
in [20]. Models are also evaluated on mean Average Preci-
sion (mAP) [30] and Panoptic Quality [27]. Since planetary
scientists are also interested in instance-level metrics, we
have shown evaluation based on object-wise metrics. For
object IoU, we ran Hungarian matching [47] between all
ground truth and predicted bounding boxes with the thresh-
old of 0.5. To calculate object-wise accuracy, precision, and
recall, the object is considered as True Positive (TP) if IoU
is above 0.5.

As discussed in §3.4, ConeQuest includes non-cone
patches and it is important to analyze the model’s perfor-
mance when it incorrectly tries to segment the object. Most
previous research on segmentation does not consider this

scenario. To incorporate this, we evaluated the model’s per-
formance by computing pixel-wise area segmented as a cone
which is defined as follows:

AFP =
FP (# pixels segmented as cone)
FP + TN (total # pixels in image)

∗ 100 (2)

In Equation 2, lower AFP indicates better model perfor-
mance, i.e., lower false positive area in negative patches.

6. Analysis and Discussion
In the following two sections, we describe quantitative

and qualitative analysis of the results for both BMs.

6.1. Quantitative Analysis

Figure 2a and 2b show pixel IoU for all 4 models on Did

and Dood for BM-1 and BM-2, respectively. For BM-1, the
average IoU across all models on Did is 52.52% for single-
region and 49.03% for multi-region training. For BM-2, the
average IoU across all models on single-category and multi-
category is 42.88% and 41.08%, respectively. Table 4 and
5 report results on Did for all evaluation metrics for BM-1
and BM-2, respectively. Results for each model on Dood

are reported in the Appendix. From Table 4 and 5, it can be
observed that the maximum mAP is 33.16% for BM-1 and
22.54% for BM-2. These results indicate that cone segmen-
tation is an open challenging problem, even on Did, for both
BMs. From Figure 2, it can be observed that an average pixel
IoU is 8.3% higher for BM-1 compared to BM-2. This indi-
cates that current models generalize better across different
regions than different size categories of cones. Comparing
model-wise performance, MA-Net outperformed all 3 mod-
els for single and multi-group training for both benchmarks.
Moreover, other metrics shown in Table 4 and 5 show similar
observations.
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Training
Region

Testing
Region

Cone Non-Cone

Mask
IoU

Pixel
IoU

Pixel
Accuracy

Pixel
Precision

Pixel
Recall

Panoptic
Quality mAP Object

IoU
Object

Accuracy
Object

Precision
Object
Recall AFP

IP IP 64.81 67.92 96.66 83.54 79.09 54.87 33.15 74.29 60.71 71.77 75.51 0.00

AP AP 45.13 45.83 96.21 82.97 52.77 38.91 19.44 49.30 44.45 52.25 50.87 0.23

HP HP 41.39 42.43 92.09 82.71 49.99 31.41 14.39 43.41 36.97 43.72 44.31 0.50

IP + AP IP 64.19 67.58 96.68 85.24 76.54 54.96 34.15 74.81 60.89 72.06 72.68 0.00
AP 45.34 45.76 96.36 90.16 50.35 36.10 20.92 50.52 39.67 47.15 50.42 0.31

IP + HP IP 61.25 62.82 96.24 83.32 74.58 50.14 28.69 71.68 54.70 69.81 63.05 0.00
HP 42.82 43.95 92.28 79.47 53.16 32.20 14.26 45.14 37.34 44.29 45.63 0.66

AP + HP AP 36.53 36.17 95.52 89.52 40.14 28.32 11.55 37.71 32.88 39.80 38.03 1.46
HP 42.66 44.12 92.25 81.40 52.92 32.51 14.01 47.10 37.35 44.78 46.48 1.08

IP + AP + HP
IP 55.85 56.36 95.76 89.19 63.82 45.55 26.91 63.78 51.40 65.94 56.95 0.00
AP 45.95 45.76 96.40 85.09 50.85 40.53 16.36 53.68 45.48 53.84 52.50 2.01
HP 43.01 44.58 92.30 81.60 53.56 32.85 13.46 45.99 38.50 44.94 47.60 0.79

Table 4. Results for BM-1 for all metrics on Did. Here, the results in each row are the average across 4 models. See Appendix B (Table 1
and 2) for individual model results.

