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Abstract

Semi-supervised learning approaches train on small sets
of labeled data in addition to large sets of unlabeled data.
Self-training is a semi-supervised teacher-student approach
that often suffers from “confirmation bias” that occurs
when the student model repeatedly overfits to incorrect
pseudo-labels given by the teacher model for the unlabeled
data. This bias impedes improvements in pseudo-label ac-
curacy across self-training iterations, leading to unwanted
saturation in model performance after just a few iterations.
In this work, we study multiple design choices to improve
the Noisy Student self-training pipeline and reduce con-
firmation bias. We showed that our proposed Weighted
SplitBatch Sampler and Dataset-Adaptive Techniques for
Model Calibration and Entropy-Based Pseudo-Label Se-
lection provided performance gains over existing design
choices across multiple datasets. Finally, we also study the
extendability of our enhanced approach to Open Set unla-
beled data (containing classes not seen in labeled data).
The source code can be licensed for use via email.

1. Introduction
In today’s data-driven world, deep learning techniques

have become the predominant approach for computer vi-
sion tasks (such as image classification and object detec-
tion). Most state-of-the-art (SOTA) deep learning models
use large-scale labeled datasets (e.g., ImageNet [7], JFT-
3B [38], Instagram-3.5B [19]), a few of which are propri-
etary and cannot be leveraged by the public. It is challeng-
ing in practice to curate and annotate large labeled real-
world datasets across different data domains and learning
tasks. However, it is much easier to collect large quan-
tities of unlabeled data in real-world domains (e.g., re-
mote sensing imagery [20, 25], medical imagery [12, 32]).
Semi-supervised learning (SSL) techniques are designed to
jointly leverage small labeled datasets along with large un-
labeled datasets to improve model performance.

Self-training (ST) [26–28,36] is an iterative SSL method

where a “teacher” model trained on the labeled data anno-
tates the unlabeled data with pseudo-labels. The subsequent
learning of the “student” model uses both the labeled and
pseudo-labeled data. This process is iterated, as shown in
Fig. 1. The major caveat of pseudo-labeling is the intro-
duction of noisy pseudo-labels from incorrect predictions
by the teacher. These noisy pseudo-labels accumulate over
time, resulting in the model developing a bias toward incor-
rectly predicted pseudo-labels. This issue is known as the
“confirmation bias” problem [1].

SSL techniques that learn from limited labeled data em-
ploy consistency regularization techniques [2, 3, 16, 29, 33]
to reduce confirmation bias. Another popular method for
reducing confirmation bias when enough labeled data is
available is the NoisyStudent (NS) [34] pseudo-labeling
approach that uses softmax confidence thresholding to fil-
ter out under-confident pseudo-label predictions. This ap-
proach also found that training a student model larger than
the initial teacher made the student more robust to handle
noisy pseudo-labels. In this paper, we focus on the NS iter-
ative learning pipeline and explore multiple design choices
and variations for NS to reduce confirmation bias.

We analyze multiple SSL design choices and study novel
ways of integrating them into the NS pipeline. Our pro-
posed Weighted SplitBatch Sampling, Teacher Model
Calibration, and Entropy-Based Pseudo-Label Selection
can be integrated into the data-loading stage of training to
adaptively determine optimal hyperparameters settings for
our design choices before training, unlike previous works
[2, 3, 29] that require costly hyperparameter tuning train-
ing steps. The proposed design choices are modular and
can be easily applied to enhance any pseudo-labeling-based
SSL methods. We demonstrate using the proposed design
choices to enhance NS across multiple benchmark datasets.
Lastly, we present a practical scenario using real-world
Open Set unlabeled data that contains data belonging to the
target training classes and data from additional/unwanted
classes. We demonstrate our enhanced ST technique with
an Open Set Filtering module to improve performance even
when trained with challenging Open Set data.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 1. Basic iterative self-training pipeline.

2. Related Work

SSL is an active field of research in deep learning [23,
24,40]. Consistency regularization and pseudo-labeling are
some of the most commonly used SSL methods to learn
from large sets of unlabeled data over recent years.

Consistency regularization approaches such as FixMatch
[29], MixMatch [3], and ReMixMatch [2] follow the data
manifold assumption that perturbations applied to the in-
puts, such as data augmentation, should not increase the
likelihood of the predicted labels switching classes. These
methods minimize the difference in predictions between
an unlabeled sample and its perturbed counterpart. In
[34], they discussed that consistency regularization meth-
ods work better in scarcely labeled data scenarios as they
simultaneously learn to generate target predictions while
maintaining the consistency requirements described above.
However, teacher-student pseudo-labeling methods are pre-
ferred when the given labeled data is sufficient to train a su-
pervised model for generating quality pseudo-labels (unlike
consistency regularization methods). In our work, we focus
on such teacher-student pseudo-labeling SSL methods.

