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Abstract

The issue of sun glint poses a significant challenge for
ocean remote sensing with high-resolution ocean drone im-
agery, as it contaminates images and obstructs crucial fea-
tures in shallow-waters, leading to inaccurate benthic sub-
strates identification. While various physics-based statis-
tical solutions have been proposed to address this optical
issue in remote sensing, there is a lack of sun glint detec-
tion and removal methods specifically designed for high-
resolution consumer-grade drone RGB imagery. In this pa-
per, we present a pioneering pipeline for sun glint detection
and removal in high-resolution drone RGB images, aiming
to restore the real features that are hindered by sun glint.
Our approach involves the development of a Foreground
Attention-based Semantic Segmentation Network (FANet)
for accurate and precise sun glint detection, while effec-
tive sun glint removal is achieved through pixel propagation
using an optical flow field. Experimental results demon-
strate the effectiveness of our FANet in identifying sun glint,
achieving IoU accuracy of 81.34% for sun glint pixels and
99.52% for non-sun glint background pixels. Furthermore,
the quantitative evaluation of sun glint removal using two
well-known metrics show that our method outperforms the
GAN-based image restoration method (DeepFillv2) and the
conventional image interpolation method (Fast Marching
Method, hereafter referred to as FMM). Thus, our pipeline
lays the foundation for accurate and precise marine coastal
ecological monitoring and seafloor topographic mapping
using consumer-grade drone at a low cost.

1. Introduction
Sun glint occurs when sunlight reflects directly towards

the sensor from the water surface, causing issues in ocean
observations [23]. This phenomenon is problematic in
coastal ecological monitoring and benthic habitat mapping
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based on optical images. It can lead to the loss of visi-
ble features of benthic communities, resulting in incomplete
and inaccurate data [1]. One approach to reduce sun glint
is acquiring images on overcast days or using specific ob-
servation angles and sensor fields, but this may not always
be possible [8, 26]. Filters like UV and ND have been pro-
posed to mitigate sun glint, but their effectiveness depends
on variables like sunlight angle and design, and they can
compromise image quality [17]. Additionally, the large
number of archived images affected by sun glint requires
post-processing for effective utilization.

Sun glint studies mainly focus on developing detection
and removal methods for sun glint in optical satellite im-
agery [3,37]. Two main categories of methods are used: sea
surface-based and band information-based [7]. Sea surface-
based methods predict water leaving reflectivity by integrat-
ing radiative transfer models and statistical models of sur-
face water [30, 33]. Cox and Munk’s statistical method
established a relationship between sun glint statistics and
surface slopes [2]. These methods require extrinsic infor-
mation and are suitable for low-to-medium resolution im-
agery [27, 40]. Band information-based methods use the
near-infrared band as an indicator of sun glint by assuming
negligible water penetration [12, 15]. The covariance be-
tween visible bands and the NIR band is used to establish
the relationship [21]. However, these methods are not uni-
versally effective for high-resolution images due to resid-
ual radiance and biases in complex shallow water environ-
ments [9]. Traditional physic-based methods accurately
describe sun glint generation and propagation but are sus-
ceptible to environmental variations and noise. They have
limited adaptability and high computational costs.

Nowadays, marine scientists and managers increasingly
prefer drone-based remote sensing for precise coastal eco-
logical monitoring. Drones with RGB cameras are mature,
efficient, and easily deployable remote sensing platforms.
They provide rich information, low cost, centimeter-level
spatial resolution, and a high signal-to-noise ratio [18, 38].
However, traditional sun glint detection and removal meth-
ods for optical images are not applicable to drone RGB im-
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ages due to resolution and sensor differences [5, 6]. Sun
glint detection algorithms for drone images are in early
stages and require further research. Only one published
study proposes a sun glint detection method using a deep
learning semantic segmentation model [11]. This method
departs from traditional approaches by using deep learning
to detect sun glint. These models learn features related to
sun glint by training on annotated image datasets, allowing
for detection in diverse optical scenarios. They also provide
fast predictions for real-time processing of marine optical
imagery. However, no study has investigated a complete sun
glint detection and removal pipeline specifically designed
for high-resolution oceanic drone RGB images. This gap
in research results in low efficiency or even the uselessness
of sun-glint-affected high-resolution RGB images obtained
through drone remote sensing.

