
DISCO: Distributed Inference with Sparse
Communications

Minghai Qin
Western Digital

minghai.qin@wdc.com

Chao Sun
Western Digital

chao.sun@wdc.com

Jaco Hofmann
Western Digital

jaco.hofmann@wdc.com

Dejan Vucinic
Western Digital

dejan.vucinic@wdc.com

Abstract—Deep neural networks (DNNs) have great potential
to solve many real-world problems, but they usually require an
extensive amount of computation and memory. It is of great
difficulty to deploy a large DNN model to a single resource-limited
device with small memory capacity. Distributed computing is a
common approach to reduce single-node memory consumption
and to accelerate the inference of DNN models. In this paper, we
explore the “within-layer model parallelism”, which distributes
the inference of each layer into multiple nodes. In this way,
the memory requirement can be distributed to many nodes,
making it possible to use several edge devices to infer a large
DNN model. Due to the dependency within each layer, data
communications between nodes during this parallel inference can
be a bottleneck when the communication bandwidth is limited.
We propose a framework to train DNN models for Distributed
Inference with Sparse Communications (DISCO). We convert the
problem of selecting which subset of data to transmit between
nodes into a model optimization problem, and derive models
with both computation and communication reduction when each
layer is inferred on multiple nodes. We show the benefit of the
DISCO framework on a variety of CV tasks such as image
classification, object detection, semantic segmentation, and image
super resolution. The corresponding models include important
DNN building blocks such as convolutions and transformers. For
example, each layer of a ResNet-50 model can be distributively
inferred across two nodes with 5x less data communications,
almost half overall computations and less than half memory
requirement for a single node, and achieve comparable accuracy
to the original ResNet-50 model.

I. INTRODUCTION

Deep neural networks (DNNs) have made great progress
in solving real-world problems [1]. A majority of studies
assume that DNN models are inferred on a single device, such
as a GPU. There are a few reasons to study the distributed
inference of DNN models on multiple devices. Firstly, good
DNN models usually require large memory for inference. This
issue becomes more critical as the size of modern DNN models
becomes larger and the popularity of resource-limited devices
for them to be deployed grows rapidly. For example, ESP32 [2]
series of SoCs have only hundreds of kilobytes of RAM/ROM,
while a ResNet50 model requires hundreds of megabytes of
RAM to store its weights and features, making it extremely
challenging to infer a large DNN model on the edge device.
This difficulty can be mitigated by distributing the memory
consumption of DNN models to multiple nodes. Second, the
inference latency can also be reduced by distributing the
computation of inference to multiple nodes as well. Thirdly,

some applications can benefit from cooperative inference of
several branches DNN models. For example, in the scenario
of multi-camera surveillance, if the DNN model in each
camera can not only infer features from its own view, but
collaboratively receive/send data from/to other cameras, the
detection of an object can be more accurate. The overall
system can be viewed as a distributed inference of a larger
DNN model with communicated features between nodes.

Parallelism by distributing the computation across many
nodes is one of the most popular methods to accelerate the
DNN and it can also reduce the memory requirement for each
node [6], [7]. In the data parallelism, each node is responsible
for processing a subset of input samples in one mini-batch. In
the pipeline parallelism [8]–[11], the DNN model is parti-
tioned into sequential parts based on the execution order, and
each node is responsible for processing one part. The DNN
is therefore processed in the pipeline manner. Although they
improve throughput, neither data nor pipeline parallelism can
reduce the latency during the inference of one input. This is
because the input data has to be sequentially processed through
all DNN layers, and within each layer the computation is not
distributed.

In order to distribute the computation within a layer, the
model parallelism is proposed where each node is responsible
for computing a subset of the output of a layer [7]. Note
that each feature in the output of a layer is usually depen-
dent on all input data of the layer, such that all input data
needs to be distributed to all nodes (Figure 1(a)). The data
communication latency between nodes will be the bottleneck
of the distributed system with low communication bandwidth.
For example, based on the configuration of a head-mounted
system in [4], the communication latency can be one or two
orders of magnitudes higher than the computation latency
(See Figure 2). This phenomenon also happens for high-end
(e.g., A100 GPUs and NV-Links) and low-end (e.g., ARM
cores and wireless links) platforms. Many prior works [12]–
[16] tried to use better scheduling methods to improve the
overall system performance. However, the potential of jointly
designing the DNN architectures based on the system con-
figurations is not explored. Another trend to distribute the
computation is by splitting some stages of the DNN into
independent branches [3]–[5] (Figure 1(b)(c)(d)). In these
works, the separate branches can be processed independently

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2432

8/10/22© 2020 Western Digital Corporation or its affiliates. All rights reserved. 53| WESTERN DIGITAL CONFIDENTIAL