The ST pseudo-labeling approach is one of the oldest
and most widely used SSL approaches. In the NS [34]
approach, the initial teacher model is trained on labeled
data and then used to generate pseudo-labels for the unla-
beled data. The student model is trained on both datasets
(labeled + pseudo-labeled). They also found that inject-
ing model noise (Dropout [30]) and data noise (RandAug-
ment [5]) into the student training made it more robust to
noisy pseudo-labels. NS also employed a student model
larger than the original teacher to improve generalization in
their experiments. They iterated the above steps using the
student model from the previous iteration as the new teacher
model, as shown in Fig. 1. We adapt this popular iterative
teacher-student ST pseudo-labeling pipeline in our work.

There have been various approaches introduced to help
reduce confirmation bias [1, 31] in SSL methods. In [9],
a regularization term was added to the loss function to en-
courage the model to make confident low-entropy pseudo-
label predictions. In [34], they used user-specified soft-
max thresholds on pseudo-labels to filter out noisy low-

confidence predictions that can increase confirmation bias.
In [16], a Gaussian mixture model was applied to divide the
training data into clean and noisy sets using a per-sample
loss distribution. They trained two networks where each
network used the other network’s divided set to reduce con-
firmation bias. In [35], confidence thresholding was used
to separate the unlabeled data into clean in-distribution and
noisy out-of-distribution data. They applied a class-aware
clustering module for the in-distribution pseudo-labeled
data along with a contrastive learning module to mitigate
the noise in the out-of-distribution pseudo-labeled data. The
modularity of our enhanced approach could enable the use
of it as the drop-in pseudo-labeling module in [35] to re-
duce confirmation bias further. Our work proposes dataset-
adaptive thresholding methods to filter out noisy pseudo-
labels instead of manually fine-tuning hyperparameters for
each dataset.

In [1], substantial data augmentation and regulariza-
tion policies such as RandAugment [5], Mixup [39], and
Dropout [30] were shown to minimize the effect of confir-
mation bias. Following [1], we apply an improved learnable
version of Mixup called SAMix [17] in this work to help
minimize confirmation bias. SAMix saliently mixes im-
ages by learning the mixing hyperparameters during train-
ing, eliminating the tuning stage for Mixup hyperparame-
ters. Most of the above methods require complex modifi-
cations to the training architecture and optimization strate-
gies to mitigate the problem of confirmation bias. Overall,
we propose modular enhancements to fundamental training
components that can adapt to existing ST pipelines to im-
prove SSL performance.

3. Design Choices within Self-Training
We aim to enhance the baseline NS approach by

modifying different stages of the pipeline to generate and
select better pseudo-labels (having higher pseudo-label
accuracy) to help reduce confirmation bias. Let the training
data D be composed of the labeled subset with pairs
Dl = {(xi, yi)}Nl

i=1 where xi denotes a labeled sample
(e.g., image) and yi denotes its corresponding ground truth
label. The unlabeled subset contains data Du = {(x̃i)}Nu

i=1

with no labels. A pseudo-label predicted for an unlabeled
sample x̃i will be denoted as ỹi. Let fT and fS denote the
teacher and student models, respectively. We now propose
the following comparisons of possible design choices for
the fundamental ST components to study how the best
components can be integrated to improve the NS baseline.

Hard vs. Soft Loss
Supervised deep learning models trained with one-hot
ground truth labels generally use a categorical cross-
entropy loss known as a hard loss (using a known, single
ground truth label for each example and associated softmax
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prediction). ST techniques must handle both clean ground
truth labels and noisy pseudo-labels generated from the
softmax prediction vectors of the teacher model. Previous
work [1, 34] has shown that using a soft loss (used in NS)
with the entire softmax vector of pseudo-label predictions
as targets in a full cross-entropy loss works better than a
hard loss with a one-hot categorical distribution over all
training classes, helping to reduce confirmation bias.

Student Initialization
ST techniques train a new student model for every iteration.
Two main methods exist for initializing the student model
for each iteration. Fresh-training (used in NS) initiates
every student model from scratch (randomly initialized
model weights). Conversely, fine-tuning uses the weights
of the model from any previous iterations with the best
accuracy (on validation data) to initialize the student model
and then fine-tune the weights during training.

