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Abstract

ENIGMA-51 is a new egocentric dataset acquired in an
industrial scenario by 19 subjects who followed instruc-
tions to complete the repair of electrical boards using in-
dustrial tools (e.g., electric screwdriver) and equipments
(e.g., oscilloscope). The 51 egocentric video sequences are
densely annotated with a rich set of labels that enable the
systematic study of human behavior in the industrial do-
main. We provide benchmarks on four tasks related to hu-
man behavior: 1) untrimmed temporal detection of human-
object interactions, 2) egocentric human-object interaction
detection, 3) short-term object interaction anticipation and
4) natural language understanding of intents and entities.
Baseline results show that the ENIGMA-51 dataset poses a
challenging benchmark to study human behavior in indus-
trial scenarios. We publicly release the dataset at https:
//iplab.dmi.unict.it/ENIGMA-51.

1. Introduction
Every day, humans interact with the surrounding world

to achieve their goals. These interactions are often com-
plex and require multiple steps, skills, and involve differ-
ent objects. For example, in an industrial workplace, when
performing maintenance of industrial machinery, a worker
interacts with several objects and tools while repairing the
machine (e.g., wear PPEs, take the screwdriver), testing
it (e.g., press the button on the electric panel), and writ-
ing a report (e.g., take the pen, write the report). To prop-
erly assist humans, an intelligent system should be able to
model human-object interactions (HOIs) from real-world
observations captured by users wearing smart cameras (e.g.,
smart glasses) [9, 13, 33]. It is also plausible that predicting
human-object interactions in advance can benefit an intelli-
gent system help workers to avoid mistakes, or to improve

their safety. For example, during the execution of a main-
tenance procedure, an AI assistant should be able to un-
derstand when the worker is interacting with the objects,
show technical information, provide instructions on how to
interact with each object, alert the worker of potential safety
risks (e.g., Before touching the electrical board, turn off the
power supply!), and suggest what the next interaction is.
Furthermore, an intelligent system should be able to have a
natural language conversation with workers. It should also
be able to extract useful information from their speech, and
figure out what they are trying to achieve. This way, it can
provide assistance for supporting their needs, preferences,
and goals.

In general, tasks focused on understanding human be-
haviour have been extensively studied thanks to the avail-
ability of public datasets that consider multiple domains [2,
22, 30, 49] or specific ones, such as kitchens [11, 31, 63],
daily life [27, 38], and industrial-like scenarios [41, 47].
However, since data acquisition in a real industrial sce-
nario is challenging due to privacy issues, safety and in-
dustrial secret protection, the datasets available to date do
not reflect real industrial environments, considering proxy
activities such as employing toy models made of textureless
parts [41, 47].

Considering what stated above, to enable research in
this field, we present ENIGMA-51, a new dataset com-
posed of 51 egocentric videos acquired in an industrial en-
vironment which simulates a real industrial laboratory. The
dataset was acquired by 19 subjects who wore a Microsoft
HoloLens 2 [34] headset and followed audio and AR in-
structions provided by the device to complete repairing pro-
cedures on electrical boards. The subjects interact with in-
dustrial tools such as an electric screwdriver and pliers, as
well as with electronic instruments such as a power supply
and an oscilloscope while executing the steps to complete
a specific procedure. Apart the current interactions, we an-
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Procedure :
……
4.   Take the high voltage board and put it on the working area
5.   Take the screwdriver
……
22. Turn on the welder using the switch on the corresponding socket (second from right)
23.  Set the temperature of the welder to 480 °C using the yellow “UP” button
……

Figure 1. Frames have been annotated with a rich set of labels (top-left). Sequences have been annotated by determining the interaction key
frame (bottom-center), assigning the verb (green) and the active object (orange). For each interaction key frame, we provide objects and
hand bounding boxes and the relation between them. In the past frames, we annotated also the next active objects and we derived the time
to contact (TTC) (bottom-left). We also generated pseudo-labels for semantic masks and hand keypoints, and we released 3D models for
the objects and for the laboratory (top-right). Moreover, a specific instruction belonging to the procedure is associated with each interaction
key frame (bottom-right).

notated which objects and hands will be involved in future
interactions, as well as the time to contact (TTC) to indi-
cate when the future interaction will start. This allows us
to explore the task of predicting the future human-object
interactions considering the industrial domain. Textual in-
structions used for the data acquisition, also allow to study
tasks which focus on the knowledge extraction of intents
and entities from the text while users are interacting with
the objects. In the industrial domain these tasks have not
been explored due to the lack of public egocentric datasets
explicitly annotated with intents and entities.

