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Abstract

Climate change is a global issue with significant im-
pacts on ecosystems and human populations. Accurately
classifying land cover from multi-spectral satellite imagery
plays a crucial role in understanding the Earth’s chang-
ing landscape and its implications for environmental pro-
cesses. However, traditional methods struggle with chal-
lenges like limited data availability and capturing complex
spatial-spectral relationships. Vision Transformers have
emerged as a promising alternative to convolutional neu-
ral networks (CNN architectures), harnessing the power of
self-attention mechanisms to capture global and long-range
dependencies. However, their application to multi-spectral
images is still limited. In this paper, we propose a novel
Vision Transformer designed for multi-spectral satellite im-
age datasets of limited size to perform reliable land cover
identification with forty-four classes. We conduct exten-
sive experiments on a curated dataset, simulating scenarios
with limited data availability, and compare our approach to
alternative architectures. The results demonstrate the po-
tential of our Vision Transformer-based method in achiev-
ing accurate land cover classification, contributing to im-
proving climate change modeling and environmental under-
standing.

1. Introduction

Climate change has become a pressing global issue, im-
pacting ecosystems and human populations worldwide. In
the context of climate change modeling, accurate land-
cover classification plays a critical role in understanding the
Earth’s changing landscape and its implications for various
environmental processes. Multispectral satellite imagery
has proven to be a valuable resource for obtaining compre-

*Thanks to Google Cloud Research Credit for providing us with ac-
cess to Google’s high-performance computing capabilities for this research
project.

hensive and diverse information about the Earth’s surface.
Specifically, it provides detailed data across multiple spec-
tral bands, allowing for a deeper understanding of land sur-
face characteristics.

However, landcover classification from multispectral
satellite images poses significant challenges, especially
cloud coverage, cloud shadow, resolution, accuracy,
etc [17]. Traditional methods often struggle to effectively
capture the complex spatial relationships and meaningful
representations within multispectral data, hindering accu-
rate landcover classification for climate change modeling.

Recent years have witnessed remarkable breakthroughs
in deep learning, particularly with the advent of vision
transformers. Vision transformers have demonstrated ex-
ceptional success in various computer vision tasks by effec-
tively capturing long-range dependencies and global con-
text within images, surpassing the capabilities of traditional
convolutional neural networks (CNNs). These models have
shown promise in tasks such as object recognition and
image classification, leveraging their strengths in learning
meaningful representations and spatial dependencies.

In this paper, we propose a novel vision transformer-
based approach designed specifically for learning from mul-
tispectral satellite images with limited data to perform accu-
rate landcover classification in the context of climate change
modeling. Our objective is to address the challenges posed
by limited data availability while harnessing the capabili-
ties of vision transformers to understand complex spatial
patterns and spectral relationships present in multispectral
imagery.

By integrating vision transformers into the landcover
classification task, we aim to enhance the accuracy and effi-
ciency of the classification process, ultimately contributing
to better climate change modeling and environmental un-
derstanding. The vision transformer model will be trained
on a carefully curated dataset of multispectral satellite im-
ages from all over the world.

The remainder of this paper is organized as follows. Sec-
tion 2 provides an overview of related work in the field
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of deep learning for landcover classification and vision
transformers. Section 4 details the methodology, includ-
ing the architecture design of our novel vision transformer
model tailored for multispectral satellite images. Section 5
presents the experimental setup, including the dataset used,
evaluation metrics, and comprehensive results and analysis.
We conclude in Section 6, summarizing the contributions of
our approach and outlining future research directions in the
domain of multispectral image analysis and climate change
modeling.

2. Related Work
Deep Convolutional Neural Networks (DCNN): Convo-

lutional Neural Networks (CNNs) have proven to be highly
effective for image segmentation or pixel-wise classifica-
tion tasks, with the U-Net architecture [12] being a pop-
ular choice due to its simplicity and impressive perfor-
mance. Building upon U-Net, several variants have been
proposed [6, 9–11] aiming to further enhance segmenta-
tion performance. The significance of global contextual in-
formation for semantic segmentation has been widely ac-
knowledged [3,8,16]. For instance, PSPNet [16] introduced
a pyramid pooling module that employs pooling operations
at multiple scales, while DeepLabv3 [3] proposed paral-
lel Atrous convolutions with different rates to incorporate
global context. However, it’s worth noting that the pooling
operation with striding in [16] led to information loss at ob-
ject boundaries, and the use of dilated convolutions with a
large dilation rate in [3] resulted in the ”grinding” problem.
CNN-based methods have witnessed remarkable success in
this field, primarily due to their exceptional ability to repre-
sent and learn intricate features from complex data.