Labeled/Pseudo-labeled Mini-Batch
Student models in ST learn from the labeled ground truth
subset and the unlabeled subset with noisy pseudo-labels.
ST commonly uses a randomly collected (uniform) mini-
batch (used in NS) that tends to overfit due to their bias
towards selecting a larger number of noisy pseudo-labeled
than labeled data during training, as the unlabeled sub-
set sizes are usually much larger than the labeled subset.
We propose a custom SplitBatch Sampler that collects a
user-specified split of labeled and pseudo-labeled examples
for every mini-batch. Our approach uses bootstrapping to
over-sample clean labeled examples that provide an addi-
tional regularization effect by reducing overfitting on the
noisy pseudo-labels. The user controls the hyperparameter
that sets the ratio of labeled to pseudo-labeled examples in
a mini-batch, making the approach adaptive to differently
sized labeled/pseudo-labeled subsets. For example, a larger
ratio of labeled to pseudo-labeled examples can be used for
datasets having a large number of labeled samples.

With a split batch of labeled and pseudo-label examples,
the loss function should similarly engage a split loss. In this
work, we combine a labeled loss Llab and a pseudo-labeled
loss Lpslab (average losses across respective mini-batches)
with equal contributions into a custom MixedLoss function

Lmix = λbLlab + (1− λb)Lpslab (1)

where λb is set to 0.5 to balance the loss between the
labeled and pseudo-labeled examples in all experiments.

Sampling Techniques
ST methods can easily generate class-unbalanced and low-
confidence pseudo-labeled subsets that can also increase
confirmation bias. NS uses a naı̈ve softmax-thresholded
class balancing technique that first uses the uncalibrated

softmax scores of pseudo-label predictions to threshold
high-confidence predictions (softmax scores for the argmax
class > 0.3). NS then samples a user-specified number of
thresholded pseudo-labeled examples that have the highest
softmax confidence across every class, oversampling ex-
amples from classes not having enough pseudo-labeled ex-
amples (less than the user-specified count per-class). This
method requires manually specifying a softmax threshold
and per-class sampling count for every dataset.

Our extended Weighted SplitBatch sampler adaptively
re-weights and samples pseudo-labeled examples for each
dataset using two different sample weightings. The first
weighting uses inverted per-class counts ( 1

Nc
where Nc is

the number of pseudo-labeled examples belonging to class
c). This method assigns larger weights to classes with a
lower number of pseudo-labels, which thus will be oversam-
pled during training. The second set of sample weightings
uses the per-class normalized softmax confidence scores

normalizedSoftmax =
max(ỹ)

max(Sc)
(2)

where ỹ is the complete pseudo-label softmax vector
prediction by the teacher model having argmax pre-
dicted class c for a given unlabeled sample x̃, and
Sc = {max(ỹ1), ...,max(ỹNc

)} is the set of max softmax
scores for all pseudo-label predictions belonging to class
c that scale the weights per-class to avoid oversampling
only from pseudo-labeled predictions with higher softmax
confidence that may lead to underfitting on examples from
harder-to-classify classes which will not be sampled often.
We average the two weights (class-counts and normalized
softmax-confidence-based weights) to adaptively obtain
the final sampling weights assigned to all training
samples based on pseudo-label counts and confidences
without needing any expensive hyperparameter re-tuning
when changing datasets.

Pseudo-Label Selection
NS uses the naı̈ve softmax thresholding approach (de-
scribed above), employing softmax scores as a metric to de-
termine pseudo-label confidence. However, modern deep
neural networks are known to be poorly calibrated [10],
implying that the softmax prediction probabilities do not
accurately represent the true likelihood of the predictions.
Hence, the uncalibrated softmax score is a poor confidence
metric for rejecting noisy samples and thus can increase
confirmation bias.

Alternatively, we propose adding a temperature-scaling
calibration [10] step in the ST pipeline to the current teacher
model for generating calibrated pseudo-label softmax pre-
dictions. We use a grid search over 400 linearly spaced tem-
perature values between 0.05 and 20 and choose the opti-
mal value, denoted by τ , with the lowest Expected Calibra-
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tion Error [21] on the validation data. We then apply τ to
soften/sharpen the softmax pseudo-label predictions of the
teacher model to get a full softmax vector of pseudo-labels

ỹ = softmax

(
fT (x̃)

τ

)
(3)

where fT (x̃) denotes the output logits of the teacher model
for a given unlabeled sample x̃ and ỹ is the calibrated
pseudo-label softmax vector.

