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Abstract

Biometric verification systems are deployed in vari-

ous security-based access-control applications that require

user-friendly and reliable person verification. Among the

different biometric characteristics, fingervein biometrics

have been extensively studied owing to their reliable ver-

ification performance. Furthermore, fingervein patterns

reside inside the skin and are not visible outside; there-

fore, they possess inherent resistance to presentation at-

tacks and degradation due to external factors. In this

paper, we introduce a novel fingervein verification tech-

nique using a convolutional multihead attention network

called VeinAtnNet. The proposed VeinAtnNet is designed

to achieve light weight with a smaller number of learn-

able parameters while extracting discriminant information

from both normal and enhanced fingervein images. The

proposed VeinAtnNet was trained on the newly constructed

fingervein dataset with 300 unique fingervein patterns that

were captured in multiple sessions to obtain 92 samples per

unique fingervein. Extensive experiments were performed

on the newly collected dataset FV-300 and the publicly

available FV-USM and FV-PolyU fingervein dataset. The

performance of the proposed method was compared with

five state-of-the-art fingervein verification systems, indicat-

ing the efficacy of the proposed VeinAtnNet.

1. Introduction

Biometric verification systems have enabled magnitude
of access control applications including border control,
smartphone access, banking, and finance applications. Fin-
gervein biometric characteristics are widely deployed in
various applications, particularly in banking sector. Fin-
gervein biometrics represent the vein structure underneath
the skin of the finger, which can be captured using near-
infrared sensing. The blood flow in the fingervein absorbs
near-infrared light and appears dark compared to the neigh-
borhood region, indicating the visibility of the fingervein
(refer Figure 1). The fingervein structure has been shown to

Fingervein Image Enhanced Fingervein Image

Figure 1: Example fingervein images with and without im-
age enhancement for the same identity collected in first (top
row) and second session (bottom row).

be unique [1, 34, 28] between fingers of same data subject
and between the data subjects. Compared to other biomet-
ric characteristics, fingervein biometrics are known for their
accuracy and usefulness, and are less vulnerable to distor-
tion. Furthermore, fingervein biometrics provide a natural
way of protecting biometric features, as they reside inside
the skin and thus more challenging to spoof.

Fingervein biometrics have been widely studied in the
literature, resulting in various fingervein biometric verifi-
cation algorithms [33, 9]. Early works are based on ex-
tracting fingervein patterns such that the vein region is la-
beled as one and the background is labeled as zero. Tech-
niques such as Maximum Curvature Points (MCP) [22],
Repeated Line Tracking (RLT) [21], Wide Line Detectors
(WLD) [10], Mean Curvature (MC) [37] and Randon trans-
form [26] have been developed for reliable fingervein recog-
nition. As these techniques can extract the structure of the
fingervein pattern, the use of a simple comparator based on
template matching using correction can achieve reliable per-
formance. However, these features are sensitive to a small
degree of fingervein rotation, noise, and reflection proper-
ties of the skin and NIR illuminator.

The global feature representation of fingervein patterns
such as Local Binary Patterns (LBP) [15], Gabor filters [19],
Local Directional Code [35], Wavelet Transform [23], His-
togram of Gradients (HoG) [19] and pyramid image fea-
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Table 1: State-of-the-art fingervein verification using deep learning techniques

Authors Year Deep Learning Technique

Huafeng Qin et al., [24] 2015 Serial CNN architecture with 3 convolution layers and 2 fully connected layer.
Itqan et al., [11] 2016 Serial CNN architecture with 3 convolution layers and 1 fully connected layer.
Syafeeza Radzi et al., [27] 2016 Serial CNN architecture with 2 convolution layers.
Huafeng Qin et al., [25] 2017 Serial CNN architecture with 4 convolution layers. Path based training of CNN.
Cihui Xie et al., [41] 2019 Siamese network with 5 conventional layers and triplet loss function.