Input Output

Input Output

Input Output Input Output

Output feature mapsInput feature maps

Input feature maps Output feature maps

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

2
3 6

50

50

2
3 6

1 2 3 4 5 6 7

0

Node 0

Node 1

Communication channels

Conv
(W,H,I,O) =
(3,3,10,8)

Conv
(W,H,I,O) =
(3,3,11,8)

Concat

Concat

Select 2

Select 3

0 1 2 3 4 5 6 7

(a) (b) (c)

(e)
(f)

Input Output

(d)

Fig. 1: Comparison of different distributed DNN inference methods. (a) Conventional dense communications. (b) Dense-then-
split ([3]). (c) Split-then-aggregate ([4]). (d) Independent branches ([5]). (e) Distributed inference with sparse communications
(DISCO, ours). Dashed arrows mean sparse data transmission. (f) Details of one layer in an example 2-node DISCO. Each
node has 8 features from previous layers. Node-0 and Node-1 select 3 and 2 data features (out of 8) to transfer to the other
node, respectively. The transferred features are combined with its own features to form the input to the convolutional kernels.
The output of the convolution (after point-wise non-linear activation functions) will again be served as the input to the next
layer with sparse communications.

5 10 15 20 25 30 35 40 45 50

Layers

10
-5

10
-4

10
-3

10
-2

10
-1

L
a

te
n

c
y
 (

s
)

L
comp

L
comm

Fig. 2: Computation latency (Lcomp) and communication la-
tency (Lcomm) of 54 layers (including 4 skip links) in a ResNet-
50 with dense communications between N = 2 nodes. The
system configuration is in [4], with B = 37.5 MB/s, C = 125
GOP/s.

on different nodes and there is no data communication between
them. This eliminates the data communication latency for the
corresponding stages. However, completely separated branches
hurt the accuracy.

In this paper, we jointly design the DNN architecture and
system configurations for distributed inference. In our pro-
posal, only a subset of input features are transmitted between
nodes (Figure 1(e)). The problem of selecting an optimal

subset of them to communicate between nodes is NP-hard.
We first demonstrate that this problem is equivalent to the
problem of DNN weight pruning with certain patterns. To be
more specific, weights in a convolutional or fully-connected
layer can be represented as a 2-dimensional matrix M . And
if Node-i does not need a specific input feature from Node-j
to compute Node-i’s output features, it is equivalent to setting
a sub-row of appropriate size and location in M to be all-
zero. Details are presented in Section III-B. In our framework,
we first train a complete model with dense communication.
Then we identify the non-zeros weights corresponding to the
sparse features to communicate. We gradually sparsify the
communication by fine-tuning the remaining weights. This
framework, called distributed inference with sparse communi-
cations (DISCO), can search for models with a better trade-off
between data communication, computation, and accuracy. In
addition, observing that the data communication and computa-
tion can be pipelined to hide their latency, the proposed method
can further reduce the end-to-end system latency at almost
no cost to accuracy. By experimenting on multiple machine
learning tasks, including image recognition, object detection,
semantic segmentation, and super-resolution, we conclude that
1) Compared to DNNs with completely independent branches,

2433

the accuracy can be significantly improved by a very tiny
proportion of the data communications; 2) Compared to DNNs
with completely dependent input-output layers (dense data
communications), our proposed method can significantly re-
duce data communications with negligible accuracy loss.

The contribution of this paper is summarized as follows.
1). We propose a framework, called DISCO, to design

distributed DNN model architectures with sparse communi-
cations.

2). We proposed structured pruning patterns of DNN weight
pruning problems which the problem of selecting the subset
of data to communicate (which is NP hard) can be converted
to.

3). The proposed DISCO can reduce the data communica-
tion by an average 75% without accuracy degradation based on
5 machine learning tasks and models. As far as we know, this
covers the widest range of applications among similar works.

II. RELATED WORKS

A. Distributed inference

Some prior works assume a device-cloud scenario where
the layers of neural network are distributed among them [4],
[17]–[20]. Many works focus on selecting the splitting point
for separate device and cloud execution [8]–[11]. In these
methods, the communication happens at the splitting point
and no other communication latency is considered within each
side. Our work, on the contrary, focuses on the fundamentals of
distributed inference where no difference in the computational
capabilities of processors is assumed and we consider the
communication latency of all layers. Therefore, our work can
also be used to improve their latency on either the device or
the cloud side.

[3], [5], [21], [22] partition the neural network into
several branches and each branch is distributed to a node
for independent execution. Our work is different in that our
network design is not completely separate such that there
is communication between nodes. We can show that a tiny
fraction of communication (e.g., 1%) can improve accuracy
significantly with our framework.