We next propose using entropy thresholding of cal-
ibrated softmax pseudo-label vectors rather than simply
thresholding the softmax score for the argmax class to
determine if the pseudo-label is acceptable. We calculate
the normalized entropy (dividing by log (C) for a dataset
containing C classes) of the calibrated pseudo-labels of
validation data and then grid-search over 500 thresholds
between 0 and 1. We then calculate the true-positive rate
(TPR) and false-positive rate (FPR) for each entropy thresh-
old on the validation data. We perform ROC analysis [8]
by plotting the TPR against the FPR at the various thresh-
olds and selecting the optimal threshold with the lowest
Euclidean distance to the top left corner (optimal/perfect
classification) of the ROC curve. This method for pseudo-
label selection can adapt to different datasets, unlike the
naı̈ve approach of using hyperparameter-tuning to select
softmax thresholds for each dataset.

Teacher Size
Lastly, the NS approach uses a smaller-sized initial
teacher model trained on clean labels and a larger stu-
dent model (and thus a larger subsequent teacher) trained
jointly on labeled and pseudo-labeled examples. As previ-
ously mentioned, the NS model incorporates model noise
(Dropout) and data noise (strong data augmentation tech-
niques) to reduce confirmation bias. A natural alterna-
tive to their approach is a same-sized teacher-student
model, where the teacher and student have the same
model size but use stronger data augmentation techniques
(SAMix+RandAugment) to similarly reduce confirmation
bias. We compare both the size settings described above.

Given the above-listed design choice alternatives, we
next compare them in a sequential greedy experimental set-
ting to pick the best design to enhance the basic ST pipeline.

4. Experiments and Analysis
We aim to create an improved ST model by exploring

the previously described design choices using the sequen-
tial strategy used by [18], where a linear series of experi-
ments are employed to modernize a baseline model by aug-
menting the model with the best component obtained after
each design choice comparison. Similarly, we start from
the basic ST iterative learning pipeline, follow the roadmap

described in Table 1, and choose the best design choices
sequentially using a majority voting selection across multi-
ple benchmark datasets to create an enhanced ST approach
(rather than evaluating all possible combinations of design
choices). We designed the order of experiments, starting
from fundamental components (such as loss functions) and
moving toward finer settings (such as sampling techniques
and model sizes). We analyze in detail and discuss the in-
sights gained from each design choice component at the
end of every individual experimental comparison section to
study the effects of each component and how they inter-
act with the previously selected design choices. Finally, we
evaluate the generalizability of the enhanced approach and
compare it to the existing NS approach.

4.1. Datasets

We created custom labeled/unlabeled subsets from vari-
ous benchmark datasets (SVHN [22], CIFAR-10 [14], and
CIFAR-100 [14]) following the standard subset splits from
previous SSL work [1], as shown at the top of Table 2.
For each dataset, we also created a validation subset with
ground-truth labels for hyperparameter tuning and evaluat-
ing model performance during training and a corresponding
test subset for evaluating model inference. We first eval-
uated the experiments described in Table 1 on the three
datasets and constructed the enhanced approach using the
best component choices. We further evaluated the gener-
alization performance of the resulting enhanced approach
with different labeled/unlabeled dataset splits and model
sizes on additional larger datasets (CINIC-10 [6], Tiny-
ImageNet [15]) as shown at the bottom of Table 2. Note
that every dataset except SVHN is class-balanced. Finally,
we extended the enhanced approach with a basic Open
Set detection technique to help filter out (suppress) addi-
tional/unwanted classes in a custom-built Open Set version
of CIFAR-10/100 with 110 separate classes.

4.2. Comparison Roadmap

We trained a supervised baseline model for each dataset
on only the labeled subset for three different randomly
initialized runs for each experiment (Exp. 1 to 6). We
reported the mean and standard deviation of the best test
set score obtained across three student iterations (unless
otherwise mentioned for experiments below). We used a
ResNet(RN)-18 [13] for SVHN and a WideResNet(WRN)
28-2 [37] + SAMix for the CIFAR datasets unless other-
wise mentioned. SAMix was not used on SVHN as certain
mixing data augmentation policies were expected not to
be appropriate for digit classification datasets (e.g., crops,
flips). We also applied RandAugment with the hyperparam-
eter settings for each dataset given in the original work [5].
RandomCrop and RandomHorizontalFlip were included in
the data augmentation policy for the CIFAR datasets only.
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Experiment Description
Exp 1. Hard vs. Soft Loss One-Hot Categorical Cross-Entropy Loss vs. Soft Cross-Entropy Loss
Exp 2. Student Initialization Training from Scratch vs. Fine-tuning Student Iterations
Exp 3. Lab./Pseudo-lab. Mini-Batch Random Mini-batch (Mixed) vs. SplitBatch (Labeled + Pseudo-labeled)
Exp 4. Sampling Techniques Naı̈ve Softmax-Thresholded Class Balancing vs. Weighted SplitBatch Sampling
Exp 5. Pseudo-Label Selection Naı̈ve Softmax Thresholding vs. Calibrated Entropy Thresholding
Exp 6. Teacher Size Smaller vs. SameSized Teacher