Jong Min Song et al.,[36] 2019 Serial CNN architecture with 8 convolution layers. Composite fingervein image is
generated by converting the 1-channel input image to 3-channel input image.

Rig Das et al., [5] 2018 Serial CNN architecture with 5 convolution layers.
Hyung Gil Hong et al.,[7] 2017 Serial CNN architecture with 12 convolution layers and 3 fully connected layers.
Su Tnag et al., [39] 2019 Siamese network with residual CNN architecture.
Borui Hou et al., [8] 2019 Convolutional autoencoder.
Junying Zeng et al., [43] 2020 Deformable convolution with U-NET type architecture.

Ridvan Salih Kuzu et al., [14] 2020 Serial CNN architecture with 6 convolution layers and 2 fully connected layers
with LSTM for classification.

Hengyi Ren et al., [31] 2021 Feature extraction using ResNet with squeeze and excitation
on the encrypted fingervein images.

R◆dvan Salih Kuzu et al., [13] 2021 Custom DenseNet 161 with additive angular penalty and
large margin cosine penalty loss function.

Weili Yang et al., [42] 2022 Multi-view fingervein with individual CNNs and view pooling.
Huafeng Qin et al., [42] 2022 U-Net based architecture with attention module.
Tingting Chai et al., [4] 2022 Serial CNN architecture with 5 convolution layers and one fully connected layer.
Ismail et al., [3] 2022 Serial CNN architecture with 3 convolution layers and two fully connected layer.
Weiye Liu et al., [17] 2023 Residual Attention block with inception architecture.
Zhongxia Zhang et al., [44] 2023 Light weight CNN with spatial and channel attention module.
Chunxin Fang et al., [6] 2023 Light weight Siamese network with attention module.

Bin Wa et al., [20] 2023 Serial CNN architecture with 3 convolution layers and
bilinear pooling with multiple attention module.

This work 2024

Serial CNN architecture with 3 convolution layers and

multi-head attention module connected in parallel

with normal and enhanced fingervein.

tures [18] are also developed for the fingervein verification.
These features are often used with Support Vector Machines
(SVM) or Euclidean distances as comparators. As these
techniques are based on global features, they are highly sen-
sitive to variations in finger rotation and illumination.

The representation of a fingervein image to binary codes
was developed to improve template security, together with
reliable verification. Binary coding techniques include Dis-
criminative Binary Codes [16], binary hash codes [38],
DoG code [28], ordinal code [28], contour Code [28] and
competitive codes [28]. Because these techniques can gen-
erate binary codes for the finger vein, the Hamming distance
is used as the comparator. Binary coding techniques exhibit
good verification accuracy; however, these features are sen-
sitive to variations in rotation and illumination.

Deep-learning-based fingervein verification has been ex-
tensively studied in the literature. Table 1 summarizes
the deep-learning-based techniques proposed for fingervein
recognition. Early works are based on the serial convo-
lution architecture, which is inspired from existing CNN
architectures that are evaluated on the ImageNet dataset.
Both shallow serial CNN networks with two convolution

layers and a deep CNN network with 12 convolutional lay-
ers have been studied in the literature. However, the quanti-
tative results indicate that lightweight serial networks with
a smaller number of convolution layers exhibit better per-
formance than deep serial networks. The possible degraded
performance of deep serial networks can be attributed to
limited data availability. The use of a pre-trained CNN for
feature extraction has also been explored in the literature,
together with fine-tuning and augmented pre-trained CNN
networks. The quantitative results reported indicate a per-
formance similar to that of end-to-end trained deep CNN
networks. The Siamese network for fingervein verifica-
tion was studied using different CNN configurations and U-
NET-based architectures. The quantitative performance is
similar to that of the serial CNN architecture. Recently, at-
tention modules with lightweight (three to four convolution
layers) serial networks have been widely explored. Differ-
ent types of attention modules, including spatial, channel,
and multi-attention modules, were introduced. The quanti-
tative performance of the attention networks are compara-
ble to that of other deep learning-based techniques imple-
mented for fingervein verification.
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Figure 2: Block diagram of the proposed method for fingervein verification