Unlike works with changes to DNNs, there are some other
works focusing on the system scheduling of inference without
changing the models. [12] uses compression and dynamic
scheduling to improve the throughput. [13] forms the split-
ting problem into a graph routing problem. [14] presents a
framework to dispatch the inference data to compute nodes.
[15], [16] minimizes the footprint in parallelism and enables
dynamic workload distribution. [23] considers heterogeneous
and non-linear device characteristics and proposes splitting
and distributing methods. Compared to system design methods
where the focus is to find a good schedule for unchanged
models, our work is different, and can be superimposed on
theirs as well, in that we modify the network architecture
to directly reduce data communications to achieve a better
accuracy-latency trade-off.

B. Distributed training

Model and pipeline parallelism can accelerate the distributed
training. Graph partitioning [24]–[30] splits the training data
into micro-batches and they are pipelined into the training
devices. [31]–[33] split the tensors and place them onto
different devices to distribute the computing. Data parallelism
encounters the problem of high communication bandwidth for
transmitting gradients. [34]–[38] propose methods to sparsify
and quantize the gradients to reduce communication, respec-
tively.

While the distributed training research focuses on improving
the training throughput, our work, on the other hand, focuses
on improving the distributed inference latency of each DNN
layer by a slight architectural change.

III. METHODOLOGY

A. Problem statement

The basic operation of the DNN model inference is the
multiplication of input features and weights. The input features
are feature maps for convolutional neural networks (CNNs)
and are neuron vectors/matrices for multi-layer perceptions
(MLPs) and Transformers. Assume there are I input features.
In order to distribute the computation of each DNN layer
into N nodes, they can be equally distributed with I

N input
features per node. If an output feature in Node-i is dependent
on input features in Node-j, the corresponding dependent
input features are required to be transmitted from Node-j to
Node-i. Figure 1(f) demonstrates an example of distributing a
convolutional layer with 3× 3 kernels into N = 2 nodes. The
total number of input features is I = 16 and each node carries
8 of them. For conventional DNNs with dense communications
shown in Figure 1(a), the convolution tensor on each node
has the shape (W,H, I,O) = (3, 3, 16, 8), where W and
H are the kernel size, I and O are 16 input features and
8 output features, respectively. The total number of output
feature maps is then 8 + 8 = 16. Though the computation
of the convolution operation is distributed across 2 nodes, the
communication latency may be a bottleneck of the system
since all 8 input features need to be transmitted across the
communication channel in both ways.

In DISCO (Figure 1(f)), in order to reduce the communica-
tion latency, for example, Node-0 can select 3 input features,
which are the 2nd, 3rd, and 6th feature maps, and sends them
to Node-1, resulting in 5

8 one-way communication reduction.
Similarly, in the other direction, the selection of the 0th and
5th feature maps from Node-1 to Node-0 can reduce the data
transmission by 6

8 . The problem of designing the DNN model
for distributed inference can be formulated as the following
few questions:

1) If the total number of features to be communicated is
known, which subset of input features should be selected to
transmit to other nodes?

2) If the subset of transmitted input features is determined,
how should the weights of the DNN be trained?

2434

=

=

⊛

⊛

Distributed
input features Weights

Distributed
output
features

Combined

=

=

⊛

⊛

(a) (b)

Node-1

Node-0

50 100 150 200 250

50

100

150

200

250

(c)

Node-1

Node-0

Fig. 3: Equivalence of feature selection and weight selection. (a) One of two features is transmitted from Node-0 to Node-1
and from Node-1 to Node-0, respectively. The non-transmitted feature can be viewed as all-zero (a blank feature). (b) The
equivalent representation where all features are transmitted but the corresponding weights are all-zero (blank 3-by-3 kernels).
(c) A real example of the weight matrix in a ResNet-50 model found by our DISCO. The number of both input and output
feature maps are 256. Each black subrow in the anti-diagonal represents one transmitted input feature between the two nodes.

B. Selection of the subset of input features to communicate

In this section, we use a convolutional layer to demonstrate
the subset selection problem and it can be generalized to MLP
and Transformers as well.

Let Ieach = I
N be the number of local input features on each

node, and assume the number of input features communicated
from Node-i to Node-j is Icomm. The communication sparsity,
denoted by Scomm = 1 − Icomm

Ieach
. Note that reduced feature

communication also leads to computation reduction, denoted
by Scomp = N−1

N Scomm (See Appendix for the proof). There
are

(
Ieach
Icomm

)
possible subsets of input features to select. This

problem is NP-hard for moderate fraction Icomm
Ieach

. For example,
if Ieach = 128 and Icomm = 32 (transmitting a quarter of fea-
tures, i.e., Scomm = 75%), then the number of subset selections
is larger than 1030, making it impossible to enumerate.