6.2. Analysis

Models fail to generalize on Dood: Figure 2a shows that
all models do not generalize well to Dood for single-region
or multi-region training. For example, U-Net trained on HP
achieves 38.7-pixel IoU on HP (Did), but drops substantially
to 18.6 for IP and 21.7 for AP (Dood). This discrepancy in
performance could be attributed to the variations in cone
characteristics among the three regions. Models show the
same generalization gap on Dood for BM-2.

Segmenting all cones: Table 4 and 5 show that pixel pre-
cision is higher compared to pixel recall. This indicates that
the models are better at reducing false positives than false
negatives, which means all true cone pixels are not accu-
rately captured. Object precision and object recall exhibit
similar patterns across most cases. Moreover, in BM-1 for
IP, the disparity between pixel precision and pixel recall is
minimal, however, AP and HP show a larger discrepancy.
Figure 3 shows similar observations for AP and HP2. Identi-
cal trend for BM-2, the small and medium categories have
higher discrepancies between pixel precision and pixel recall
compared to the large cone category.

Non-cone patches: To assess the significance of negative
samples, we trained all models for both BMs only on positive
samples. Results indicate that models perform poorly for
non-cone patches when trained solely on positive samples
(Tp) compared to those trained on both positive and nega-
tive samples (Tpn). Results show that Tp performs relatively
lower compared to Tpn by 3.94% (for BM-1) and 2.14% (for
BM-2) in terms of AFP for non-cone patches. Additionally,
performance for Tp does not show any significant improve-
ment for positive samples, showing relative improvement of
0.09% (for BM-1) and 0.15% (for BM-2) on AFP . Hence,

2Detailed results of BM-1 and BM-2 are shown in Appendix A.

(a) Input (b) GT (c) U-Net (d) FPN (e) DeepLab (f) MA-Net

Figure 3. Illustration of predictions of in-distribution evaluation for
single-region training (BM-1). Row 1, row 2, and row 3 represent
test data samples from IP, AP, and HP, respectively. Columns c, d,
e, and f show predictions from models with their corresponding
Input (column a) and Ground Truth (GT) (column b).

we can conclude that negative samples help in training to
improve the performance of non-cone patches while main-
taining the performance of cone-patches. Detailed results of
Tp are shown in Appendix C (Tables 5, 6, 7, and 8).

6.2.1 Benchmark - 1

Multi-Region training: In natural language processing
and general-domain computer vision, it has been established
that models outperform multi-domain learning compared
to single-task learning [9,32]. However, comparing results
on Did for single-region and multi-region training (from
Figure 2a) shows lower performance for multi-region. This
suggests that tested models struggle to learn the multiple
data distributions in multi-region scenarios, making global
mapping a challenging task.

Performance differences across regions: From Figure 2a
and Table 4, it can be observed that test metrics are higher for
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Training Size
Category

Testing Size
Category

Cone Non-Cone

Mask
IoU

Pixel
IoU

Pixel
Accuracy

Pixel
Precision

Pixel
Recall

Panoptic
Quality mAP Object

IoU
Object

Accuracy
Object

Precision
Object
Recall AFP

S S 26.65 25.85 97.61 76.50 32.40 16.64 10.26 25.21 19.34 25.20 24.73 0.12

M M 39.84 39.66 92.90 81.51 45.40 27.67 12.65 43.15 32.65 42.42 39.00 0.35

L L 59.40 63.13 90.68 84.50 72.65 47.89 22.55 62.32 55.03 62.36 66.80 0.88

S + M S 30.40 29.47 97.67 77.65 37.56 20.56 11.86 30.41 24.02 31.81 29.30 0.21
M 40.31 38.54 92.84 85.79 44.01 29.72 15.57 43.12 35.64 44.69 42.09 0.35