Even though the deep learning techniques are widely
studied for the reliable fingervein verification, the exist-
ing deep learning techniques indicates the following draw-
backs: (a) limited data: Existing techniques are evaluated
on the small-scale datasets that has 6-12 samples per data
subject. This limits the effectiveness of deep learning and
leads to an over fitting. (b) Lack of a consistent evaluation
protocol: Even though most of the existing works have used
public datasets, the evaluation protocols are not consistent
across existing studies. This results in a limited comparison
of existing techniques for finger vein verification. In this
study, we address the above-mentioned limitation by intro-
ducing a new large-scale dataset with 75 data subjects, re-
sulting in 300 unique identities (as we collected four fingers
per data subject). For each unique fingervein, we collected
92 samples in multiple sessions, varying from 1-4 days du-
ration. Furthermore, we propose a novel lightweight CNN
architecture based on a convolutional multi-head attention
module. The main contributions of this study are as fol-
lows:

• A novel fingervein verification technique based on a con-
volutional multi-head attention network (VeinAtnNet) is
proposed.

• Introduced a new fingervein dataset with 300 unique
identities captured from 75 data subjects, resulting in
300⇥92 = 27600 fingervein images. The dataset is avail-
able publicly for research purpose.

• Extensive experiments were performed on both the newly
introduced dataset and the publicly available FV-USM
and FV-PolyU datasets. The performance of the proposed
method was compared with that of five state-of-the-art
fingervein verification methods.

The rest of the paper is organised as follows: Section 2
discuss the proposed method for the fingervein verification,
Section 3 presents the quantitative results of the proposed

method with the state-of-the-art techniques and Section 4
draws the conclusion.

2. Proposed Method

Figure 2 shows a block diagram of the proposed
VeinAtnNet architecture for reliable fingervein verification.
The novelty of the proposed approach is that it leverages
the convolutional Multi-Head Attention (MHA) framework
to achieve accurate and reliable fingervein verification. The
utility of MHA, together with convolutional features, leads
to a discriminant feature representation that can contribute
to the robust performance of the fingervein verification.

The proposed VeinAtnNet is a lightweight architecture
with three Consecutive Convolution Layers (CCL) and a
Multihead Self-Attention (MSA) mechanism. VeinAtnNet
is connected independently with normal and enhanced fin-
gervein images whose comparison scores from the softmax
layer are fused to make the final verification decision. Given
the captured fingervein image, preprocessing is performed
using Contrast Limited Adaptive Histogram Equalization
(CLAHE) [29] to enhance the fingervein pattern. In this
work, we employed the Contrast Limited Adaptive His-
togram (CLAHE) as the fingervein enhancement method by
considering (a) the high quality of the fingervein enhance-
ment achieved when compared to other enhancement tech-
niques, as discussed in [9]. (b) Widely employed enhance-
ment techniques in fingervein literature that have reported
high verification accuracy. Both the normal (without en-
hancement) and enhanced fingervein images were resized
to 224⇥ 224⇥ 3 pixels. The CCL performs the initial fea-
ture learning of the fingervein images, which is further pro-
cessed to obtain a rich feature representation using MSA.
Given the fingervein image F

R⇥C⇥D
v , the final output fea-

tures of MSA can be represented as follows:

FMSA = MSA(FCCL);whereFCCL = CCL(Fv); (1)
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Where, FMSA denote the output features from MSA, FCCL

denotes the output features of CCL block. The FMSA is
then used with softmax classifier to make the final decision.
In the following, we discuss the building blocks of the pro-
posed VeinAtnNet.