Thus, in order to fill the gaps in sun glint detection
and removal using high-resolution drone RGB images, we
propose a pioneering pipeline for sun glint detection and
removal in high-resolution drone RGB images using the
Foreground Attention Module and an optical-flow-based
approach. It includes the development of the Foreground
Attention-based Semantic Segmentation Network (FANet)
to distinguish sun glint from the oceanic drone RGB im-
agery background. We also design an effective strategy us-
ing optical flow to accurately clear sun glint and restore real
features. To evaluate our pipeline, we compare FANet with
state-of-the-art (SOTA) image segmentation networks for
sun glint detection. Additionally, since ground truth data for
evaluating the restoration ability of our sun glint removal
strategy is lacking in real-world scenarios, we apply our
method to contamination-free drone images with artificial
sun glint added. We conduct a quantitative evaluation by
comparing our approach with other image restoration algo-
rithms.

2. Related Work
As mentioned in section 1, our proposed pipeline con-

tains two steps: sun glint detection and removal. So, in this
section, the SOTA approaches pertaining to the two steps
are summarized respectively.

2.1. Sun glint detection

Traditional methods lack the capability to detect sun
glint consistently and reliably due to the variations in sun
glint patterns across different times and locations. The
rapid development of machine learning, particularly deep
learning, has provided promising solutions for sun glint de-
tection. Specifically, various semantic segmentation algo-
rithms exhibit significant potential for sun glint detection.
For example, UNet originally proposed for biomedical im-
age segmentation adopts the encoder-decoder structure, us-
ing skip connections and a symmetric U-shaped network

including compression paths and expansion paths [24]. By
combining the low-level and high-level features of the in-
put data through the skip connections, UNet is able to pro-
duce more accurate segmentation results, particularly in sit-
uations where the amount of training data is limited. There-
fore, UNet is quite popular in semantic segmentation in
many remote sensing applications [13, 41] suffering from
limited annotated data, which is also the case in sun glint de-
tection [11]. Another class of encoder-decoder structured
image segmentation networks is the DeepLab series [4],
proposing to use Atrous Spatial Pyramid Pooling (ASPP) in
the spatial dimension to capture multi-scale information in
order to generate accurate results. Although those encoder-
decoder structured networks show good performance in im-
age segmentation, information loss is always unavoidable
during the downsampling of high-resolution feature maps
and upsampling of low-resolution feature maps. Therefore,
the high-resolution convolution network, i.e., HRNet [29],
is proposed in order to keep high-resolution representation
during the multi-scale feature extraction in parallel. Addi-
tionally, ConvNeXt [20] is proposed using only convolu-
tional structures, yet it achieves high ImageNet Top 1 ac-
curacy without relying on a particularly complex or innova-
tive architecture. In numerous studies, the aforementioned
deep learning (DL) models have demonstrated commend-
able performance in image segmentation.

When employing semantic segmentation for sun glint
detection, [11] proposed an enhanced version of the clas-
sic UNet network (hereafter named as UNetglint), which
is specially designed to address the challenges associated
with sun glint detection in oceanic drone RGB imagery and
is the SOTA algorithm in this domain. UNetglint incor-
porates dropout layers and batch normalization to address
overfitting. However, detecting sun glint poses challenges
due to its small size and inter-class imbalance. UNetglint’s
segmentation accuracy is subpar in this task. To address
these issues, we propose a novel sun glint detection network
that combines UNet with our Foreground Attention Module
(FAM) [10, 14, 35]. FAM highlights valuable features of
sun glint, improving semantic segmentation performance.
Additionally, we use a hybrid loss function to mitigate inter-
class imbalance and facilitate effective network training.