Table 1. Experimental comparison roadmap.

Dataset (Classes) Lab UL Val Test
SVHN (10) 1K 70K 1K 26K

CIFAR-10 (10) 4K 42K 4K 10K
CIFAR-100 (100) 10K 30K 10K 10K

CINIC-10 (10) 20K 150K 10K 90K
TinyImageNet (200) 20K 60K 20K 10K

Table 2. Dataset sizes. (Lab: Labeled, UL: Unlabeled, Val: Vali-
dation, Test: Test set sizes)

Datasets Mean Teacher Acc.
SVHN 1K 75.69±0.51

CIFAR-10 4K 83.66±0.11

CIFAR-100 10K 63.9±0.29

Table 3. Labeled subset supervised baseline results.

We trained the initial teacher model for 400 epochs on
the labeled subsets of all datasets following the suggested
training and hyperparameter settings for SAMix [16]. Each
student iteration was trained for 100 epochs (epoch for
student models corresponds to one pass through labeled
and pseudo-labeled examples). We used a batch size of
100 for all experiments. Table 3 shows the mean initial
teacher accuracy trained only using the labeled subset
(these scores are expected to be lower than fully-supervised
SOTA benchmarks that use the complete datasets).

Exp 1. Hard vs. Soft Loss
Table 4 shows the comparison results between ST models
using soft loss vs. hard loss. We can see that soft loss
employed by the NS approach performs better on SVHN
and CIFAR-10. Both losses degrade the performance on
CIFAR-100 from the supervised baseline because the basic
ST pipeline can easily overfit to the noisier CIFAR-100
pseudo-labels (CIFAR-100 has the worst initial teacher in
Table 3, which would generate the noisiest pseudo-labels).
By 2-1 majority vote, we apply the soft loss (cross-entropy
loss with soft targets) henceforth in our experiments that
reduce confirmation bias by softening the noisy targets.

Exp 2. Student Initialization
We next evaluated fresh-training vs. fine-tuning of ST

Datasets Mean Student Acc.
Hard Loss Soft Loss

SVHN 1K 80.96±0.42 81.22±1.12*
CIFAR-10 4K 85.15±0.07 86.85±0.23*

CIFAR-100 10K 59.24±0.35 62.24±0.36

Table 4. Hard vs. Soft loss results. (Bold: Best result in table,
*: Current best result for each dataset. Applies to Tables 4-11 )

Datasets Mean Student Acc.
Fresh-Train Fine-Tune

SVHN 1K 81.22±1.12 81.55±0.12*
CIFAR-10 4K 86.85±0.23 87.45±0.09*

CIFAR-100 10K 62.24±0.36 65.86±0.33*
Table 5. Student initialization comparison results.

models across training iterations. Table 5 shows that fine-
tuning improved ST performance across all datasets com-
pared to the fresh-training approach used in NS. Hence
we use fine-tuning for the remaining set of experiments as
carrying over the learned weights from the initial cleanly
trained teacher model during ST is beneficial.

Exp 3. Labeled/Pseudo-labeled Mini-Batch
Table 6 shows the results of using the default random
mini-batch approach used in NS against our proposed
SplitBatch approach and the associated MixedLoss func-
tion Lmix. For SVHN and CIFAR-10, which have
small amounts of labeled examples, we used a 20/80%
labeled/pseudo-labeled batch split, whereas, for CIFAR-
100, we used a 40/60% split as it has a larger number of
labeled examples. We use our better-performing proposed
SplitBatch approach along with the above split percentages
going forward, which reduces confirmation bias by over-
sampling (sampling with replacement) clean labeled exam-
ples in every mini-batch providing additional regularization
that reduces overfitting on noisy pseudo-labels.