2.1. Consecutive Convolution Layers (CCL)

The CCL has three convolution modules that are seri-
ally connected. Each convolution module has four different
convolution layers (conv): a group normalization (norm),
an activation function layer (ReLu), and a pooling layer
(maxpool). Three convolution layers were used to extract
the global features from the fingervein images. The conv-1
layer has a filter size of 7 ⇥ 7 the conv-2 layer has a 5 ⇥ 5,
conv-3 has a 3⇥3 filter, and the number of filters in all three
conv layers is set to 32. The gradual decrease in filter size
ensures fine grinding (from global to local) of the fingervein
features. The convolution features were normalized using
group normalization, which reduced the sensitivity of the
network for initialization. In particular, we employed group
normalization because it outperforms batch normalization
with a small size. The normalized features are then fed
to the activation unit (ReLU), which can introduce sparsity
and improve the network training speed. Finally, a pooling
operation was performed to achieve a compact feature rep-
resentation. In this study, we employed max pooling, which
can capture texture information suitable for fingervein veri-
fication. The output after three convolution modules is then
passed through the group-average pooling layer to obtain a
compact representation of the features. Finally, the features
were flattened before being fed into the MSA module.

2.2. Multihead Self-Attention (MSA)

The features from the CCL module are then fed to the
MSA module to further refine the features FCCL to extract
discriminant features suitable for fingervein verification. In
this study, we employed multihead attention [40] with four
different heads and 64 channels for keys and queries. Ba-
sically, MSA runs the attention mechanism across all heads
multiple times in parallel. The independent attention out-
puts are then concatenated and transformed linearly. MSA
can be represented as follows [40]:

Mu�Head(Q.K, V ) = [H1, H2, H3, H4]W (2)

where W is the learnable parameter and Q, K and V repre-
sent the queries, keys, and values, respectively. In this study,
we employed scaled dot-product attention across heads us-
ing Q, K and V as follows:

Attention(Q.K, V ) = softmax(
QK

T

sqrt(dk)
)V (3)

The outcome of the MSA module was passed through the
layer normalization layer to generalize the final features. Fi-

nally, the normalized features are passed through the fully
connected and softmax layers to obtain the comparison
score.

2.3. Score Level Fusion

The proposed VeinAtnNet was employed independently
on normal and enhanced finger vein images. Thus, given the
test fingervein image, the proposed method provides two
comparison scores corresponding to normal and enhanced
fingerveins. We combined these two comparison scores us-
ing the sum rule to make the final verification decision. Let
the comparison score from the normal fingervein image be
Cn and enhanced fingervein image be Ce, then final verifi-
cation score is computed as Vs = (Cn + Ce).

2.4. Implementation Details

The proposed network is based on Adaptive Moment Es-
timation (ADAM) optimization to calculate loss. In this
work, we employ the cross-entropy loss, which can be de-
fined as � 1

N

PN
n=1

PK
i=1(Tni log(Yni))+(1�Tni) log(1�

Yni), where N and K denote the number of samples and
classes, respectively, Tni is the corresponding target value
to Yni. During training, the learning rate was set to 0.0001,
the mini-batch size was set to 16, and the number of epochs
was set to 150. Furthermore, we performed data augmenta-
tion, which included image reflection, translation, rotation,
reflection, scaling, and random noise with three different
variances. This resulted in nine different images for ev-
ery image used in training the proposed method. Finally,
the proposed method is lightweight with only 58.2 K learn-
able parameters. While the existing SOTA employed in this
work namely; Bin Wa et al., [20] has approximately 17.8M
and Ismail et al., [3] has approximately 467.1K learnable
parameters respectively.