2.2. Sun glint removal

The primary objective of sun glint removal is to clear
sun glint and restore the occluded real underwater texture
features. Currently, some conventional image restoration
methods rely on known appearance information to fill miss-
ing areas typically through image interpolation, typically
Fast Marching Method (FMM) [32]. Alternatively, the im-
age restoration can also be regarded as a conditional im-
age generation task, carried out via Generative Adversar-
ial Network (GAN), such as DeepFillv2 [39]. It should
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be noted that the GAN-generated results are inconsistent
with the ground truth regardless of their visual rationality
and structural consistency with the real images. Simulta-
neously, some studies have attempted to treat sun glint as
noise and utilize the Total Variation (TV) method for its re-
moval [6]. However, this approach often leads to exces-
sively smoothed outcomes, resulting in the loss of image
details. In our study, the aim is to remove the sun glint
contaminated pixels in RGB images and restore the accu-
rate underwater features. One possibility for obtaining au-
thentic benthic substrates can be realized by dense feature
matching on image sequences, which is computationally
expensive. Moreover, it is difficult to maintain temporal
consistency in image sequences by matching and comple-
menting individual pixels or image patches. Fortunately,
the optical flow method [31] which characterizes the cor-
respondence between adjacent frames by describing the in-
stantaneous motion state of pixels of moving objects (e.g.,
cameras or observed objects), thereby calculating the mo-
tion information of objects between adjacent frames can be
introduced in sun glint removal due to its ability in main-
taining pixels’ temporal consistency and less computational
complexity [36]. Moreover, drone imagery that is obtained
in marine coastal monitoring characterizing high overlap,
continuous shooting, and consistent brightness create good
prerequisites for optical-flow-based sun glint removal. Fur-
thermore, the available high-accuracy optical flow estima-
tion methods such as GMA [16] also lay the foundation
for the application of the optical flow field in sun glint re-
moval. GMA effectively addresses the issue of accurate op-
tical flow estimation in the presence of occlusion through
the incorporation of image self-similarity modeling. Thus,
we propose a sun glint removal strategy embedding an ad-
vanced optical flow method based on deep learning (i.e.,
GMA) in this study to clear sun glint and restore the sun
glint-contaminated pixels.

3. Materials and Methods
The workflow of our study is shown in Figure 1. First,

the data collection and our study sites are introduced in sec-
tion 3.1, followed by the data pre-processing description
including the annotated dataset preparation for sun glint de-
tection and artificial sun-glint-affected datasets preparation
in section 3.2. Finally, the proposed FANet is detailed de-
scribed in section 3.3 while the optical-flow-based sun glint
removal using GMA [16] is presented in section 3.4.

3.1. Drone data collection and study sites

The drone coastal images were collected in January 2016
from the east of Cook’s Bay in Moorea Island, French Poly-
nesia (17◦30′S, 149◦50′W) (Figure 2), with more than 60%
overlapping in adjacent images. In order to maintain a
Ground Sampling Distance (GSD) of centimeter-level as re-

Figure 1. The pipeline of proposed sun glint detection and re-
moval.

Figure 2. The study site and data collection during our fieldwork.

quired by this study, the camera was positioned at a fixed
height above the objects or terrain as much as possible. It
should be noted that all images were acquired on a sunny
day with good lighting, resulting in inevitable sun glint con-
tamination. This is because marine ecological monitoring
requires images with clear texture, high visibility, and high-
quality remote sensing images.

3.2. Data preprocessing

The annotated data was generated using a semi-
automatic method. Specifically, the initial sun glint la-
bels with a sufficient number of Regions of Interest (ROIs)
were manually generated through visual inspection. Then,
Support Vector Machine (SVM) algorithm was employed
within those manually-derived annotated data in order to
generate the labels for all images. It should be noted that
there is a visual similarity in the sun glint and bleached
corals, resulting in misclassification and omissions in the
SVM results. Thus, experts checked all the SVM-derived
labels and corrected all the labels manually to get the fi-
nal annotated dataset. In this study, 82 coastal coral images
with 4000×3000 pixels were obtained by drone. All images
were randomly cropped into 256×256 pixels image patches
as initial data. In order to reduce the imbalance problem be-
tween sun glint and its background, image patches covering
too little or even no sun glint were discarded. At last, we
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got 4869 image patches for training, 1217 image patches
for validation and 742 image patches for testing. Data aug-
mentation techniques, including hue transformation, ran-
dom contrast transformation, random translation, random
rotation (i.e., 90◦,180◦, 270◦), and random flip, have been
applied in order to enhance the generalizability of our model
and avoid overfitting. Furthermore, images patches were
randomly cropped at multiple scales (i.e., 256×256 pixels,
224×224 pixels, 168×168 pixels) and adjusted to a fixed
size of 224×224 pixels in order to help the model learn
multi-scale information.