Let the subset of input features that are not transmitted
to the other node be denoted by F , it is mathematically
equivalent to transmitting them as all-zero features Fzero
and the corresponding weights WF convolving these all-
zero features can be arbitrary (Figure 3(a)). This is because
zero times any value equals zero. Then, it is mathematically
equivalent to transmit all input features including F and
set WF = 0, as in Figure 3(b). Therefore, the problem of
selecting a subset of features, which is dynamic and related
to the dataset distribution, can be converted into a weight
pruning problem, where the pruning pattern is a sequence of
convolution kernels (e.g., a sequence of 3 × 3 kernels) that
corresponds to input features in the other nodes. Therefore,
if the 4-D convolution weight tensor is projected to a 2-D
mask-matrix by condensing each 2-D convolution kernel into
one value representing whether this kernel is all-zero, then
the pruned pattern is a half row of the matrix (for 2 nodes),
or in general, a 1

N -th row of the matrix, because each sub-

row represents the weights that convolve one input feature
in the other nodes. Note that for Node-i, the convolution
kernels corresponding to its input features are always kept.
Therefore, the diagonal blocks of the mask-matrix are always
kept. Figure 3(c) shows the 2-node mask-matrix for one of
the layers in ResNet-50 that has 256 input and output feature
maps, respectively. The communication sparsity is 90%. Each
point in the mask represents a 3×3 convolutional kernel. Two
dark blocks on the diagonal represent the dense weights and
communications within each node. In the anti-diagonal, white
regions mean the corresponding weights are pruned and the
dark black sub-rows correspond to those input features that
will be communicated between the two nodes.

C. Training DNNs with sparse communications

After converting the input feature selection problem to a
weight pruning problem, we can find an approximation of
the problem efficiently by estimating the significance of the
weights. First, a full DNN model with dense communications
is trained. Second, for each layer, create a mask matrix
M ∈ {0, 1}I×O for each convolutional kernel of shape
W × H (e.g., 3 × 3 or 1 × 1), where I and O are the
number of input and output features, respectively. Then, for
the non-diagonal sub-row of size 1-by- ON that corresponds
to OWH

N weights in the full model, calculate the L1 norm
of them and prune the sub-rows with least L1 norms to
all-zero values. If we partition mask M into I

N × O
N sub-

matrices, then pruning one non-diagonal sub-row in the (i, j)-
th sub-matrix corresponds to preventing one input feature from
being transmitted from Node-i to Node-j. The total number
of pruned sub-rows depends on the desired sparsity in the
non-diagonal matrix, which is the communication sparsity of
this layer. The remaining sub-rows are the input features with

2435

greater significance and should be communicated between
nodes for optimum latency-accuracy trade-offs. We ablate over
the random sub-row pruning to show the benefit of DISCO.

In our experiment, we use the simple yet effective itera-
tive magnitude prune-and-finetune procedure to obtain trained
DNNs with sparse communications. First, we train a full
model with dense communications. Then we prune the least
significant sub-rows in the weight matrix by a fraction of p,
and then finetune the remaining weights to recover some accu-
racy. This completes one iteration. We perform this fraction-p
prune and finetune process for a few iterations to generate a
sequence of models with increasing weight sparsity (and thus
communication and computation sparsity).

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the benefits of DISCO
through several machine learning tasks, including image clas-
sification (the ResNet, EfficientNet and DeiT models), ob-
ject detection (the SSD models), semantic segmentation (the
DeepLabV3+ models) and super resolution (the ESRGAN
models). All models are trained on NVIDIA A100 GPUs by
PyTorch implementation.

In Tables I, II, III, IV, V, we investigate the communication
and computation sparsity (denoted by Scomm and Scomp) and
the accuracy trade-offs of various DNN models, datasets, and
evaluation metrics when they are distributed across two nodes.
Comparisons to a single node or larger number of nodes are
presented in Section V. Details on the training recipe are
presented in the Appendix. We vary Scomm (and thus Scomp) in
the DISCO framework to obtain a sequence of DNN models.

We compare our framework (DISCO) with three different
existing or baseline approaches.

1) Random sparse communications: The transmitted input
features are randomly selected instead of being selected based
on DISCO (Section III-B). In particular, when Scomm = 1,
there is no communication between nodes and DNNs are
partitioned into “independent branches” [5].

2) Dense-then-split: The features in the first few layers are
densely communicated, and the remaining layers are all sep-
arate without feature communication (Figure 1(b)). Different
splitting points result in different accuracy-latency trade-off.
This architecture is proposed in [3].

3) Split-then-aggregate: The first few layers are all separate
without communicated features, and the remaining layers
have dense feature communications (Figure 1(c)). Different
aggregation points result in different accuracy-latency trade-
offs. This architecture is proposed in [4].

For DISCO and 1), we use uniform Scomm and Scomp across
all layers. For 2) and 3), we report the average Scomm and
Scomp.

The observation that our results outperform the random
sparse communications shows the effectiveness of DISCO in
selecting features and training the DNN (Section III-B, III-C).
On the other hand, our results outperform “Dense-then-split”
and “Split-then-aggregate”, which shows that it is better to

have sparse communications among all layers than to have
polarized communication sparsity for different layers.