3. Experiments and Results

In this section, we discuss the quantitative results of the
proposed and existing fingervein verification algorithms.
The quantitative performance is presented using the False
Match Rate (FMR) and False Non-Match Rate (FNMR), to-
gether with the Equal Error Rate (EER) value computed at
FMR = FNMR. The performance of the proposed method
was compared with recently proposed fingervein recogni-
tion algorithms based on multiple attentions [20] and deep
fusion [3] by considering their verification performance.
Furthermore, we compared the performance of the proposed
method with well-established fingervein verification tech-
niques, such as MCP [22], RLT[21] and WLD [10]. In
the following section, we describe the newly collected fin-
gervein dataset, followed by the quantitative results.
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3.1. FV-300 Fingervein dataset

In this study, we introduced a new fingervein dataset
comprising 300 unique fingerveins corresponding to 75
unique data subjects. The fingervein images were collected
using a custom camera system desired using a monochrome
CMOS camera with a resolution of 744 ⇥ 480 pixels with
two lighting sources to illuminate the finger from both the
back and side. The design aspects of the finger vein capture
device were inspired by [30]. The data collection was car-
ried out under indoor conditions, and for every data subject,
two fingers (index and middle) were captured from both the
left and right hands, resulting in four unique fingers. For
each data subject, we captured 92 fingervein images cor-
responding to individual fingers in multiple sessions. The
duration between sessions varies from to 1-4 days. The FV-
300 dataset contained 75 data subjects ⇥ 4 fingers ⇥ 92 =
27600 fingervein samples. Figure 3 shows an example of
the fingervein images from the FV-300 dataset.

Fingervein Image Enhanced Fingervein Image

Figure 3: Example fingervein images from FV-300 dataset
representing same identity captured in three different ses-
sions.

3.2. Experimental protocol

To effectively benchmark the performance of the pro-
posed method, we used three fingervein datasets: FV-300,
FV-USM [2] and FV-PolyU [12]. To evaluate the perfor-
mance of the fingervein algorithm on FV-300 dataset, the
fingervein samples corresponding to each finger were di-
vided into three independent sets such that the training set
had 70 images, the validation set had 12 images, and the
testing set had 10 images. This resulted in 300 ⇥ 10 = 3000
genuine and 300 ⇥ 299 ⇥ 10 = 897000 impostor scores,
respectively.

The verification performance of the FV-USM [2] dataset
was evaluated by training the fingervein verification algo-
rithms on FV-300 dataset and fine-tuning the trained net-
works on the FV-USM dataset. The FV-USM [2] dataset
comprised 492 unique fingervein identities captured in two

sessions with six samples each. Thus, the proposed method
(and the existing methods employed in this work that in-
cludes multiple attention [20] and deep fusion [3]) are
trained on the FV-300 dataset and fine-tuned using the first
session data (from FV-USM dataset) that has 6 samples per
subject. Testing was performed using the second-session
data (from FV-USM dataset) with six samples per subject.
However, the conventional fingervein state-of-the-art tech-
niques (MCP [22], RLT [21] and WLD [10]) employed
in this study do not require a training set for learning.
Therefore, we used the first-session data from the FV-USM
dataset as enrolment, and the second session data were used
for testing. This resulted in 492 ⇥ 6 = 2952 genuine and
492 ⇥ 491 ⇥ 6 = 1449432 impostor scores.

The verification performance of the fingervein algo-
rithms (deep learning based on the proposed method) on the
FV-PolyU dataset was performed using a procedure similar
to that discussed for the FV-USM dataset. The fingervein al-
gorithms trained on the FV-300 dataset were fine-tuned us-
ing the FV-PolyU dataset. The FV-PolyU dataset [12] em-
ployed in this work comprises 156 unique identities, from
which the finger vein index and middle fingers are captured
in two sessions with six samples each. Thus, the FV-PolyU
dataset has 312 unique identities, and data from the first ses-
sion are used to fine-tune both the proposed and SOTA deep
learning methods, which include multiple attention [20] and
deep fusion [3]) that are trained on the FV-300 dataset. Test-
ing was performed on the second session data, which re-
sulted in 312 ⇥ 6 = 1872 genuine and 312 ⇥ 311 ⇥ 6 =
582192 impostor scores.