Vision Transformers: Transformers [14] initially gained
acclaim in the domain of Natural Language Processing
(NLP) by achieving state-of-the-art performance. As the
success of Transformers became evident, their application
expanded to the realm of computer vision. Vision trans-
formers possess a unique capability to capture global depen-
dencies and long-range interactions, making them highly
valuable for tasks such as image recognition, object de-
tection, and semantic segmentation. Vision Transform-
ers (ViT) [5] were introduced to handle image recognition
tasks, but they require pre-training on large datasets. To
address this, approaches like Deit [13] have been proposed
to improve the training of ViT. A notable example is Swin
TransformerSwin Transformer [7], an efficient hierarchical
vision Transformer, for various vision tasks, including im-
age classification, object detection, and semantic segmenta-
tion. One notable example of this family of models is [1].
Transformers possess much lighter inductive biases, when
compared with CNNs, enabling them to benefit from exten-
sive pre-training using vast datasets to achieve cutting-edge
performance.

Self-attention/Transformer in conjunction with DCNNs:
In pursuit of improved network performance, researchers
have delved into the amalgamation of self-attention mech-
anisms, commonly employed in Transformers, with Con-
volutional Neural Networks (CNNs). Several approaches
have emerged that integrate self-attention with CNN-based
U-shaped architectures, particularly for medical image seg-
mentation tasks. Moreover, studies have focused on syn-
ergizing Transformers and CNNs to enhance segmenta-
tion capabilities, particularly in the domains of multi-modal
brain tumor segmentation and 3D medical image segmen-
tation. Among the notable examples of this model fusion
are [2] and [15], both of which demonstrate the potential
of such combined architectures in medical image analy-
sis. However, these models lie beyond the primary focus
of this paper, which centers on the development of a pure
Vision Transformer for multispectral satellite imagery for
advanced landcover classification in the context of climate
change modeling.

Figure 1. Sample satellite band visualization above Vancouver,
BC. From left to right, Row 1: Temperature 2m, Coastal Aerosols,
EVI, and Evaporation. Row 2: Precipitation, True colour (432),
T21, Soil Temperature. Row 3: LAI, CH4, and HCHO

3. Data
In this paper, we explore the landcover identification

as a pixel-level classification problem generating landcover
maps at a high resolution of 30 meters. A total number of
1m patches of size 256 × 256, each covering an area of
7680× 7680 meters from selected countries were extracted
for training. The following 15 bands were obtained from
Google Earth Engine (GEE), selected bands are visualized
in Fig. 1.

• From ERA5 climate reanalysis data with 11.132 kilometers
(0.1× 0.1 decimal degree) spatial resolution:
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Temperature 2m: Temperature of the soil in layer 1
(0− 7cm).
Soil Temperature L1: Temperature at 2m height above
the surface of land, sea or in-land waters.
Total Evaporation: Accumulated amount of water that
has evaporated from the Earth’s surface, including a
simplified representation of transpiration (from vege-
tation), into vapor in the air above.
Total Precipitation: Accumulated liquid and frozen
water, including rain and snow, that falls to the Earth’s
surface.
High/Low Leaf Area Index (LAI): One-half of the total
green leaf area per unit horizontal ground surface area.

• From Landsat 8 with 30 meters spatial resolution:
B1: Atmospheric aerosols near coastal regions.
B2-B4: Blue, green, and red.
B10/B11: Thermal infrared 1 and 2, resampled from
100m to 30m.

• From Copernicus S5P climate reanalysis data with 11.132
kilometers spatial resolution:
Tropospheric HCHO: The amount of formaldehyde in
a vertical column of the atmosphere above a given lo-
cation, expressed in molecules per square centimeter.
CH4: The amount of methane (CH4) in a vertical col-
umn of the atmosphere above a given location, ex-
pressed as the volume mixing ratio of CH4 in dry air.