Together with the manually annotations, we release the
pseudo-labels and the pre-extracted features to enable fur-
ther investigations beyond the current study. In particular,
we generated hands and objects segmentation masks [26],
and hands keypoints [10]. The provided visual features are
extracted with DINOv2 [36] and CLIP [39]. To allow fur-
ther research in the context of scalable models trained us-
ing synthetic data, we share the 3D models of the labora-
tory and all considered industrial objects. Figure 1 shows
examples of images acquired in the industrial environment
where the dataset was acquired together with the annota-
tions. To highlight the usefulness of the proposed dataset,
we performed baseline experiments related to 4 fundamen-
tal tasks focused on understanding human behavior from
first person vision in the considered industrial context: 1)
Untrimmed Temporal Detection of Human-Object Interac-
tions, 2) Egocentric Human-Object Interaction (EHOI) De-
tection, 3) Short-Term Object Interaction Anticipation and

4) Natural Language Understanding of Intents and Entities.
In sum the contributions of this work are as follows: 1)

we introduce ENIGMA-51, a new dataset composed of 51
egocentric videos acquired in an industrial domain; 2) we
manually annotated the dataset with a rich set of annotations
aimed at studying human behavior; 3) we propose a bench-
mark to study human behavior in an industrial environment
exploring 4 different tasks, showing that the current state-
of-the-art approaches are not sufficient to solve the consid-
ered problems in the industrial setting; 4) we provide ad-
ditional labels and features exploiting foundational models,
with the aim to push research on additional tasks on the
proposed industrial dataset. The ENIGMA-51 dataset and
its annotations are available at the following link: https:
//iplab.dmi.unict.it/ENIGMA-51.

2. Related Work
Our work is related to previous research lines which are

revised in the following sections.

2.1. Ego Datasets for Human Behavior Studies

Previous works have proposed egocentric datasets fo-
cusing on human behavior understanding. The Activity of
Daily Living (ADL) [38] dataset is one of the first datasets
acquired from the egocentric perspective. It includes 20
egocentric videos where participants were involved in daily
activities. It comprises temporal action annotations aimed
to study egocentric activities. EGTEA Gaze+ [29] focuses
on cooking activities involving 32 subjects who recorded
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Dataset Year Video? EHOI Annotations? Settings Hours Sequences Subjects
ENIGMA-51 (ours) 2024 ✓ ✓ Industrial 22 51 19
MECCANO [41] 2023 ✓ ✓ Industrial-like 7 20 20
Ego4D [22] 2022 ✓ ✓ Multi-domain 3670 9650 923
THU-READ [53] 2019 ✓ ✓ Daily activities 224 1920 8
EPIC-KITCHENS-VISOR [14] 2022 ✓ ✓ Kitchen activities 100 700 45
HOI4D [30] 2022 ✓ ✓ Objects manipulation 22 4000 N/A
VOST [54] 2023 ✓ ✓ Daily + Industrial-like 4 713 N/A
ARCTIC [17] 2023 ✓ ✓ Object manipulation 2 339 10
100 Days of Hands [49] 2020 X ✓ Daily activities 3144 27000 1350+
GUN-71 [44] 2015 X ✓ Daily activities N/A N/A 8
Assembly101 [47] 2022 ✓ X Industrial-like 513 362 53
EGTEA Gaze+ [29] 2017 ✓ X Cooking activities 28 86 32
ADL [38] 2012 ✓ X Daily activities 10 20 20

Table 1. Overview of egocentric datasets with a particular focus on those that allow the study of human-object interactions sorted by the
number of hours.

28 hours of videos. It has been annotated with pixel-level
hand masks and 10325 action annotations including 19 ac-
tion verbs and 51 object nouns. The THU-READ [53]
dataset is composed of 1920 RGB-D sequences captured
by 8 participants who performed 40 different daily-life ac-
tions. The EPIC-Kitchens datasets [11, 12] are collections
of egocentric videos that capture natural actions in kitchen
settings. EPIC-Kitchens-55 [11] consists of 432 videos
with annotations for 352 objects and 125 verbs. EPIC-
Kitchens-100 [12] is a larger version of EPIC-Kitchens-55
with more videos (700), scenes (45) and hours (100). As-
sembly101 [47] simulates an industrial scenario and it is
composed of 4321 assembly and disassembly videos of toy
vehicles made of textureless parts. It offers a multi-view
perspective, comprising static and egocentric recordings an-
notated with 100K coarse and 1M fine-grained action seg-
ments and with 18M 3D hand poses.