A. ResNet50 models on image classification

The ResNet architecture is widely used in computer vision
tasks. We use ResNet-50 models on ImageNet [44] to demon-
strate the benefit of DISCO.

A few conclusions can be drawn from Table I: (1) Compared
to the dense model, DISCO methods has no accuracy loss
when Scomm = 80%, i.e., 5x data communication reduction.
(2) The accuracy improvement over [3], [4] is significant
at all sparsities. For example, the maximum Scomm of [3],
[4] in the table is 91% with accuracy being 73.66%, while
DISCO’s accuracy is 76.5% with Scomm = 90%. There is
2.8% accuracy gain. (3) Compared to the model with inde-
pendent branches [5] (Scomm = 100%), by adding only 1%
feature communications (Scomm = 99%), the accuracy can be
improved by a large margin from 73.36% (without DISCO) to
75.94% (with DISCO). This demonstrates that a small portion
of communicated features can significantly increase the model
accuracy.

B. DeiT models on image classification

There is a growing interest in Vision Transformers [40],
[45] and we also apply the DISCO to DeiT-small models. We
follow the same training recipe as in [46]. Some conclusions
can be drawn from Table II: (1) DISCO has almost no accuracy
loss with 60% to 80% communication reduction. (2) DISCO
has over 1% accuracy advantage over all existing or baseline
methods. (3) By adding 1% of data communications between
the two nodes, DISCO methods can improve the accuracy from
74.58% to 78.70%.

C. SSD models on object detection

The single-shot detection (SSD) model [47] is a fast one-
phase object detection model. We use the COCO2017 [48]
dataset and follow the training recipe in [41].

Some conclusions can be drawn from Table III: (1) DISCO
has no accuracy loss with 90% communication reduction.
(2) DISCO has clear accuracy advantages over prior art or
baseline methods (+2.9% or more mAP at the same Scomm).
(3) By introducing 1% data communication, the accuracy can
be significantly improved from 19.6% to 24.6%.

D. DeepLabV3+ models on semantic segmentation

We use the standard DeepLabV3+ models with ResNet-101
as the backbone [42] for semantic segmentation task. The
dataset is PASCAL VOC2012 [49]. We follow the training
recipe in [42].

Some conclusions can be drawn from Table IV: (1) DISCO
has no accuracy loss with 95% communication reduction. (2)
DISCO has over 4-12% mIoU advantage over all existing or
baseline methods. (3) By introducing 1% data communication,
the accuracy can be improved from 64.5% to 76.7%.

2436

TABLE I: Results of ResNet-50 models on ImageNet.

Method Scomm Scomp Top-1 accu. (%) Comments
Dense [39] 0% 0% 76.80

Random Sparse
Communication (baseline)

80% 40% 75.26

Uniform Scomm and Scomp

90% 45% 74.90
95% 47.5% 74.54
99% 49.5% 73.85

100% 50% 73.36

Dense-then-split [3]

8% 10% 75.14 Split @ Loc. 1
32% 28% 74.55 Split @ Loc. 2
68% 40% 73.3 Split @ Loc. 3

Split-then-aggregate [4]
30% 8% 75.10 Aggr. @ Loc. 1
67% 21% 74.88 Aggr. @ Loc. 2
91% 39% 73.66 Aggr. @ Loc. 3

DISCO (Ours)

80% 40% 76.84

Uniform Scomm
90% 45% 76.50
95% 47.5% 76.26
99% 49.5% 75.94

TABLE II: Results of DeiT-S models on ImageNet.

Method Scomm Scomp Top-1 accu. (%) Comments
Dense [40] 0% 0% 79.94

Random Sparse
Communication (baseline)

60% 30% 78.51

Uniform Scomm

80% 40% 78.45
90% 45% 78.24
95% 47.5% 75.65
100% 50% 74.57

Dense-then-split [3] 24% 15% 78.39 Split @ Loc. 1
47% 30% 76.51 Split @ Loc. 2

Split-then-aggregate [4] 24% 15% 79.26 Aggr. @ Loc. 1
47% 30% 78.51 Aggr. @ Loc. 2

DISCO (Ours)

60% 30% 80.08

Uniform Scomm

80% 40% 79.50
90% 45% 79.21
95% 47.5% 79.11
99% 49.5% 78.70

E. ESRGAN models on super resolution

We use the ESRGAN [43] with 23 residual-in-residual dense
blocks (RRDB) [43] architecture to demonstrate the DISCO
on image super resolution (up-scaling the height and width
each by 4 times). The dataset is DIV2K [50].

Some conclusions can be drawn from Table V: (1) DISCO
has no PSNR loss with 60%-80% communication reduction.
(2) DISCO has around 0.6dB PSNR advantage over all existing
or baseline methods. (3) By introducing 1% data communica-
tion, the PSNR can be improved from 31.69 to 32.49.