Besides the annotated real dataset for sun glint detec-
tion, another artificial sun glint dataset was prepared for
the evaluation of sun glint removal. Since it is difficult
to evaluate the performance of sun glint removal methods
due to a lack of accurate ground truth in practice images,
we added sun glint by setting specific pixel saturation on
the contamination-free image patch sequences as sun glint-
affected images while the original contamination-free im-
ages can be used as ground truth.

3.3. Our sun glint detection neural network

The Foreground Attention-based Semantic Segmenta-
tion Network (i.e., FANet) employs the classical encoder-
decoder structure of UNet to simultaneously capture high-
level global contextual information and low-level image de-
tails with skip connections, as shown in Figure 3. It has
been proved that the supervision of the last layers of the de-
coder using ground truth in side output is able to reduce the
overfitting, as is reported in the BASNet [25]. Besides, we
also noticed that the attention mechanism should be consid-
ered in this study as sun glint typically manifests based on
the fact that the sun glint often has intense contrast and lu-
minosity, and individuals can easily and precisely spot sun
glint in the image upon first inspection. Additionally, the
sun glint’s distribution tends to be regionally concentrated,
frequently occurring in a small portion of the image as small
objects, causing a significant data imbalance issue. Thus, a
Foreground Attention Module (FAM) was employed to the
imbalanced sun glint dataset in order to emphasize crucial
features of sun glint while minimizing irrelevant ones [19].
The FAM was inserted into the last layers of different de-
coding stages, followed by the supervision of ground truth.
The detailed architecture of FAM is shown in Figure 3, fol-
lowing a general attention design idea.

Given a feature tensor F ∈ RW×H×C where W , H ,
C present the number of width, height and channel of the
feature map, respectively, a basic block is applied to F to
get a feature Fup with a unified number of channels as 64:

Fup = ReLU {BN [Conv3×3 (F )]} (1)

Then the Squeeze-and-Excitation (SE) attention module
[14] is employed to get rescaled the features map Fre while

Figure 3. The architecture of propsed FANet which embeds FAM
to UNet.

the two 1×1 convolutions are used to maintain the channel
number, as follows:

Fre = Conv1×1 {Conv1×1 (Fup)× SE [Conv1×1 (Fup)]}
(2)

In order to highlight the salient attributes of the fore-
ground, we compute the scaled feature map f with a fixed
size of 224×224×2 by combining Fup and Fre, followed by
BN and upsampling (Equation 3). This f is then used for
supervision with ground truth to guide the subsequent train-
ing iterations.

f = upsampling [BN (Fup + Fre)] (3)

It is expected that FAM enhances the foreground fea-
tures of interest while preserving the background informa-
tion by adding and multiplying the foreground feature maps
extracted by SE module with the original feature maps.

Another innovation of this method is in loss function im-
plementation. Firstly, a hybrid loss function comprising
pixel-level Weighted Cross Entropy (WCE) loss function
[22] and patch-level Structural Similarity (SSIMloss) loss
function [34] is employed to guide the training of the net-
work. The WCE loss function is a variant of the Cross
Entropy (CE) loss function that weights positive and neg-
ative samples, aiming to solve the imbalance issue in sun
glint and its background. The WCE loss function lWCE is
defined as shown in Equation 4.