While these datasets explore actions and activities, other
datasets have been proposed to study human-object interac-
tions from the egocentric perspective in a more fine-grained
fashion. The Grasp Understanding (GUN-71 [44]) dataset,
contains 12,000 images of hands manipulating 28 objects
labelled with 71 grasping categories. The 100 Days Of
Hands (100DOH) [48] dataset captures hands and objects
involved in generic interactions. It consists of 100K frames
collected over 131 days with 11 types of interactions. It
comprises bounding boxes around the hands and the active
objects, the side of the hands and the contact state (which in-
dicates if the hand is touching an object or not). Other works
focused on human-object interactions providing egocentric
video datasets. EPIC-KITCHENS VISOR [14] contains
videos from EPIC-KITCHENS-100 [12] annotated with
272K semantic masks for 257 classes of objects, 9.9M inter-
polated dense masks, and 67K human-object interactions.
The authors of [30] proposed the HOI4D dataset which is
composed of 2.4 million RGB-D egocentric frames across
4000 sequences acquired in 610 indoor rooms. The au-
thors of [17] studied hands interacting with articulated ob-
jects (e.g., scissors, laptops) releasing the ARCTIC dataset.

It comprises 2.1M high-resolution images annotated with
3D hand and object meshes and with contact information.
The VOST dataset [54] focuses on objects that dramatically
change their appearance. It includes 713 sequences where
the objects have been annotated with segmentation masks.
Ego4D [22] is a massive-scale dataset composed of 3670
hours of daily-life activity videos acquired in different do-
mains by 923 unique participants. It comes with a rich set
of annotations to address tasks concerning the understand-
ing of the past, present, and future.

More related to our work are datasets acquired in the
industrial-like domain [41, 47]. Unlike Assembly101 [47]
and MECCANO [41] we consider an industrial setting
which simulates a real industrial laboratory. Unlike Assem-
bly101, we provide fine-grained annotations to study differ-
ent aspects of human behavior.

Table 1 shows the key attributes of the analyzed datasets.
Previous datasets have focused on kitchens, daily activities,
and industrial-like scenarios exploring different aspects of
the human behavior. In order to perform a systematic study
on human behaviour and human-object interactions in an
industrial domain, we present the ENIGMA-51 dataset with
a rich set of fine-grained egocentric videos together with
annotations.

2.2. Untrimmed Temporal Detection of Human-
Object Interactions

The proposed untrimmed temporal detection of human-
object interactions task is related to previous research on
untrimmed action detection. Existing approaches focus on
one-stage methods, performing both temporal action de-
tection and classification within a single network, aiming
to identify actions without using action proposals. Recent
works achieved state-of-the-art results using Vision Trans-
formers. The authors of [60] proposed ActionFormer, a
transformer network designed for temporal action localiza-
tion in videos. This method estimates action boundaries
through a combination of multiscale feature representation
and local self-attention, which effectively models temporal
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dependencies. TriDet [50] uses a Trident-head to model the
action boundary by estimating the relative probability distri-
bution around the boundary. Features are extracted through
a feature pyramid and aggregated with the proposed scal-
able granularity perception layer.

Other methods focused on masked video modeling
for pretraining one-stage methods. In particular, Intern-
Video [58] uses a combination of generative and discrim-
inative self-supervised learning techniques by implement-
ing masked video modeling and video-language contrastive
learning. Recently, the authors of [57] proposed VideoMAE
V2, which scaled VideoMAE [55] for building video foun-
dation models through a dual masking strategy.

In this work, we assess the performance of state-of-
the-art temporal action detection methods on the proposed
ENIGMA-51 dataset considering ActionFormer [60].