V. FURTHER DISCUSSIONS AND COMPARISONS

A. Number of nodes and other parallelism

One of the motivations for distributing DNN inference to
multiple nodes is to reduce the memory requirement of each
node. To demonstrate the benefit of multiple nodes, we denote
by “ResNet50/X” the DNN with 1/X of the layer width of
a standard ResNet50 model. For example, ResNet50/2 is a
ResNet model with 50 layers and each layer has one half
channels of the original ResNet50 [39]. The following is
assumed: 1) Each node has a memory capacity that is slightly
larger than the requirement of inferring the ResNet50/8 model,
but not significantly larger ones. 2) The system has comparable
communication and computation latency, so reducing either

of them will be helpful. By investigating the feature size and
computation FLOPs of a sequence of ResNet50/X models, the
communication bandwidth B = 37.5MB/s and computation
speed C = 3.75GOP/s are reasonable configurations to fulfill
the above assumption in this subsection. The overall inference
latency is then calculated measuring data communication
latency (Bytes transmitted

B) and computation latency (FLOPS
C). See

Appendix for details.
If we have N such nodes, we compare two paralleled

computing methods in Figure 4. The first is our “within-layer”
model parallelism (Model Parl.) and the second is to partition
the model into sequential stages of layers and each stage is
inferred on one node. This is often referred to as pipeline
parallelism (Pipeline Parl.). In “Model Parl.”, there is a tiny
proportion of data communications between pairs of N=2,4,8
nodes (Scomm ≈ 99%) such that the memory requirement
to handle the extra 1% data does not exceed the memory
capacity of each node. In “Pipeline Parl.”, a ResNet50/X
model is sequentially partitioned into N=2,4,8 nodes and data
communication happens between those partitions. The values
of “X” are chosen such that each node has the same memory
requirement of a ResNet50/8.

Figure 4 shows the comparison and a few phenomena can
be observed. 1) Model parallelism by DISCO significantly

2437

TABLE III: Results of SSD300 models on COCO2017.

Method Scomm Scomp mAP (%) Comments
Dense [41] 0% 0% 26.0

Random Sparse
Communication (baseline)

80% 40% 23.6

Uniform Scomm
90% 45% 23.2
95% 47.5% 22.6
100% 50% 19.6

Dense-then-split [3]
18% 17% 24.7 Split @ Loc. 1
60% 42% 21.8 Split @ Loc. 2
81% 47% 20.3 Split @ Loc. 3

Split-then-aggregate [4]
18% 3% 25.5 Aggr. @ Loc. 1
40% 8% 24.6 Aggr. @ Loc. 2
82% 33% 21.5 Aggr. @ Loc. 3

DISCO (Ours)

80% 40% 26.7

Uniform Scomm
90% 45% 26.1
95% 47.5% 25.6
99% 49.5% 24.6

TABLE IV: Results of DeeplabV3+ models on PASCAL VOC2012.

Method Scomm Scomp mIoU (%) Comments
Dense [42] 0% 0% 77.2

Random Sparse
Communication (baseline)

80% 40% 74.4

Uniform Scomm

90% 45% 72.8
95% 47.5% 70.9
99% 49.5% 66.8
100% 50% 64.5

Dense-then-split [3]
26% 27% 76.5 Split @ Loc. 1
63% 44% 69.0 Split @ Loc. 2
81% 47% 66.1 Split @ Loc. 3

Split-then-aggregate [4]
34% 6% 77.2 Aggr. @ Loc. 1
71% 23% 68.8 Aggr. @ Loc. 2
79% 33% 64.5 Aggr. @ Loc. 3

DISCO (Ours)

80% 40% 78.5

Uniform Scomm
90% 45% 78.1
95% 47.5% 77.5
99% 49.5% 76.7

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Inference Latency (s)

54

56

58

60

62

64

66

68

70

72

74

T
o
p
-1

 A
c
c
u
ra

c
y
 (

%
)

N=2

N=4

N=8

N=2

N=4

N=8

N=1

Model Parl. with 2,4,8 nodes (DISCO)

Pipeline Parl. with 2,4,8 nodes

Single Node RN50/8

Fig. 4: Comparison of different parallel computing methods.

reduces the inference latency with the same number of nodes.
Larger number of nodes has greater latency improvement.
This is because the computation of one input is distributed
in model parallelism, but not in the pipeline parallelism. 2)
With 5% latency overhead, DISCO can significantly improve
the accuracy of single-node inference of a small ResNet50/8
model (from 55.55% to 71.89%).

VI. CONCLUSIONS

In this paper, we propose a framework, called DISCO, to
train DNNs for distributed inference with sparse communica-
tions. We convert the problem of selecting the subset of data
for transmission to a DNN sparsification problem and show
that DISCO can reduce the data communication by 75% with
no or negligible accuracy degradation.