lWCE = −
N∑
i=1

wiyilog(pi) (4)

where N represents the total number of classes, with N = 2
denoting the two classes in this study (i.e. sun glint and
background). The weights wi corresponds to a specific class
i and is determined by the proportion of pixels belonging to
that class relative to all pixels. yi and pi denote the ground
truth label and the predicted probability for class i, respec-
tively.
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The SSIMloss, initially developed for the evaluation of
image quality, demonstrates the capability to capture the in-
herent structural information within an image and assess the
structural similarity between the predicted image and the
original image. It assigns higher weights to boundaries by
considering the local neighborhood of pixels, making the
network more focused on the structural features of fore-
ground classes. The definition of SSIMloss loss function
lSSIMloss for two given image patches x and y is presented
in Equation 5.

lSSIMloss = 1− (2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(5)

where µx and µy refer to the means of x and y, respectively,
while σx and σy denote the standard deviations associated
with x and y. σxy is their covariance. The constants C1 =
0.012 and C2 = 0.032 are small values utilized for ensuring
numerical stability during the calculations.

Specially, the side output of the last layers of the first
three decoder stages is supervised by the WCE loss func-
tion only. The network output is supervised by the WCE
and SSIMloss hybrid loss function, which is defined in
Equation 6.

lhybridnetwork = lWCE
network + αlSSIMloss

network (6)

where lhybridnetwork, lWCE
network, lSSIMloss

network represents the hybrid
loss function, WCE loss function and SSIMloss loss func-
tion for the network output, respectively. α is a hyperparam-
eter, which is set as 0.4 according to trail-and-error.

The final training loss, denoted as l, is defined as the sum
of all side outputs supervised by the WCE loss function,
along with the network output supervised by the hybrid loss
function, as shown in Equation 7.

l =

M∑
m=1

βlWCE
m + lhybridnetwork (7)

lWCE
m represents the mth side output result after FAM and

supervised by ground truth, and the total number of side
outputs is M = 3. β is the weight of each loss, which is set
to 0.2 according to trial-and-error.

3.4. Our sun glint removal strategy

Our optical-flow-based sun glint removal strategy (Fig-
ure 4) consists of three steps: (1) optical flow field estima-
tion, (2) pixel propagation, and (3) unseen regions inpaint-
ing.

To remove sun glint from images, accurate optical flow
estimation is crucial as it guides correct pixel propagation
and inpainting of unseen regions. However, sun glint occlu-
sion can cause correspondence ambiguity, leading to out-
liers in the cost volume, which affects optical flow decod-
ing. To address this issue, we use the Global Motion Ag-
gregation (GMA) method [16] for optical flow estimation,

Figure 4. A workflow for the proposed sun glint removal strategy.

which propagates motion information from non-occluded
background pixels to occluded ones (i.e., sun glint pixels)
through object self-similarity modeling. GMA takes visual
context features and local motion features as input and out-
puts an aggregated global motion feature that is concate-
nated with local motion features and visual context features,
decoded by GRU into a residual flow, and then the final op-
tical flow is obtained. We would like to point out that, in our
study, the utilization of a pre-trained GMA for optical flow
estimation is justified by its robustness and efficacy across
various image textures. Despite the dissimilarity between
the GMA training dataset and our own, the optical flow field
focuses on the motion data of pixels within successive im-
age frames, rather than the image’s texture.

Then, optical-flow-based pixel propagation is utilized to
complete the sun-glint-contaminated pixels. This involves
propagating through forward and backward optical flow un-
til two known pixels are reached. A forward-backward con-
sistency check is then performed to verify the validity of the
pixel propagation. This check ensures that the forward opti-
cal flow and backward optical flow of two frames are equal
in value and opposite in direction [42]. The consistency
is measured using the forward-backward consistency error,
which is defined as the two-norm of the sum of forward
optical flow and backward optical flow. For a given pixel
x, where x represents its 2D location within the image, the
definition of the error is shown in Equation 8:

errij(x) = ∥fij(x) + fji(x+ fij(x))∥22 (8)

where errij represents forward-backward consistency error
between frame i and frame j, and fij represents the opti-
cal flow value from i to j. Moreover, weights have been
assigned to the two known pixels obtained by optical flow
propagation through the forward and backward consistency
error and the final pixel is completed via weighted fusion.
In this study, the weights w is defined as an exponential
function (Equation 9):

wx = e−
errx
m (9)

where m is set to 0.1 to reduce possible excessive errors.
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If some pixels cannot be filled through the pixel propaga-
tion due to the presence of sun glint in all image sequences
or problems in optical flow estimation, single image restora-
tion using FMM [32] is used as a solution. Then FMM-
based restored image is used as input for the next iteration
until all missing pixels are completed, ultimately producing
sun-glint-free images.