• From MODIS/FIRMS with 1 kilometer spatial resolution:
T21: The brightness temperature of a fire pixel using
MODIS channels 21/22.

4. Methodology
In recent years, the encoder-decoder family of Fully

Convolutional Networks (FCN) achieved remarkable suc-
cess in several application area including medical image
analysis and remote sensing [4]. Inspired by this success,
we focus on this type of architecture to address the chal-
lenging task of modelling formaldehyde concentration. The
UNet architecture consists of two contracting and expansive
paths to capture high-frequency details with low-frequency
structures of the image. The contracting path encodes the
input image into higher level representations and the expan-
sive path decodes the compact representations into regres-
sion probability maps. We investigated several state-of-the-
art models for the task of HCHO concentration prediction,
particularly, we re-implemented and optimized BLAST-Net
and Swin UNet.

4.1. Swin UNet

Swin Transformer [7] presented a vision transformer
leveraging the advantages of the U-shaped architectural
design where both the encoder and decoder components

Figure 2. Sub-Pixel Vision Transformer Model

are constructed using Swin Transformer blocks introduced
in [7]. The patch partitioning module splits an input multi-
spectral image into non-overlapping patches. The individ-
ual patches are treated as ”tokens” with their features con-
structed by concatenating the raw values from five multi-
spectral bands. Assuming a patch size of 4× 4 and X num-
ber of bands, each patch’s feature dimension is calculated
as 4 × 4 × X = 16X . To project these raw-valued fea-
tures into an arbitrary dimension represented as C, a linear
embedding layer is applied. The Swin UNet Transformer
architecture applies several Transformer blocks with shifted
window self-attention computation to patch tokens. To cre-
ate a hierarchical representation, patch merging layers are
used to reduce the number of tokens as the network goes
deeper.

4.2. Overall Architecture

Building upon the remarkable success of the Swin
Transformer [7], we present a novel U-shaped Encoder-
Decoder architecture called Sub-Pixel (SP) vision Trans-
former, specifically designed for multispectral images. Our
approach leverages the advantages of the Swin Transformer
and combines them with the U-shaped architectural design.
In Sub-Pixel Transformer, both the encoder and decoder
components are constructed using Sub-Pixel Transformer
blocks, resulting in a pure Transformer-based U-shaped ar-
chitecture tailored for multispectral image analysis.

Figure 2 provides an overview of the architecture of
the Sub-Pixel Transformer, highlighting the best perform-
ing version. The architecture shares a similar structure for
stages 1 to 4 with the Swin Transformer, but it incorporates
two key differences. First, spectral attention mechanism
is introduced to enhance the model’s ability to learn from
multi-spectral images. Second, the Shifted window parti-
tioning used in the original Swin Transformer is replaced
with Sub-Pixel Partitioning. The patch partitioning module
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splits an input multi-spectral image into non-overlapping
patches, like ViT and Swin. In the Sub-Pixel Transformer,
individual patches are treated as ”tokens” with their fea-
tures constructed by concatenating the raw values from five
multi-spectral bands. Assuming a patch size of 4× 4, each
patch’s feature dimension is calculated as 4 × 4 × 5 = 80.
To project these raw-valued features into an arbitrary di-
mension represented as C, a linear embedding layer is ap-
plied. The resulting patch tokens, along with their embed-
ded features, are processed through multiple Swin Trans-
former blocks, which have modified self-attention compu-
tations.

The proposed Sub-Pixel Transformer architecture, ap-
plies several Transformer blocks with modified self-
attention computation to patch tokens. To create a hierarchi-
cal representation, patch merging layers are used to reduce
the number of tokens as the network goes deeper in a sim-
ilar fashion as Swin Transformer. The first patch merging
layer concatenates the features of neighboring 2×2 patches
and applies a linear layer to the concatenated features. This
reduces the number of tokens by a factor of 4 downsam-
pling of resolution) and sets the output dimension to 2C.
More Transformer blocks are then applied for feature trans-
formation, keeping the resolution at H

8 × W
8 . This process

is repeated twice for ”Stage 3” and ”Stage 4,” resulting in
output resolutions of H

16 × W
16 and H

32 × W
32 , respectively.