REFERENCES

[1] R. Latha, G. R. R. Sreekanth, R. Suganthe, and R. E. Selvaraj, “A survey
on the applications of deep neural networks,” in 2021 International
Conference on Computer Communication and Informatics (ICCCI),
2021.

[2] Wikipedia contributors, “ESP32 — Wikipedia, the free encyclopedia,”
2022, [Online; accessed 6-Feb-2022]. [Online]. Available:
https://en.wikipedia.org/wiki/ESP32

[3] J. Kim, Y. Park, G. Kim, and S. J. Hwang, “SplitNet: Learning to
semantically split deep networks for parameter reduction and model
parallelization,” in Proceedings of the 34th International Conference on
Machine Learning, 2017, pp. 1866–1874.

[4] X. Dong, Z. Li, M. Li, Z. Qu, B. D. Salvo, C. Liu, and H.-T.
Kung, “SplitNets: Designing neural architectures for efficient distributed
computing on head-mounted systems,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[5] R. Hadidi, B. Asgari, J. Cao, Y. Bae, D. E. Shim, H. Kim, S.-K. Lim,
M. S. Ryoo, and H. Kim, “LCP: A low-communication parallelization
method for fast neural network inference in image recognition,” arXiv
preprint arXiv:2003.06464, 2020.

2438

TABLE V: Results of ESRGAN models on DIV2K.

Method Scomm Scomp PSNR (dB) Comments
Dense [43] 0% 0% 32.56

Random Sparse
Communication (baseline)

80% 40% 31.82

Uniform Scomm
90% 45% 31.76
95% 47.5% 31.75

100% 50% 31.69

Dense-then-split [3]
20% 10% 31.99 Split @ Loc. 1
44% 22% 31.91 Split @ Loc. 2
69% 34% 31.87 Split @ Loc. 3

Split-then-aggregate [4]
24% 12% 31.94 Aggr. @ Loc. 1
48% 24% 31.96 Aggr. @ Loc. 2
73% 36% 31.85 Aggr. @ Loc. 3

DISCO (Ours)

60% 30% 32.56

Uniform Scomm

80% 40% 32.47
90% 45% 32.46
95% 47.5% 32.41
99% 49.5% 32.49

[6] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. a.
Ranzato, A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng, “Large
scale distributed deep networks,” in Advances in Neural Information
Processing Systems, vol. 25, 2012.

[7] X. Li, G. Zhang, K. Li, and W. Zheng, “Deep learning and its
parallelization,” in Big Data, R. Buyya, R. N. Calheiros, and A. V.
Dastjerdi, Eds., 2016, pp. 95–118.

[8] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Transactions on Mobile Computing, vol. 20,
no. 2, pp. 565–576, 2021.

[9] H.-J. Jeong, I. Jeong, H.-J. Lee, and S.-M. Moon, “Computation offload-
ing for machine learning web apps in the edge server environment,” in
2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS), 2018, pp. 1492–1499.

[10] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
pp. 615–629, 04 2017.

[11] D. J. Pagliari, R. Chiaro, E. Macii, and M. Poncino, “Crime: Input-
dependent collaborative inference for recurrent neural networks,” IEEE
Transactions on Computers, vol. 70, no. 10, pp. 1626–1639, 2021.

[12] D. Hu and B. Krishnamachari, “Fast and accurate streaming cnn infer-
ence via communication compression on the edge,” in 2020 IEEE/ACM
Fifth International Conference on Internet-of-Things Design and Imple-
mentation (IoTDI), 2020, pp. 157–163.

[13] S. Jung and H.-W. Lee, “Optimization framework for splitting DNN
inference jobs over computing networks,” 2021.

[14] A. Parthasarathy and B. Krishnamachari, “Defer: Distributed edge infer-
ence for deep neural networks,” in 2022 14th International Conference
on COMmunication Systems and NETworkS (COMSNETS), 2022, pp.
749–753.

[15] R. Stahl, A. Hoffman, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann, “Deeperthings: Fully distributed CNN inference on
resource-constrained edge devices,” International Journal of Parallel
Programming, 2021.

[16] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

[17] S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep neural
networks over the cloud, the edge and end devices,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
2017, pp. 328–339.

[18] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Krish-
namurthy, “MCDNN: An approximation-based execution framework for
deep stream processing under resource constraints,” in Proceedings of
the 14th Annual International Conference on Mobile Systems, Applica-
tions, and Services. Association for Computing Machinery, 2016, p.
123–136.

[19] Y. Matsubara, S. Baidya, D. Callegaro, M. Levorato, and S. Singh, “Dis-
tilled split deep neural networks for edge-assisted real-time systems,” in

Proceedings of the 2019 Workshop on Hot Topics in Video Analytics
and Intelligent Edges. Association for Computing Machinery, 2019, p.
21–26.

[20] T. Mohammed, C. Joe-Wong, R. Babbar, and M. D. Francesco, “Dis-
tributed inference acceleration with adaptive DNN partitioning and
offloading,” in IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, 2020, pp. 854–863.