4. Experiments and results analysis
The overall program is operationalized on a desk com-

puter configured with two NVIDIA GeForce RTX 3060s.
For details, sun glint semantic segmentation networks are
implemented based on PyTorch. Segmentation networks
are trained with a learning rate of 0.0001 and the epoch
number is 100. Momentum is set to 0.9 and weight decay is
set to 0.0005. The mIoU (Mean Intersection over Union)
and IoU (IoUbackground represents the IoU (Intersection
over Union) of the background class and IoUsunglint rep-
resents the IoU of the sun glint class) are used to evaluate
the performance of sun glint detection. Structural Similarity
Measure (SSIMmetric) is a metric employed for quantify-
ing the similarity between two images, considering factors
including luminance, contrast, and structural elements. A
higher SSIMmetric value indicates a higher similarity be-
tween the images, with an SSIMmetric value of 1 denoting
complete similarity between the two images [34]. Peak
Signal-to-Noise Ratio (PSNRmetric) is a quantitative met-
ric that measures the extent of distortion present between
the reconstructed signal and the original signal, with higher
PSNRmetric values indicating lower levels of distortion
[28]. In sun glint removal, SSIMmetric and PSNRmetric

are used to quantitatively measure the similarity between
the restored images and the ground truth thereby evaluating
the sun glint removal performance.

4.1. Comparison of sun glint detection networks

The result of our FANet is evaluated and compared with
several representative semantic segmentation networks (i.e.,
UNet [24], DeepLabv3+ [4], HRNet [29], ConvNeXt [20]
and one network developed specifically for sun glint detec-
tion (i.e., UNetglint [11])) regarding the performance in
sun glint detection. Table 1 shows that all methods exhibit
high mIoU values, primarily because the IoUbackground

is consistently above 98%. The results differ when con-
sidering the IoUsunglint : our FANet achieves the highest
accuracy in both sun glint and background segmentation;
UNet-related methods, namely UNet and UNetglint, out-
perform other classic semantic segmentation networks, with
an IoUsunglint of over 75%. In comparison, other classic
semantic segmentation methods, such as DeepLabv3+, HR-
Net, and ConvNeXt, exhibit IoUsunglint ranging between
56.53% and 62.73%, suggesting that UNet is an effective
backbone for sun glint detection. Moreover, a visual in-

Methods mIoU IoUbackground IoUsunglint

UNet 87.57% 99.41% 75.74%
UNetglint 89.30% 99.48% 79.13%
DeepLabv3+ 77.54% 98.55% 56.53%
HRNet 80.28% 98.70% 61.85%
ConvNeXt 80.78% 98.32% 62.73%
FANet 90.43% 99.52% 81.34%

Table 1. Comparison results for different deep learning models in
sun glint detection. The highest values in mIoU , IoUbackground

and IoUsunglint are shown in bold.

spection was carried out as shown in Figure S2 of the sup-
plementary material. The results indicate that DeepLabv3+,
HRNet, and ConvNeXt tend to identify sun glint edges that
are larger than the true edges. Moreover, these methods
may group different sun glint with close distances into a sin-
gle sun glint, resulting in incorrect segmentation of many
background pixels as sun glint. In contrast, UNet, UNet-
glint, and FANet exhibit more accurate sun glint bound-
aries, with a higher number of small sun glint being iden-
tified. One possible explanation is that UNet’s design is
optimized for situations with limited training data, which
is not always the case for other classic semantic segmenta-
tion methods developed for image segmentation in the com-
puter vision domain, where larger annotated datasets are
more common. Additionally, UNet’s use of skip connec-
tions, which combines multi-scale low-level and high-level
features, preserves spatial information for small objects like
sun glint, while other classic semantic segmentation meth-
ods may struggle to detect small objects. Thus, our results
indicate the superiority of FANet in accurate sun glint de-
tection, preparing the solid foundation for subsequent sun
glint removal precisely.