Exp 4. Sampling Techniques
We compared the naı̈ve softmax-thresholded class bal-
ancing technique employed by the NS approach with our
proposed weighted SplitBatch sampler (employs class-
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Datasets Mean Student Acc.
Random SplitBatch

SVHN 1K 81.55±0.12 81.68±0.93*
CIFAR-10 4K 87.45±0.09 87.61±0.12*

CIFAR-100 10K 65.86±0.33 65.90±0.15*
Table 6. Labeled/Pseudo-labeled mini-batch comparison results.

Datasets Mean Student Acc.
Naı̈ve WeightedSplitBatch

SVHN 1K 83.30±0.84* 81.07±0.66

CIFAR-10 4K 86.56±0.33 87.95±0.09*
CIFAR-100 10K 68.47±0.29 69.53±0.15*

Table 7. Sampling techniques comparison results.

length balancing and confidence weighting using the same
splits from the previous experiment). The student itera-
tions henceforth are trained for 150 epochs (instead of 100).
These methods need more epochs to converge as they work
on thresholded/oversampled pseudo-labeled subsets (previ-
ous experiments used the complete set of pseudo-labeled
data). Unlike NS, which used a softmax threshold of 0.3 on
1000-class ImageNet, we used a larger threshold of 0.5 to
threshold noisy pseudo-labeled data as the maximum num-
ber of classes is only 100 in our datasets, resulting in higher
softmax values for the argmax classes (0.5 is a natural deci-
sion boundary between low and high confidence). In this
experiment, we employed our weighted SplitBatch sam-
pling without thresholding pseudo-labeled data. Table 7
shows that our weighted SplitBatch sampler performed bet-
ter on the CIFAR datasets. In contrast, the naı̈ve method,
which uses confidence-sorted sampling, is better on the eas-
ier SVHN dataset that had more highly confident pseudo-
labels. However, the naı̈ve method samples more incor-
rect high-confidence pseudo-labels on CIFAR datasets than
SVHN, leading to performance degradation on CIFAR data.
By 2-1 majority vote, we employ our novel Weighted Split-
Batch sampler in the ST pipeline henceforth as it generates
dataset-adaptive weights for sampling class-balanced and
confidence-calibrated pseudo-labels without needing any
hyperparameter-tuning training steps.

Exp 5. Pseudo-Label Selection
We compared the naı̈ve softmax-thresholding ap-
proach used by NS from the previous experiment with
our proposed Dataset-Adaptive Calibrated Entropy
Thresholding for pseudo-label selection based on opti-
mal temperature and entropy thresholds returned by our
dataset-adaptive grid search methods on validation data,
combined with our weighted SplitBatch sampling. Table
8 shows that our enhanced approach performed better
than naı̈ve softmax-thresholding on all datasets. We also
improved upon the SVHN naı̈ve sampling scores from the

Datasets Mean Student Acc.
Softmax-Thresh. Entropy-Thresh.

SVHN 1K 83.30±0.84 84.28±0.73*
CIFAR-10 4K 86.56±0.33 88.52±0.25*

CIFAR-100 10K 68.47±0.29 69.84±0.10*
Table 8. Pseudo-label selection results. (Thresh: Thresholding)

previous experiment, demonstrating the efficacy of using
our weighted SplitBatch sampler and calibrated entropy
thresholding in tandem. Hereafter, we apply our proposed
calibrated entropy thresholding method that reduces
confirmation bias by employing the calibrated entropy
thresholds to filter out noisy pseudo-labels.

Exp 6. Teacher Size
Table 9 shows the results of employing differently sized
teacher models in the ST pipeline. We found that the NS
approach of using a smaller teacher (RN18 for SVHN and
WRN28-2 for CIFAR-10 and CIFAR-100) and a larger
student (RN34 for SVHN and WRN40-2 for CIFAR-10 and
CIFAR-100) with model noise (Dropout) is unnecessary
once we add our selected design choices to reduce confir-
mation bias. The results in Table 9 compare NS with the
SmallerSameSized (SSS: using the smaller teacher model
size as the student model size) and LargerSameSized (LSS:
using the larger teacher model size as the student model
size) approaches. We can see that SSS models performed
on par on SVHN and slightly better on CIFAR than the NS
approach, whereas the LSS approach improved accuracy
across all datasets. Hence we use larger same-sized
teacher-student models that reduce confirmation bias by
employing stronger data augmentation, which provides
additional regularization to subdue noisy pseudo-labels.