[21] Q. Li, L. Huang, Z. Tong, T.-T. Du, J. Zhang, and S.-C. Wang, “Dissec:
A distributed deep neural network inference scheduling strategy for edge
clusters,” Neurocomputing, vol. 500, pp. 449–460, 2022.

[22] C. Hu and B. Li, “Distributed inference with deep learning models
across heterogeneous edge devices,” in IEEE INFOCOM 2022 - IEEE
Conference on Computer Communications, 2022, pp. 330–339.

[23] X. Hou, Y. Guan, T. Han, and N. Zhang, “Distredge: Speeding up
convolutional neural network inference on distributed edge devices,” in
2022 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS), 2022, pp. 1097–1107.

[24] A. L. Gaunt, M. A. Johnson, M. Riechert, D. Tarlow, R. Tomioka,
D. Vytiniotis, and S. Webster, “AMPNet: Asynchronous model-parallel
training for dynamic neural networks,” arXiv preprint arXiv:1705.09786,
2017.

[25] J. Giacomoni, T. Moseley, and M. Vachharajani, “Fastforward for
efficient pipeline parallelism: A cache-optimized concurrent lock-free
queue.” Association for Computing Machinery, 2008, p. 43–52.

[26] M. I. Gordon, W. Thies, and S. P. Amarasinghe, “Exploiting coarse-
grained task, data, and pipeline parallelism in stream programs,” in
ASPLOS XII, 2006.

[27] L. Guan, W. Yin, D. Li, and X. Lu, “XPipe: Efficient pipeline
model parallelism for multi-GPU DNN training,” arXiv preprint
arXiv:1911.04610, 2019.

[28] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur,
G. Ganger, and P. Gibbons, “Pipedream: Fast and efficient pipeline
parallel DNN training,” arXiv preprint arXiv:1806.03377, 2018.

[29] C.-C. Chen, C.-L. Yang, and H.-Y. Cheng, “Efficient and robust parallel
dnn training through model parallelism on multi-gpu platform,” arXiv
preprint arXiv:1809.02839, 2018.

[30] M. Tanaka, K. Taura, T. Hanawa, and K. Torisawa, “Automatic graph
partitioning for very large-scale deep learning,” 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pp. 1004–
1013, 2021.

[31] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[32] Z. Jia, S. Lin, C. R. Qi, and A. Aiken, “Exploring hidden dimensions in
parallelizing convolutional neural networks,” in Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, vol. 80,
2018, pp. 2279–2288.

[33] M. Wang, C.-c. Huang, and J. Li, “Supporting very large models using
automatic dataflow graph partitioning,” in Proceedings of the Fourteenth
EuroSys Conference 2019. Association for Computing Machinery,
2019.

2439

[34] L. Abrahamyan, Y. Chen, G. Bekoulis, and N. Deligiannis, “Learned
gradient compression for distributed deep learning,” IEEE Transactions
on Neural Networks and Learning Systems, 2021.

[35] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in EMNLP, 2017.

[36] N. Ström, “Scalable distributed DNN training using commodity gpu
cloud computing,” in Interspeech 2015, 2015.

[37] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems, vol. 30, 2017.

[38] A. Abdi and F. Fekri, “Nested dithered quantization for communication
reduction in distributed training,” arXiv preprint arXiv:1904.01197,
2019.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[40] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jegou, “Training data-efficient image transformers and distillation
through attention,” in International Conference on Machine Learning,
vol. 139, July 2021, pp. 10 347–10 357.

[41] NVIDIA, “SSD300 v1.1 For PyTorch,”
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD,
2020.

[42] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European conference on computer vision
(ECCV), 2018.

[43] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. C. Loy,
“ESRGAN: Enhanced super-resolution generative adversarial networks,”
in The European Conference on Computer Vision Workshops (ECCVW),
September 2018.

[44] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2009,
pp. 248–255.

[45] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” CoRR, vol. abs/2010.11929,
2020.

[46] R. Wightman, “Pytorch image models,”
https://github.com/rwightman/pytorch-image-models, 2019.

[47] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single shot multibox detector,” in Proceedings of the
European conference on computer vision (ECCV). Springer, 2016, pp.
21–37.

[48] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, P. P.
James Hays, D. Ramanan, C. L. Zitnick, and P. Dollár, “COCO 2017.”
[Online]. Available: http://cocodataset.org/

[49] M. Everingham and J. Winn, “The PASCAL visual object classes chal-
lenge 2012 (VOC2012) development kit,” Pattern Analysis, Statistical
Modelling and Computational Learning, Tech. Rep, vol. 8, p. 5, 2011.

[50] E. Agustsson and R. Timofte, “Ntire 2017 challenge on single image
super-resolution: Dataset and study,” in The IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) Workshops, July 2017.

2440