2.3. Egocentric HOIs Detection

Several works have explored different aspects of human-
object interactions (HOIs) from the egocentric perspective.
The authors of [49] proposed a method based on the Faster-
RCNN [43] object detector to detect the hands and the ob-
jects present in the image, categorizing objects as either ac-
tive or passive, determining the side of the hands (left or
right), and predicting the contact state between the hand
and the associated active object. The authors of [41, 42]
investigated human-object interactions predicting bounding
boxes around the active objects and the verb which de-
scribes the interaction exploiting multimodal signals with
different instances of SlowFast networks [18]. The au-
thors of [3] presented an architecture for detecting human-
object interactions using two YOLOv4 object detectors [4]
and an attention-based technique. The authors of [22] ex-
plored object transformations introducing the novel task
of object state change detection and classification. While
most of the analysis of human-object interactions relies
on bounding box annotations, some works exploited hand
poses and semantic segmentation masks [14, 31], contact
boundaries [62], which represents the spatial area where the
interaction occurs, or additional modalities, such as depth
maps and instance segmentation masks, to learn more ro-
bust representations [28].

In this work, we evaluate the HOIs detection method pro-
posed in [28] exploiting the fine-grained human-object in-
teraction annotations of the ENIGMA-51.

2.4. Short-Term Object Interaction Anticipation

Past works addressed different variants of the short-term
object interaction anticipation task. The authors of [19] fo-
cused their study on the prediction of the next-active ob-
jects by analyzing their trajectories over time. The authors
of [25] proposed a model that exploits a predicted visual
attention probability map and the hands’ positions to pre-

dict next-active objects. The authors of [15] predicted fu-
ture actions exploiting hand-objects contact representations.
In particular, the proposed approach predicts future contact
maps and segmentation masks, which are exploited by the
Egocentric Object Manipulation Graphs framework [16] for
predicting future actions.

The short-term object interaction anticipation task has
been more formally defined in [22]. To tackle the task, the
authors of [22] released a two-branch baseline composed of
an object detector [43] to detect next-active objects and a
SlowFast [18] 3D network to predict the verb and the time
to contact. The proposed baseline was extended by the au-
thors of [7] who replaced Faster-RCNN with DINO [61],
and SlowFast with a VideoMAE-pretrained transformer net-
work [55]. Recently, StillFast an end-to-end approach
has been proposed by [40]. The method simultaneously
processes a high-resolution still image and a video with
a low spatial resolution, but a high temporal resolution.
Recent state-of-the-art performances have been achieved
by [37] exploiting language. They proposed a multimodal
transformer-based architecture able to summarise the action
context leveraging pre-trained image captioning and vision-
language models.

Due to its end-to-end training ability, in this work, we
used StillFast [40] as a baseline for the short-term object
interaction anticipation benchmark on ENIGMA-51.

2.5. Natural Language Understanding of Intents
and Entities

Understanding intents and entities from text to extract
knowledge about human-object interactions in the industrial
domain is a task that has not been explored due to the lack
of public egocentric datasets suitable for this task.

The authors of [56] addressed both intent classification
and slot filling as a seq2seq problem, using an architecture
that takes text input, generates ELMo embeddings [45], and
incorporates one BiLSTM [46] and self-attention layers for
each task, outputting task-specific BIO (Beginning Inside
and Outside) labels. In [8] the BERT architecture has been
explored to tackle the limited generalization capabilities of
natural language understanding and propose a joint intent
and classification architecture. The authors of [6] incor-
porate pre-trained word embeddings from language models
and combine them with sparse word and character level n-
grams features alongside a Transformer architecture.

While some works use speech-to-text models to con-
vert speech input into text, others handle speech directly
(Spoken Language Understanding). Earlier approaches pro-
posed RNN-based or LSTM-based contextual SLU [24,51]
which take into account previously predicted intents and
slots. The authors of [23] proposed a BiLSTM-based ar-
chitecture to manage the interrelated connections between
intent and slots. In [59] has been introduced the Token-
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and-Duration Transducer (TDT) architecture for Automatic
Speech Recognition (ASR), able to jointly predict both a to-
ken and its duration, enabling the skipping of input frames
during inference based on the predicted duration output, re-
sulting in significantly improved efficiency.

Since the ENIGMA-51 dataset comprises textual in-
structions about the activities performed by subjects, we
exploited this textual information to explore the task of
predicting intents and entities to extract knowledge about
human-object interactions in the industrial domain.

3. The ENIGMA-51 Dataset
In our ENIGMA laboratory there are 25 different objects

that can be grouped into fixed objects (such as an electric
panel) and movable objects (such as a screwdriver). Dif-
ferently than other egocentric datasets [41, 47] that con-
tain industrial-like objects without textures, ENIGMA-51
includes real industrial objects as shown in Figure 1. The
complete list of the objects present in the ENIGMA labora-
tory is reported in the supplementary material.