By utilizing these stages, the Swin Transformer generates a
hierarchical representation with the same feature map reso-
lutions as traditional convolutional networks like VGG and
ResNet. This allows the proposed architecture to easily re-
place the backbone networks in existing methods for vari-
ous vision tasks.

4.2.1 Sub-Pixel Transformer block

Different from the conventional multi-head self attention
(MSA) module, swin transformer block [7] is constructed
based on shifted windows. In Figure 3, two consecutive
Sub-Pixel transformer blocks are presented. Each Sub-Pixel
transformer block is composed of LayerNorm (LN) layer,
multi-head self attention module, residual connection and 2-
layer MLP with GELU non-linearity. The based multi-head
self attention (W-MSA) module and the Sub-Pixel Multi-
head Self Attention (SP-MSA) module are applied in the two
successive transformer blocks, respectively.

4.2.2 Sub-Pixel Window based Self-Attention

The use of sub-pixel shuffling window-based self-attention
in the Swin Transformer instead of shifted window can be
justified by several reasons:

• Reduced Information Loss: The sub-pixel shuffling
window allows for more precise alignment of patches

during the self-attention process. Unlike the shifted
window approach, which shifts the patches by a fixed
stride, the sub-pixel shuffling window rearranges the
patches in a way that minimizes information loss, as
illustrated in Figure 3. This ensures that the attention
mechanism can capture fine-grained details and pre-
serve spatial information more effectively.

• Enhanced Local Context: By shuffling the patches us-
ing sub-pixel shuffling, the self-attention mechanism
can capture local context more accurately. This is be-
cause neighboring patches, which contain related in-
formation, are placed closer to each other, allowing
the attention mechanism to better capture the depen-
dencies and relationships within the local context. The
shifted window approach may introduce misalignment
and reduce the ability to capture precise local relation-
ships.

• Improved Global Context: The sub-pixel shuffling
window also facilitates the capture of global context
in the self-attention mechanism. As the patches are re-
arranged, the attention mechanism can effectively at-
tend to patches that are spatially distant but semanti-
cally related, as illustrated in Figure 3. This enables
the model to capture long-range dependencies and in-
corporate global context information into the represen-
tation learning process.

• Better Integration with Hierarchical Structure: The
sub-pixel shuffling window aligns well with the hier-
archical structure of the Swin Transformer. As the net-
work progresses through different stages, the patches
are merged and the resolution decreases. The use of
sub-pixel shuffling allows for a consistent alignment of
patches across different stages, maintaining the coher-
ence of attention patterns and facilitating information
flow between different levels of the hierarchy.

Overall, the sub-pixel shuffling window-based self-
attention offers improved information preservation, en-
hanced local and global context modeling, and better inte-
gration with the hierarchical structure of the network. These
advantages justify its use over the shifted window approach.

The Sub-Pixel Transformer blocks, depicted in Figure 3
are computed as:

Ẑl = W-MSA (LN(Zl−1)) + Zl−1,

Zl = MLP (LN(Ẑl)) + Ẑl,

Ẑl+1 = SP-MSA (LN(Zl)) + Zl,

Zl+1 = MLP (LN(Ẑl+1)) + Ẑl+1

(1)

where ẑl and zl denote the output features of the W-
MSA and SP-MSA modules and the MLP module for block
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Figure 3. Left: Regular window-based and Sub-Pixel partitioning (spectral and spatial), and Right: A pair of Sub-Pixel Transformer
Blocks.

l, respectively. W-MSA and SP-MSA denote window based
multi-head self-attention (spatial and spectral) using regular
and sub-pixel partitioning configurations, respectively. The
sub-pixel partitioning approach introduces connections be-
tween neighboring non-overlapping windows in the previ-
ous layer and is found to be effective in image classification,
object detection, and semantic segmentation, as discussed
in Sec. 5.