4.2. Evaluation of sun glint removal strategies

To evaluate our sun glint removal strategy, we created
a specialized artificial dataset by artificially introducing sun
glint into previously sun-glint-free regions of UAV coral im-
ages. We conducted experiment on this specialized artifi-
cial dataset and compared our result with the GAN-based
method (i.e., DeepFillv2) derived result and the conven-
tional image interpolation method (i.e., FMM) derived re-
sult. The visual comparison is depicted in Figure 5 while the
quantitative evaluation results are summarized in Table 2.
In Figure 5, the first row consists of our chosen UAV coral
images without sun glint, the same images with artificial
sun glint, and sun glint removal results generated by Deep-
Fillv2, FMM and ours. The second row presents enlarged
views of the red rectangular dashed boxes in the first row,
enabling a comprehensive visual inspection of their differ-
ences. The visualized results of the three methods for image
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DeepFillv2 FMM Ours

SSIMmetric 0.962 0.975 0.998
PSNRmetric 39.48 41.47 54.95

Table 2. Quantitative comparison of different removal methods.
The highest value is indicated in bold.

Figure 5. A visual comparison of our sun glint removal strategy
with DeepFillv2 and FMM.

restoration at the sun-glint-dense area in Figure 5 reveal that
our method achieves the richest texture and visually similar
restoration to the original texture. DeepFillv2 produces new
artificial textures that are inconsistent with real texture fea-
tures, while FMM yields excessively smoothed outcomes,
leading to the loss of fine texture details. We also pro-
vide more instances of sun glint image restoration results
of our methods in Figure S3 of the supplementary material
for further visual inspection. Moreover, we quantitatively
compare their results with the original sun-glint-free images
using SSIMmetric and PSNRmetric in Table 2, which
consistently shows that our method produces the most re-
alistic and best-detailed restoration results with the highest
SSIMmetric 0.998 and PSNRmetric 54.95. Hence, our
method effectively solves those problems as it clears almost
all sun glint and restores images with real features, improv-
ing image quality.

4.3. Ablation study of FANet

To evaluate the effectiveness of the FAM module and hy-
brid loss function in detecting sun glint, we performed ab-
lation experiments in this section. The baseline is the origi-
nal UNet using the CE loss function, which aligns with the
loss function used in the original UNet network. Then the
UNet with FAM using CE loss function, as well as our pro-
posed FANet combining the UNet with FAM and the hybrid
loss function is evaluated. The results of these experiments
presented in Table 3 confirm the effectiveness of our pro-
posed improvement. Our introduction of the FAM mod-
ule has resulted in a 3.36% improvement in IoUsunglint

compared to the baseline, indicating that the FAM mod-
ule guides the network’s attention towards foreground infor-

Methods mIoU IoUbackground IoUsunglint

UNet 87.57% 99.41% 75.74%
UNet+FAM 89.28% 99.47% 79.10%
UNet+FAM+hybrid loss 90.43% 99.52% 81.34%

Table 3. The accuracy comparison of ablation study. The highest
values in mIoU , IoUbackground and IoUsunglint are shown in
bold.

Images mIoU IoUbackground IoUcoral

Sun glint images 65.24% 63.64% 66.85%
Sun-glint-free images 78.78% 79.03% 78.91%

Table 4. Comparative results of the impact of sun glint on the
benthic coral semantic segmentation task. The highest values in
mIoU , IoUbackground and IoUcoral are shown in bold.

mation, thereby enabling the acquisition of more efficient
and discriminative sun glint features. Furthermore, the use
of the hybrid loss function has addressed class imbalance
and further improved semantic segmentation accuracy. Ulti-
mately, our FANet achieved a notable 5.6% improvement in
IoUsunglint over the baseline, demonstrating its outstand-
ing performance.