3.1. Data Acquisition

To collect data suitable to study human behavior in in-
dustrial domain, we designed two procedures consisting of
instructions that involve humans interacting with the objects
present in the laboratory to achieve the goal of repairing
two electrical boards (see Figure 1 for visual examples).
In particular, we designed two repairing procedures, one
for each electrical board (high and low voltage), with the
help of industrial experts. For each procedure, we consid-
ered 4 different versions varying the use of a screwdriver
or electric screwdriver and the electrical component to sol-
der (resistor, capacitor or transformer). Each procedure is
composed of more than 100 steps, referencing objects and
actions that were expected to be carried out in the indus-
trial laboratory such as Turn on the welder using the switch
on the corresponding socket (second from right) and Set the
temperature of the welder to 480 °C using the yellow “UP”
button. Based on these instructions, we developed a cus-
tom Microsoft HoloLens 2 [34] application which provided
the instructions through audio, images and AR during the
acquisition phase1. Considering that we designed two dif-
ferent repair procedures, each subject acquired at least one
repairing video for each electric board obtaining a total of
51 videos. The 19 participants had different levels of experi-
ence in repairing electrical boards and using industrial tools.
An example of the captured data is reported in Figure 1. For
each participant, we acquired the RGB stream from the Mi-
crosoft HoloLens 2 with a resolution of 2272x1278 pixels
with a framerate of 30 fps. The average duration of the cap-
tured videos is 26.32min for a total of 22 hours of videos.

1Additional information about the repairing procedures are available
in the supplementary material.

Splits Train Val Test Total
# Videos 27 8 16 51
# Videos Length ≃11h ≃4h ≃7h ≃22h
# Images 25,311 8,528 11,666 45,505
# Objects 152,865 53,486 68,784 275,135
# Active Objects 4,709 1,700 2,933 9,342
# Hands 31,249 11,322 13,902 56,473
# Hands in contact 5,039 1,833 3,171 10,043
# Interactions frames 6,386 2,150 4,061 12,597
# Interactions 7,133 2,406 4,497 14,036
# Past frames 19,090 6,437 7,683 33,210
# Next Object Interactions 21,535 7,280 8,499 37,314

Table 2. Statistics of the ENIGMA-51 dataset considering the
Training, Validation and Test splits.

We also synchronized the audio instructions with the cap-
tured video by assigning a timestamp when the user moved
to the next instruction.

3.2. Data Annotation

We labelled the ENIGMA-51 dataset with a rich set of
fine-grained annotations that can be used and combined to
study different aspects of human behavior. Table 2 summa-
rizes statistics about the collected dataset.
Temporal and Verb Annotations: We identified all inter-
action key frames in the 51 videos. For each identified in-
teraction key frame, we assigned a timestamp and a verb
describing the interaction. Our verb taxonomy is composed
of 4 verbs: first-contact, de-contact, take, and release. The
4 considered verbs represent the basic actions that a user
performs to interact with objects. Note that the difference
between first-contact and take is that first-contact happens
when the hand touches an object without taking it (e.g.,
pressing a button), while de-contact is the first frame in
which the hand-object contact breaks (e.g., end of press-
ing a button) and release when the object is no longer held
in the hand (e.g., put the screwdriver on the table). With
this procedure, we annotated 14,036 interactions. Figure 1
reports an example of an interaction key frame with all the
provided annotations, while Figure 2-left shows the verbs
distribution in the 51 videos.
Object Annotations: We considered 25 object classes
which include both fixed (e.g., electric panel, oscilloscope)
and movable objects (e.g., screwdriver, pliers) to assign a
class to the objects present in the interaction key frames
and in the past frames2. Each object annotation consists in
a tuple (class, x, y, w, h, state), where class represents the
class of the object, (x, y, w, h) are the 2D coordinates which
define the bounding box around the object in the frame, and
the state indicates if the object is involved in an interac-
tion or not (active object vs. passive object). With this
annotation procedure, we annotated 275,135 objects. Fig-
ure 2-right reports the distributions of the objects over the
51 videos of the ENIGMA-51 dataset.
Hands Annotations: We annotated hands bounding boxes