5. Experimental Results

5.1. Experimental Setup

5.1.1 Dataset

We created a dataset for landcover classification from
Google Earth Engine (GEE). We extracted our input bands
from several satellites as described in 3, and obtained the
landcover labels from the Copernicus CORINE which con-
sists of 44 landcover classes. We used a separate set of
countries for training and test sets with around 1m patches
for training and 100k for test purposes. These bands were
selected to capture different aspects of the target environ-
ment and enable effective training of our model.

5.1.2 Implementation Details

The proposed SubPixel Trans. model is implemented based
on Python 3.8 and Pytorch1.8.0. In order to enhance the
diversity of the training data, a comprehensive range of data
augmentation techniques, including flips, scaling, transla-
tion, brightness, Gaussian noise, synthetic clouds, and rota-
tions, are applied to all training patches. The input image
size and patch size are set as 224 × 224 and 128, respec-
tively. We train our model on four NVIDIA Tesla T4 with
a total of 64GB memory on Google cloud in northamerica-

northeast2-Toronto region. During the training period, the
SGD optimizer with momentum 0.9 for 100 epochs using a
cosine decay learning rate scheduler and 20 epochs of linear
warm-up.

5.2. Quantitative Results

5.2.1 Landcover Classification Performance

To highlight the effectiveness of the proposed model,
several widely adopted architectures such as Baseline
UNet [12] and TernausNet [6] (winner of the Carvana chal-
lenge), PSPNet [16], DeepLab V3 [3], Blast-Net [10], Trans
UNet [2], and Swin UNet [1] are considered. Table 1 com-
pares the performance of the proposed Sub-Pixel Trans-
former model to that of other models considered in this
study. Both the model performance and the ecological as-
pects of the experimentation are presented. The Dice Score
or F1 values for landcover classification indicates the ac-
curacy of the models in delineating the regions. Both the
mean and standard deviation of Dice Score or F1 are re-
ported, providing insights into the consistency and reliabil-
ity of the segmentation results. Additionally, the table in-
cludes information on the Energy Consumption (EC) and
carbon footprint (CO2e) of the models. This transparency
is important to promote sustainable machine learning appli-
cations by considering the environmental impact of training
and running the models.

5.2.2 Ablution Study

Furthermore, in our study of the proposed Sub-Pixel Trans-
former model, we investigated the individual contributions
of its two key components: Sub-Pixel Window based parti-
tioning and the spectral self-attention. To highlight the sig-
nificance of these components, we conducted two separate
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Table 1. landcover classification performance comparison (Dice
Score or F1 %). Best results are in bold black and second-best
ones are in teal.

Models Size Dice ± stdev EC (kWh) CO2e (lbs)

UNet [12] 6m 79.83 ±2.8 42.0 40.1
TernausNet [6] 10m 81.98 ±4.9 58.2 55.7
PSPNet [16] 35m 84.56 ±5.0 51.5 49.1
DeepLab V3 [3] 40m 85.25 ±4.7 48.1 45.99
Blast-Net [10] 25m 85.85 ±4.8 43.3 41.4
Trans UNet [2] 42m 86.37 ±4.4 57.8 55.2
Swin UNet [1] 29m 87.75 ±4.3 54.8 52.3

Ours w/o Sub-Pixel 17m 88.19 ±3.9 40.7 38.9
Ours w/o Spectral 16m 89.01 ±3.7 43.7 41.8
Ours 18m 89.97 ±2.9 40.5 38.6

Table 2. Pairwise comparisons between models using the Tukey’s
HSD test.

Model 1 Model 2 p-value (adj) Reject

Ours UNet [12] 0.0000 True
Ours TernausNet [6] 0.0000 True
Ours PSPNet [16] 0.0010 True
Ours DeepLab V3 [3] 0.0019 True
Ours Blast-Net [10] 0.0024 True
Ours ViT [5] 0.0041 True
Ours Trans UNet [2] 0.0052 True
Ours Swin UNet [1] 0.2765 False

experiments, eliminating one component at a time.