Final Model
We aggregated the best components, selected sequentially
by majority voting on the three datasets, which resulted
in selecting (1) Soft Loss, (2) Fine-tuning, (3) Proposed
Weighted SplitBatch Sampler (w/ associated MixedLoss
Function), (5) Proposed Calibrated Entropy Thresholding,
and (6) Larger Same-Sized Teacher-Student models. The
resulting enhanced approach is shown in Fig. 2. We refer
to this final model with optimal ST design choices as the
enhanced self-train (EST) approach.

4.3. Generalizability of EST

We evaluated how the selected best components in
our EST model interact and work together by studying
the model’s generalizability to different labeled/unlabeled
subset sizes and larger model architectures and datasets.
We reported results from a single run for each experiment.
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Datasets Models Mean Student Acc.
NS SSS LSS

SVHN 1K NS: RN18+RN34, SSS: RN18, LSS: RN34 84.28±0.76 84.28±0.73 86.71±0.57*
C-10 4K NS: WRN28-2+WRN40-2, SSS: WRN28-2, LSS: WRN40-2 88.19±0.08 88.52±0.25 89.07±0.11*

C-100 10K NS: WRN28-2+WRN40-2, SSS: WRN28-2, LSS: WRN40-2 69.23±0.32 69.84±0.10 71.06±0.41*
Table 9. NoisyStudent comparison results. (C: CIFAR, NS: NoisyStudent, SSS: SmallerSameSized, LSS: LargerSameSized)

Teacher model pseudo-labels 
unlabeled set employing 

calibrated entropy thresholding

Student-i fine-tuned using 
SplitBatch sampler on labeled 
and pseudo-labeled examples

Train student-i model with 
MixedLoss (soft loss for labeled and 

pseudo-labeled examples)

Best student model 
becomes new teacher

Same-sized initial 
teacher (as student) 
trains on labeled set

i = 1 to n 
iterations

Figure 2. Enhanced self-training (EST) pipeline.

Different Labeled/Unlabeled Subset Sizes
We evaluated our EST approach on different la-
beled/unlabeled subset sizes of CINIC-10 with its large
number of samples (270K) split into different-sized la-
beled/unlabeled subsets. First, we examined a small labeled
data scenario with 1K labeled examples (100 examples
per-class) across increases in unlabeled data (20K-150K).
Next, we evaluated a large labeled data scenario with
20K labeled examples (2K examples per-class) across the
various unlabeled sets. We applied a 20/80% mini-batch
split in the small label scenario to avoid overfitting when
oversampling the smaller labeled set. We used a 50/50%
mini-batch split for the large labeled scenario having many
labeled examples to oversample. A balanced loss was
used in both scenarios (as in the earlier experiments). We
trained all models using a WRN28-8 backbone for the same
number of training optimization steps.

As expected, the results in Table 10 show that perfor-
mance increases as we add more unlabeled examples during
training in both scenarios, highlighting the importance
of building large unlabeled datasets for semi-supervised
learning methods. Our proposed EST approach provided
significant improvements in the small labeled scenario
while providing slight improvements to the large labeled
scenario (as the teacher model already has enough labeled
examples for better learning performance), showing adapt-
ability to different-sized SSL datasets.

Larger Model Architectures and Datasets
We next evaluated the generalizability of our proposed
EST approach using larger models with longer epochs and

CINIC-10 Split Best Acc.
1K Lab 20K Lab

Init. Teacher 53.97 82.55
20K Unlab 65.82 82.64
50K Unlab 67.03 82.74

100K Unlab 67.42 83.24
150K Unlab 67.63* 83.59*

Table 10. Lab/Unlab subset sizes comparison results.

larger datasets. We evaluated a RN34 model on SVHN
(previously used RN18) with a 20/80% mini-batch split,
a WRN28-8 model on CIFAR-10/100 (previously used
WRN28-2) with a 20/80% and 40/60% mini-batch split,
respectively, a WRN28-8 model on the CINIC-10 dataset
(20K Lab + 150K UnLab) with a 20/80% mini-batch split
(previously used 50/50% split), and additionally included
a RN34 model on TinyImageNet (which comprises more
challenging, downsized ImageNet samples) with a 50/50%
mini-batch split. We trained the teacher for 400 epochs
and all student iterations for 200 epochs (previously
used 150 epochs) with the SAMix+RandAugmet data
augmentation policy for all models/datasets. Interestingly,
we found that applying SAMix on SVHN helped improve
digit classification performance (unlike previous expecta-
tions). We compared against previous related work, the
NS approach reimplemented as described in [34] using
smaller teacher models as suggested (RN18 for SVHN and
TinyImageNet, WRN28-2 for CIFAR and CINIC datasets)
but the same larger student model sizes as ours. Exp 6
(Table 9) already demonstrated that our proposed EST
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Datasets Best Acc.
NS EST