M + L M 42.78 42.31 92.69 79.04 49.82 29.38 13.90 45.12 34.50 46.72 39.94 0.51
L 54.91 57.67 89.90 90.19 62.63 45.05 20.58 59.02 52.29 59.08 63.00 2.38

S + L S 22.58 22.19 97.17 78.60 29.71 13.66 6.22 21.43 16.00 21.45 20.63 0.89
L 52.08 56.31 89.48 87.50 63.24 41.37 17.83 54.19 47.37 52.86 59.5 2.12

Table 5. Results for BM-2 for all metrics on Did. Here, the results in each row are the average across 4 models. See Appendix B (Table 3
and 4) for individual model results.

the IP region compared to AP and HP. The average number
of cones per patch for IP, AP, and HP are 3.52, 1.92, and 2.08,
respectively. The higher cone density within IP compared
to the other two regions, even though the number of training
patches is smaller in IP, may explain the higher performance.

Figure 2a and Table 4 show performance is worst in HP
for the single and multi-region training even on Did. Figure
1a shows data samples from all 3 regions. This may be due to
the greater variability in cone appearance in HP compared to
the other regions, which can be seen in the example images
in Figure 1a. As discussed in §4 and §3.2, cones in HP have
greater diversity in terms of size, shape (circular, elongated,
and clustered cones), and brightness/appearance, and it is
possible a small percentage of annotations have errors. This
makes HP a challenging region for cone segmentation.

6.2.2 Benchmark - 2

Model behavior vs. cone size: From Figure 2b, we can
observe that performance for all 4 models increases as cone
size increases for single-category and multi-category train-
ing. This effect is likely a result of the larger size category
providing the model with more information about the cone
morphology compared to other smaller categories.

Multi-category Training: Similar to BM-1, in BM-2
multi-category performs worse than single-category training,
except for the combination of small and medium categories.
When training with small and medium combined, there is
a significant improvement in object-wise metrics for small
cones, while pixel-wise metrics show slight improvement.
This indicates that the inclusion of the medium category has
a positive impact on the performance of the small category.
Although the model may not be able to precisely mask the
cone at the pixel level, it is able to accurately localize the
cone compared to training with only the small category.

Results on Non-cone patches: From Table 5, we can ob-
serve that AFP increases for non-cone patches, as we go

from a small to large category. This is due to the fact that
when cone size in the patches increases across all training
data, the model encounters more samples with larger cone
areas. For instance, a model trained on the small category ex-
hibits a lower false positive area (0.12) in non-cone patches
compared to the one trained on the large category (0.88).

7. Conclusion

Despite the importance of cone segmentation in planetary
science and the potential for computer vision techniques
to facilitate this task, cone segmentation is under-explored
and no publicly available dataset exists. In this research,
we introduced ConeQuest, a benchmark for cone segmenta-
tion in Mars orbital images. We proposed two benchmark
tasks based on ConeQuest: (i) Spatial Generalization and (ii)
Cone-size Generalization. We evaluated four widely-used
segmentation-based models for these tasks. Results show
that for both benchmark tasks, existing models struggle in
segmenting cones accurately for both in-distribution and out-
of-distribution sub-groups. Furthermore, the evaluation of
multi-region and multi-category training shows that models
do not generalize for multi-domain learning. To enhance
the model’s performance, various techniques can be em-
ployed: (1) Employing a pixel-wise ensemble by combining
the outputs of multiple models can benefit. (2) Histogram
Matching can be used to improve the results of multi-region
training as different lightning and brightness across regions
can affect the model’s performance. In the future, we plan
to expand ConeQuest to include additional regions on Mars
and evaluate model performance in these additional geologic
settings. The dataset and metadata provided in ConeQuest
enable researchers to develop customized models that may
also incorporate context from metadata in model learning.
We hope that ConeQuest will facilitate the development of
models for cone segmentation and global mapping of cones
and other important features on Mars and ultimately improve
scientists’ understanding of the Red Planet.
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