3.3. Results and discussion

Table 2 shows the quantitative performance of the pro-
posed and existing fingervein verification techniques on
both FV-300, FV-PolyU and FV-USM datasets, and Figure
4 shows the DET curves. Existing methods were trained
using enhanced fingervein images to optimise the best per-
formance. Based on the results, the following are important
observations:

• Training and testing on the same dataset will indicate
the improved verification results of the deep learning
based techniques. Therefore, the performance of the
deep learning techniques indicated an improved per-
formance on FV-300 compared to FV-USM and FV-
PolyU dataset.

• Traditional fingervein techniques (MCP [22], RLT [21]
and WLD [10]) that are based on template matching
using correlation indicates the superior performance
on the FV-300 dataset compared to FV-USM and FV-
PolyU dataset. However, the performance of RLT [21]
and WLD [10] do not indicate a significant difference
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Table 2: Quantitative Performance of the proposed and state-of-the-art fingervein verification methods

TAR = (100-FNMR%) @ FMR =
Data set Algorithms EER(%)

1% 0.1% 0.01%

MCP [22] 4.74 88.93 64.41 44.35
RLT [21] 31.30 19.35 9.52 4.68
WLD [10] 13.55 77.47 74.11 73.15
Ismail et al., [3] 9.14 72.92 40.95 7.34
Bin Wa et al., [20] 19.94 21.25 5.31 0.95

FV300

Proposed Method 0.54 99.73 99.13 90.36

MCP [22] 17.74 46.95 27.25 18.36
RLT [21] 29.63 32.29 29.70 29.16
WLD [10] 18.17 54.17 34.89 16.73
Ismail et al., [3] 41.78 4.38 1.16 0.34
Bin Wa et al., [20] 37.53 5.25 1.65 0.35

FV-USM

Proposed Method 15.35 40.45 14.25 5.11

MCP [22] 14.25 52.29 34.40 20.64
RLT [21] 33.48 19.26 8.25 4.28
WLD [10] 16.53 65.29 48.16 38.53
Ismail et al., [3] 42.12 5.96 2.29 1.37
Bin Wa et al., [20] 40.90 3.21 0.45 0.45

PolyU

Proposed Method 5.52 74.77 30.27 19.26
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(a) FV-300 Dataset
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(b) FV-USM Dataset
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(c) FV-PolyU Dataset

Figure 4: DET Curves showing the verification performance of the proposed and state-of-the-art fingervein verification
methods

in the verification performance between three different
fingervein datasets employed in this work.

• Among three traditional fingervein techniques em-
ployed in this work, the MCP [22] indicated the best
performance on both datasets. Furthermore, MCP
[22] demonstrated improved performance compared to
the state-of-the-art deep learning methods employed in
this study.

• The proposed method has indicated an outstanding
verification performance with EER = 0.54% and TAR
= 90.36% @ FMR = 0.01% on FV-300 dataset. The

proposed method also indicated the best performance
with an EER of 15.35% on the FV-USM dataset. Sim-
ilar performance is also noted on the FV-PolyU dataset
with an EER = 5.52% . However, the verification per-
formance degraded at a lower FMR on both FV-USM
and FV-PolyU dataset.

• Based on the results, it is worth nothing that, the deep
learning techniques depends on the training data and
indicate the limitation to generalize on the another
dataset due to the limited number of samples available
for fine-tuning. However, compared with existing deep
learning methods, the proposed VeinAtnNet exhibits
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Table 3: Verification performance of the proposed method with normal and enhanced fingervein data

TAR = (100-FNMR%) @ FMR =
Data Type Algorithms EER(%)

1% 0.1% 0.01%

Normal Fingervein Proposed Method 1.85 97.89 83.55 54.18
Enhanced Fingervein Proposed Method 1.13 98.87 90.53 60.76

Table 4: Ablation study of the proposed method on FV-300
dataset

Consecutive Convolution Layers (CCL) Multi-head
Self-Attention (MSA)

Proposed method
Conv-1 Conv-2 Conv-3 EER (%)

3 X X 3 8.29
3 3 X 3 2.38
3 3 3 3 0.54

superior verification performance on three fingervein
datasets employed in this work.