SVHN 91.65 93.00*
CIFAR-10 89.15 94.21*
CIFAR-100 70.53 76.42*
CINIC-10 83.47 88.59*

TinyImageNet 49.32 52.23*
Table 11. EST vs. NS [34] best student top-1 accuracy results.

approach performed better than NS when using either
smaller or larger teacher models as the student model. The
larger teacher model further augmented performance, thus
validating its selection for comparison with NS. The results
in Table 11 show that our proposed EST approach outper-

formed the previous related work, the NS [34] approach
on all the evaluated datasets and also extended well to a
more extensive set of target classes (from 10 to 200 classes).

4.4. Open Set Data

Real-world unlabeled data can be from an Open Set that
contains data belonging to the target classes (classes from
labeled training data) and data from additional non-target
classes. Including non-target class examples in the unla-
beled set can degrade SSL performance [11]. We propose
a basic Open Set recognition technique using contrastive
learning to build a feature space for all target classes, where
the non-target classes should hopefully be farther away
from the target classes. We used SimCLR [4] to learn a
contrastive feature space from the labeled target data and
the unlabeled data (contains target and non-target class ex-
amples). We used a validation set to find a mean prototype
vector for each known target class and fit a Beta distribu-
tion per-class of the distances from labeled target examples
to their class prototype. We then pre-filtered training ex-
amples expected to be from any non-target class by using a
per-class Beta cumulative distribution function (CDF) and
a global CDF threshold (learned from validation), where
examples having CDF values above the threshold for all
classes were considered to be from non-target classes.

We evaluated this method on our custom Open Set ver-
sion of CIFAR-10/100 with labeled and unlabeled subsets.
The labeled subset is made up of a Closed Set with 10
target classes (CIFAR-10 subset consisting of 4K images),
and the unlabeled subset contains 110 total classes with
10 target classes (CIFAR-10 subset consisting of different
42K images) and 100 non-target classes (CIFAR-100 sub-
set consisting of 42K images). We compared the perfor-
mance of the NS approach (reimplemented as suggested
in [34] with a smaller WRN28-2 initial teacher and the same
larger WRN28-8 student as EST, thus resulting in a perfor-
mance decrease) to our EST approach (same-sized WRN28-

Experiment Description Acc.
NS Teacher Model on Labeled Closed Set 71.82

EST Teacher Model on Labeled Closed Set 85.83
NS Best Student Model on Open Set 87.8

EST Best Student Model on Open Set 92.62
NS Best Student Model on Filtered Open Set 88.14

EST Best Student Model on Filtered Open Set 93.12
Table 12. Open Set ST results. (Bold: Best result in subsection)

8 teacher-student). After grid-searching through multiple
values, we found that pre-filtered training sets using CDF
thresholds of 0.85 and 0.9 led to the best Closed Set vali-
dation accuracy for NS and EST training, respectively. Ta-
ble 12 shows that our EST approach performed better than
the NS approach showing that our enhancements for han-
dling noisy pseudo-labels extend to Open Set data as well
by providing some basic filtering of pseudo-labels belong-
ing to non-target classes. We also found that both the NS
and EST approaches had further improvements upon train-
ing with our filtered Open Set data, with our EST approach
on filtered Open Set data performing the best.

5. Conclusion

We proposed multiple modular novel enhancements to
the existing NS pipeline to reduce confirmation bias com-
monly seen in pseudo-labeling SSL methods. We demon-
strated that integrating our proposed Weighted SplitBatch
Sampling, Adaptive Confidence Calibration, and Entropy-
Based Pseudo-Label Selection modules into the ST pipeline
reduced overfitting on noisy pseudo-labels, thereby reduc-
ing confirmation bias. We built these enhancements into
a custom PyTorch DataLoader that can adaptively work
with any multi-class SSL dataset, enabling it to be applied
to any pseudo-labeling-based ST methods. Our dataset-
adaptive strategies, however, depend on having a small
number of validation examples to select optimal hyperpa-
rameters. In cases where enough validation data is unavail-
able, we can still use our EST model with user-provided hy-
perparameter settings based on the dataset. We also demon-
strated a basic Open Set Filtering technique that augmented
ST performance compared to previous related work [34]
on unlabeled training data with novel unseen class distribu-
tions. In future work, we plan to directly integrate Open Set
recognition capabilities into ST models and leverage con-
trastive learning to assist in learning better feature represen-
tations to separate known and unknown classes.
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