2Additional details about our object taxonomy are available in the sup-
plementary material
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Figure 2. Distribution of verb (left) and object (right) classes over the 51 videos composing the ENIGMA-51 dataset.

in the interaction key frames and in past frames. To speed
up this annotation process, we generated pseudo-labels by
processing the interaction key frames with a hand-object de-
tector [49], considering only the information related to the
hands. Then, the annotators manually refined the bounding
boxes, correcting the side of the hand and associating the
hand with the previously labelled active object. Following
this procedure, we labelled a total of 56,473 hands.
EHOI Annotations: For each of the interaction key frames,
we considered: 1) hands and active object bounding boxes,
2) hand side (left and right), 3) hand contact state (contact
and no contact), 4) hand-object relationships, and 5) object
categories. For each hand, we assigned the hand contact
state to contact if the hand was involved in an interaction of
the type first-contact or take, and no-contact for the release
and de-contact categories. Additionally, to make the anno-
tations consistent and uniform, we assigned the hand con-
tact state to contact even for the hands that were already in
physical contact with objects. Following this procedure, we
annotated 12,597 interaction frames, 17,363 hands of which
10,043 were in contact, and 9.342 active objects.
Next Object Interaction Annotations: Starting from the
interaction key frame, we sampled frames every 0.4 seconds
going backward up to 1.2 seconds before the beginning of
the interaction timestamp. With this sampling strategy, we
obtained 33210 past frames. We annotated the past frames
with next object interaction annotations which consists of
a tuple (class, x, y, w, h, state, ttc) where class represents
the class of the object, (x, y, w, h) are the 2D bounding box
coordinates, state indicates if the objects will be involved
in an interaction and ttc is a real number which indicates
the time in seconds between the current timestamp and the
beginning of the interaction. Figure 1 - bottom-left shows
an example of labelled past frames.
Utterances: Based on the instructions used for the acqui-

sition of the dataset, we collected 265 textual utterances,
which represent the types of questions that a worker might
pose to a supervisor colleague while following a procedure
within an industrial setting such as “How can I use the os-
cilloscope?” or “Which is the next step that I do?”. We
manually annotated user goals as “intents” (e.g. “object-
instructions”) and key information as “entities” (e.g. “ob-
ject”) considering 24 intent classes and 4 entity types3. To
enrich this set of utterances, we generated similar synthetic
data by interacting with ChatGPT [35]. This study resulted
in the creation of 100 unique utterances for each intent3.
The generated data was divided into three sets, G10, G50,
and G100 which contain respectively 10, 50, and 100 gen-
erated unique utterances for each intent. Note that, all the
utterances in G10 are also in G50 and G100, and all the ut-
terances in G50 are also in G100.
Additional Resources: In order to enrich the ENIGMA-51
dataset, we release a set of resources useful to improve the
impact of the dataset. We provide segmentation masks for
the hands and the objects using SAM-HQ [26] and the 2D
pose for the hands with MMPOSE [10]. We also extracted
visual representations through DINOv2 [36] and CLIP [39].
The 3D models of ENIGMA Laboratory and of all indus-
trial objects within it have been acquired using the Matter-
port [32] and ARTEC EVA [1] scanners, to enable the use
of synthetic data to train scalable methods3.

4. Benchmark and baselines results
4.1. Untrimmed Temporal Detection of Human-

Object Interactions

Task: We consider the problem of detecting 4 ba-
sic human-object interactions (“take”, “release”, “first-
contact”, and “de-contact”) from the untrimmed egocen-

3See the supplementary material for more details.
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Setting p-mAP (%) temporal offset threshold (s) mp-mAP (%)
1 2 3 4 5 6 7 8 9 10

“take vs. release” 27.40 32.97 36.88 40.08 42.15 43.70 45.52 47.48 48.81 49.50 41.45
“first contact vs. de-contact” 56.97 59.93 62.43 64.22 66.09 67.78 69.35 70.93 72.40 74.02 66.41
“all interactions” 29.64 31.69 33.28 34.60 35.91 36.96 37.95 38.88 39.84 40.58 35.93

Table 3. Comparisons of p-mAP under different temporal offset thresholds on 3 different interaction settings.