3.4. Ablation Study of the proposed method
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Figure 5: DET Curves indicating the performance of the
proposed method with different cases of ablation study

In this section, we present an ablation study of the pro-
posed method by using the FV-300 dataset. We considered
three different cases in which Case-1 represent the perfor-
mance with Conv-1 and MSA together. Case-2 shows the
performance of Conv-1, Conv-2, and MSA while Case-3 in-
dicates the performance of the proposed method with Conv-
1, Conv-2, Conv-3, and MSA. Table 4 and Figure 5 show
the performance of the proposed method for different ab-
lation studies. The addition of convolutional layers with
MSA can improve the overall performance of the proposed
VeinAtnNet for reliable fingervein verification.
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Figure 6: EER of the proposed method with different num-
ber of convolution layers.

We further investigated the role of adding additional con-
volution layers with MSA to improve the verification ac-
curacy. To this extent, we start computing the verification
accuracy starting with one Conv layer and increasing it to
five consecutive Conv layers with MSA. Figure 6 shows the
verification performance with EER for different depths of
convolution layers. It should be noted that the use of three
consecutive layers with MSA can achieve the best perfor-
mance and further increase the depth by adding convolution
layers. This further justifies the choices made in design-
ing the proposed method that has indicated the best general-
ized verification performance compared to the five different
SOTA.

3.5. Interpretation of the proposed method

To interpret the decision achieved by the proposed
method, we employed Local interpretable model-agnostic
explanations (LIME) [32] to explain the perdition’s on the
probe fingervein images. Because the proposed method
is based on both normal and enhanced fingervein images,
we present the qualitative and quantitative results for both
fingervein image types. Table 3 indicates the quantitative
performance of the proposed method with normal and en-
hanced image alone. The obtained results indicated a sim-
ilar verification performance with EER and higher FMR
values. However, with lower FMR values, the proposed
method exhibited better performance with enhanced fin-
gervein samples. Thus, the availability of the enhanced fin-
gervein pattern indicates more discriminant information to
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(a) (b)

Figure 7: Illustration of LIME based explainability on the
proposed method based on the (a) normal and (b) enhanced
fingervein images.

improve verification accuracy at low FMR values.
Figure 7 shows the qualitative results of the LIME

method for visualizing important regions in the fingervein
image, which has contributed to successful verification. The
LIME explanation is shown on the fingervein images from
the FV-300 dataset for successful verification prediction at
FAR = 0.01%. As shown in Figure 7, the proposed method
utilises more image regions with normal fingervein images
compared with the enhanced fingervein to make the deci-
sion. However, with enhanced fingervein images, the de-
cision is based on a smaller number of regions associated
with vein pattern and particularly on the minutiae points of
the fingervein. These observations justify the improved per-
formance of the proposed method with enhanced fingervein
images compared with normal fingervein images.

4. Conclusion

Fingervein biometrics are widely employed in various
secure access control applications. In this study, we
proposed a novel method based on a convolutional multi-
head attention module for reliable fingervein verification.
The proposed VeinAtnNet is based on three consecutive
convolution layers and multihead attention with four heads
and 64 channels connected in parallel to the normal and
enhanced fingervein samples. Finally, the decision is made
using the score-level fusion of the normal and enhanced
fingerveins. Extensive experiments were performed on
both publicly and newly collected finger vein datasets.

The quantitative performance of the proposed method
was benchmarked using five state-of-the-art fingervein
verification methods. The obtained results indicate the
superior performance of the proposed method on both
publicly available and newly collected fingervein datasets.
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