4.4. Applications of sun-glint-free drone images

The utilization of oceanic drone RGB imagery for ma-
rine coastal ecological monitoring is the final goal of this
paper. Within this domain, accurately identifying and ana-
lyzing benthic organisms, encompassing their species, dis-
tribution, and ecological responses based on these data is
the focus. We conducted coral identification experiments
specifically targeting the dominant benthic organism coral
to quantitatively evaluate the negative implications of sun
glint on marine coastal ecological monitoring tasks. The
experimental setup involved applying pre-trained weights
of the UNet model to classify coral and background on both
original images with sun glint and images that underwent
sun glint removal. The experimental results are presented
in Table 4. Quantitatively, the removal of sun glint led to a
notable improvement in the mIoU by approximately 13.5%
and IoUcoral by 12% for coral segmentation.

To facilitate visual inspection, we further provide visual
comparison results. The visual comparison reveals that the
presence of sun glint has a detrimental effect on the accu-
racy of the underwater coral segmentation results. It leads
to considerable misclassifications, omissions and introduces
numerous small artifacts and noise. However, through sun
glint removal, these issues notably diminish, resulting in
improved segmentation accuracy and sharper coral bound-
aries. This improvement in accuracy contributes to a more
reliable data foundation and support for marine ecologi-
cal monitoring. Therefore, our experiments demonstrate
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Figure 6. A visual comparison of the sun glint’s impact on down-
stream benthic coral semantic segmentation task.

the detrimental impact of sun glint on the understanding of
coral distribution, while highlighting the substantial quality
improvement achieved through its removal.

The production of shallow water habitat maps utilizing
coastal drone remote sensing imagery is another fundamen-
tal task in marine ecological monitoring. Given the re-
stricted coverage area of a single high-resolution image cap-
tured by drones, the generation of large-scale mosaic im-
ages through photogrammetric processing of single drone
images obtained from the survey area is imperative to fa-
cilitate a more comprehensive understanding and analysis.
In this study, in order to demonstrate the effect of sun glint
removal in producing benthic habitat maps, we have cho-
sen a set of coastal drone images for stitching through im-
age feature matching and pixel fusion. The image stitch-
ing results with and without sun glint removal are shown
in Figure 7. In Figure 7(a), a considerable number of sun
glint instances contaminate a substantial portion of the up-
per and right area, leading to those areas being unusable.
Furthermore, sun glint poses challenges in image matching,
evident by pronounced ghosting and blurring in the image.
Conversely, the sun glint removal outcome in Figure 7(b)
exhibits a distinct restoration of the shape and distribution
of benthic coral substrates, accompanied by a notable im-
provement in mitigating image contamination. The find-
ings demonstrate the significant impact of sun glint removal
on producing benthic habitat maps, underscoring its crucial
role in enabling accurate habitat mapping.

5. Conclusions
Sun glint is crucial to consider in remote sensing of

habitats using high-resolution drone images of inland wa-
ter or coastal ocean areas. It can contaminate images, mak-
ing the object of interest indiscernible and compromising
image processing and interpretation. Our study addresses
this problem by proposing a pipeline with a Foreground
Attention-based sun glint detection module and an optical-
flow-based removal strategy. The Foreground Attention
Module enhances the detection of sun glint characteristics,

Figure 7. Comparison of stitched images. (a) is the original im-
age stitching result without sun glint removal. (b) is the image
stitching result with sun-glint-free images.

improving identification and classification accuracy. Ex-
perimental results show exceptional sun glint segmentation
performance. However, segmentation alone doesn’t solve
image contamination. Sun glint’s distribution area is not
extensive but can still impact a wide range of images. This
poses a challenge for refined habitat identification and clas-
sification based on remote sensing imagery. For instance,
when identifying and classifying individual corals, certain
pillar corals may have a limited spatial distribution on the
plane but possess a significant three-dimensional presence.
These corals play a crucial role in the ecosystem and their
significance could rival that of dwarf corals with a larger
distribution area. Consequently, even a small number of
random sun glint pixels contaminating the image can ren-
der the identification and classification task nearly impossi-
ble. For this, we propose an optical-flow-based strategy to
restore the missing sun glint area, effectively clearing sun
glint and restoring accurate image features. Our pioneer-
ing techniques for sun glint correction significantly enhance
the accuracy of information extraction and mapping tasks in
marine ecological monitoring.
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