AP Hand AP H.+Side AP H.+State mAP H.+Obj mAP H.+All
90.81 90.35 73.31 46.51 46.24

Table 4. Results of the baseline for the EHOI detection task.

tric videos of the ENIGMA-51 dataset. Differently from the
standard definition of untrimmed action detection, in this
task, a prediction is represented as a tuple (ĉ, t̂k, s), where
ĉ and t̂k are respectively the predicted class and key times-
tamp (the timestamp of the interaction key frame) and s is a
confidence score.
Evaluation Measures: We evaluated our baselines using
point-level detection mAP (p-mAP) [52]. We considered
predictions as correct when they satisfied two criteria: 1) the
interaction class matched the ground truth and 2) the differ-
ence between the predicted and ground truth timestamps is
within a certain temporal threshold. We considered differ-
ent temporal offset thresholds ranging from 1 to 10 seconds
with an increment of one second [20,21]; we averaged these
values obtaining the mp-mAP values.
Baseline: Our baseline for this task is based on Action-
Former [60]. It takes the pre-extracted video features as in-
put and gives action boundaries (start and end timestamps)
as outputs. Given our focus on predicting the timestamp
when the HOI occurs, we considered only the predicted ac-
tion start4 as output given by ActionFormer.
Results: Table 3 reports the results of the baseline. We
considered three variants of the task: 1) detecting only con-
tact and de-contact interactions (first row), 2) considering
only take and release interactions (second row), and 3) con-
sidering all the four interactions (third row). We obtained
mp-mAP values of 41.45%, 66.41%, and 35.93%, respec-
tively, for “take vs. release”, “first contact vs. de-contact”,
and “all interactions”. The results highlight that detect-
ing “take” and “release” interactions (first row) are more
challenging compared to finding “first contact” and “de-
contact” interactions (41.45% vs. 66.41%) due to the dif-
ferent semantic complexity. Moreover, when all the four
interactions are considered, the performance decreases, ob-
taining a mp-mAP of 35.93%4.

4.2. Egocentric HOI Detection

Task: We consider the problem of detecting EHOIs from
egocentric RGB images following the task definition pro-

4Additional information on implementation details, experiments, and
results are reported in the supplementary material.

posed in [28, 49]. Given an input image, the aim is to pre-
dict the triplet <hand, hand contact state, active object>.
Additional details about the task are reported in [28, 49].
Baselines: The adopted baseline is based on the method
proposed in [49]. We used the implementation proposed
in [28] which extends a two-stage object detector with ad-
ditional modules that exploit hand features to predict the
hand contact state (in contact or not in contact), the side
of hand (left and right), and an offset vector that indicates
which object the hand is interacting with. Since the consid-
ered baseline is able to detect at most one contact per hand,
we selected a subset of the 12, 597 interaction frames. This
subset contains 15, 955 hands of which 8, 753 are in contact
with an object, for a total of 7, 680 active objects.
Evaluation Measures: We used the following metrics
based on standard Average Precision [28, 49]: 1) AP Hand:
AP of the hand detections, 2) AP Hand+Side: AP of the
hand detections considering the correctness of the hand
side, 3) AP Hand+State: AP of the hand detections consid-
ering the correctness of the hand state, 4) mAP Hand+Obj:
mAP of the <hand, active object> detected pairs, and
5) mAP Hand+All: combinations of AP Hand+Side, AP
Hand+State, and mAP Hand+Obj metrics.
Results: Table 4 reports the results obtained with the pro-
posed baseline. Results show that the baseline achieved a
AP Hand of 90.81%, a AP Hand + Side of 90.35% ), a
mAP H.+State of 73.31%, a mAP H.+Obj of 46.51% and a
mAP H.+All of 46.24%, pointing out that the use of domain-
specific data in training is needed to exploit the knowledge
of the industrial objects to support workers in the industrial
domain.

4.3. Short-Term Object Interaction Anticipation

Task: The short-term object interaction anticipation
task [22] aims to detect and localize the next-active objects,
to predict the verb that describes the future interaction, and
to determine when the interaction will start. Formally, the
task consists in predicting future object interactions from a
video V and a timestamp t. The models can only use the
video frames up to time t and have to produce a set of pre-
dictions for the object interactions that will occur after a
time interval δ. Predictions consist of a bounding box over
the next-active objects, a noun label, a verb label describing
the future interaction, a real number indicating how soon
the next interaction will start, and a confidence score.
Evaluation Measures: We evaluated the model’s perfor-
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Noun N+V N+TTC Overall
78.79 62.58 35.77 27.83