5.2.3 Statistical Significance

To validate the significance of these differences, we em-
ployed statistical tests, specifically an analysis of variance
(ANOVA) followed by Tukey’s Honestly Significant Dif-
ference (HSD) test. The post hoc test results provided in
Figure 2 offer insights into which pairs of methods have
statistically significant performance differences and which
differences might be considered marginal. While certain
performance differences may not exhibit statistical signifi-
cance, it’s important to note that even modest improvements
hold the potential to provide insights in the critical context
of climate change.

5.2.4 Performance and Training Size

Figure 4 illustrates the performance of different models con-
cerning the training ratio, which represents the proportion
of available data used for training. This visualization show-
cases how well the models can learn from limited data.
Remarkably, some models demonstrate exceptional learn-
ing capabilities even with minimal training data, suggesting

their potential for efficient knowledge extraction and utiliza-
tion. On the other hand, the performance of DCNNs tends
to saturate earlier in comparison. The vision transformer-
based models [1,2], despite benefiting from 2-3 times more
data availability, still face certain limitations. However, the
proposed SubPixel Trans. model outperforms all the other
considered models across all training ratios, signifying its
superiority in handling limited data scenarios.

Figure 4. Performance comparison of models with different size
training set.

Figure 5. Performance versus training compute for different mod-
els: Vision Transformers [5], Swin UNet [1], Trans UNet [2], and
our Sub-Pixel Trans.

5.2.5 Performance Gains and Computational De-
mands

Our experimental results demonstrate the effectiveness of
the Sub-Pixel Transformer vision transformer in improving
wildfire detection accuracy, particularly in scenarios where
long-range dependencies are essential. However, it is im-
portant to consider the potential trade-offs introduced by
the increased computational complexity compared to other
models considered. Figure 5 contains the performance ver-
sus total training compute. First, it can be observed that
Sub-Pixel Transformer outperforms ViT and Trans UNet
on the performance/compute trade-off. Second, Sub-Pixel
Transformer uses approximately 10% − 15% more com-
pute to attain the same performance as Swin UNet. Third,
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at larger computational budgets Sub-Pixel Transformer out-
performs Swin UNet by 2% in Dice Score, but that improve-
ment comes with 8% more computational demand.

5.2.6 Latency and Throughput

Furthermore, the throughput in terms of images processed
per second (image/s) is measured. This metric provides in-
sights into the model’s efficiency during inference which
is particularly relevant to real-time applications such as
wildfire detection. It turns out that our Sub-Pixel Trans-
former vision transformer achieves an inference throughput
of 681.8 images/sec, surpassing the performance of the ViT
model, which achieves 632.1 images/sec by a margin of 50.
Furthermore, the Sub-Pixel Transformer falls short of Swin
UNet (with 715.3 images/sec.) by a mere 35 images/sec.

5.3. Qualitative Results

Figure 6 presents the qualitative results comparing
the landcover classification maps generated by the pro-
posed Sub-Pixel Transformer model and those of Trans
UNet [2] and Swin UNet [1]. The figure consists of four
rows, each representing an entire test country. The first
column displays false-color Landsat-8 patches and the sec-
ond column shows the landcover ground truth data obtained
from the Copernicus CORINE. Columns c and d showcase
the classification error of Swin UNet [1] and our proposed
vision transformer, respectively. Each black pixel repre-
sents a wrong prediction (false positive and false negative).
The qualitative results provide a visual assessment of the
model’s performance in accurately delineating landcover
errors and highlight the effectiveness of the proposed ap-
proach in learning from multispectral images for landcover
classification task.

6. Conclusion
Our proposed Sub-Pixel Transformer architecture

demonstrated improved accuracy and efficiency in mod-
eling complex spatial patterns and spectral relationships
present in multispectral imagery. The model’s ability to
capture global dependencies and long-range interactions
contributed to its success in handling multispectral data
with limited training samples. While we focused on
landcover classification to gain better insights on and
monitor the impacts of climate change, we recognize the
importance of adapting and assessing our approach for
other multi-spectral image processing tasks with varying
characteristics. Future research directions may include
exploring ways to further enhance the model’s perfor-
mance in handling limited data scenarios and extending
its application to other remote sensing tasks. Additionally,
investigating techniques for unsupervised or weakly super-
vised learning with vision transformers could unlock new

possibilities for landcover classification and environmental
analysis.
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