Table 5. Results% in Top-5 mean Average Precision for the Short-
Term Object Interaction Anticipation task. N stands for noun,
N+V stands for Noun+Verb and N+TTC stands for Noun+Time
to Contact.

mance with Top 5 mean Average precision measures [22]
that capture different aspects of the task: Top-5 mAP Noun,
Top-5 mAP Noun+Verb, Top-5 mAP Noun+TTC, and Top-
5 mAP Noun+Verb+TTC, which is also referred to as Top-5
mAP Overall.
Baseline: We adopted StillFast [40] as the baseline5. The
model has been designed to extract 2D features from the
considered past frame and 3D features from the input video
clip. Feature stacks are merged through a combined feature
pyramid layer and sent to the prediction head which is based
on the Faster-RCNN head [43]. Features are fused and used
to predict object (noun), verb probability distributions and
time-to-contact (ttc) through linear layers along with the re-
lated prediction score s.
Results: Table 5 reports the results on test set of the
ENIGMA-51 dataset considering the Top-5 mAP mea-
sures. StillFast obtains a Noun Top-5 mAP of 78.79%,
demonstrating the ability to detect and classify the next-
active objects processing images and videos simultane-
ously. When verbs and time to contact are predicted, per-
formance drops according to Noun+Verb Top-5 mAP of
62.58%, Noun+TTC Top-5 mAP of 35.77%, and Overall
Top-5 mAP of 27.83%. Qualitative results are reported in
the supplementary material.

4.4. NL Understanding of Intents and Entities

Task: We considered the problem of classifying the in-
tent of a user utterance, falling into one of the considered
24 classes, as well as the problem of entity slot filling, in-
cluding four different slot types: “object”, “board”, “com-
ponent” and “procedure”. Given an input utterance U, the
task is to predict the intent class i, and to detect any entities
e, if present, as well as the slot types t associated to them,
outputting zero or more <e, t> couples. The complete list
of intents/entities is reported in the supplementary material.
Evaluation Measures: We evaluate the baseline using the
standard accuracy, and F1-score evaluation measures.
Baseline: The baseline is based on the DIETClassifier [6].
We performed the tokenization and featurization steps be-
fore passing the utterances to the model. Specifically, we
used the SpacyNLP, SpacyTokenizer, CountVectorsFeatur-
izer, SpacyFeaturizer and DIETClassifier components of-
fered by the Rasa framework [5].
Results: Table 6 reports the results obtained for intent and
entity classification. Five different variants of the training

5https://github.com/fpv-iplab/stillfast

Intent Entity
Training Accuracy F1-score Accuracy F1-score

real 0.867 0.844 0.994 0.981
real+G10 0.830 0.815 1.00 1.00
real+G50 0.792 0.773 1.00 1.00

real+G100 0.792 0.784 1.00 1.00
G100 0.584 0.564 1.00 1.00

Table 6. Results for intents and entities classification considering
different sets of training data.

set (see Section 3.2) were explored: real data, real data +
G10 data, real data + G50 data, real data + G100 data, and
G100. The best results for the intent classification have been
obtained using only real data obtaining an accuracy of 0.867
and an F1-score of 0.844. The baseline suffers when gen-
erated data are included, which introduces noise and makes
performance worse, reaching an accuracy of 0.584 (-0.283)
and an F1-score of 0.564 (-0.280). These results suggest
that, in this challenging industrial scenario, generative mod-
els, such as GPT [35] are not yet capable of generating ap-
propriate data with regard to understand human’s intent in
this domain, and the use of manually annotated data is still
necessary. Instead, considering the ability to predict the en-
tities of human’s utterances which represent more simple
concepts with respect to the human’s intents, only gener-
ated data (last row) are enough. In particular, the model
trained with the G100 set obtains better performance than
one trained only with real data (1.00 vs. 0.994 for accuracy
and 1.00 vs. 0.981 for F1-score)6.

5. Conclusion

We proposed ENIGMA-51, a new egocentric dataset ac-
quired in an industrial environment and densely annotated
to study human behavior. In addition, we performed base-
line experiments aimed to study different aspects of human
behavior in the industrial domain addressing four tasks. Ex-
isting methods show promising results but are still far from
reaching reasonable performance to build an intelligent as-
sistant able to support workers in the industrial domain.
This opens up opportunities for future in-depth investiga-
tions.
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