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Abstract

Autism Spectrum Disorder (ASD) is a neurological
disorder. Its primary symptoms include difficulty in
verbal/non-verbal communication and rigid/repetitive be-
havior. Traditional methods of autism diagnosis require
multiple visits to a human specialist. However, this process
is generally time-consuming and may result in a delayed
(early) intervention. In this paper, we present a data-driven
approach to automate autism diagnosis using video clips of
subjects performing simple activities recorded in a weakly
constrained environment. This task is particularly challeng-
ing since the available training data is small, videos from
the two categories (“ASD” and “Control”) are generally
perceptually indistinguishable, and there is no clear under-
standing of what features would be beneficial in this task. To
address these, we present a novel multi-dataset supervised
contrastive learning technique to learn discriminative fea-
tures simultaneously from multiple video datasets with sig-
nificantly diverse distributions. Extensive empirical analy-
ses demonstrate the promise of our approach compared to
competing techniques on this challenging task.

1. Introduction

Autism Spectrum Disorder (ASD), commonly known as
autism, is a neurological disorder that is primarily charac-
terized by difficulty in social interaction. ASD affects a per-
son’s ability to communicate properly with others and is re-
ported to occur across all racial, ethnic and socio-economic
groups. The symptoms of ASD usually start appearing in
early childhood between the age of 1-3 years. These in-
clude a lack of proper eye contact, poor imitation skills
and rigid/repetitive behavior. While the number of identi-
fied ASD cases has increased in the last decade, the current
mean age of ASD diagnosis is reported as 3-12 years [18].
In the recent times, several measures have been adopted to
reduce the mean age of diagnosis. This is particularly cru-
cial since an early diagnosis of ASD leads to an early inter-

Figure 1. Sample frames from video clips of subjects from the
ASD (top) and Control (bottom) categories in the Hand Gesture
dataset [32]. Note that these video clips exhibit low inter-class
variability and are difficult to classify using individual visual cues.

vention and subsequent therapies that significantly benefit
the growth of the affected child. Traditionally, ASD diag-
nosis has been performed physically by an expert medical
practitioner. However, this requires multiple visits and is
thus time-consuming as well as sometimes error-prone.

The limitations of physical ASD diagnosis can be ad-
dressed to a large extent by adopting an automated ap-
proach. In this paper, we present a data-driven approach
for automated autism diagnosis using recorded activity (ac-
tion) video clips of subjects. Each clip captures a subject
performing some specific activity in a loosely controlled en-
vironment, and is much easier and less expensive to acquire
compared to data in other modalities such as EEG, MRI
or eye-tracking. However, it is difficult to obtain a good
prediction accuracy with a machine learning model trained
on such data because (a) the training data contains a small
number of samples, (b) the data is inherently complex to
comprehend, and (c) the video samples (clips) exhibit low
inter-class variability. E.g., Figure 1 shows sample video
frames corresponding to “ASD” and “Control” category in
one such dataset (the Hand Gesture dataset [32]), where we
can observe that both the samples look quite similar. Due to
this, it is difficult to correctly classify samples based on in-
dividual visual cues. In our experiments also, we will show
that a conventional deep neural network can not be directly
adopted for this task for the same reasons.

To address these challenges, we propose to use con-
trastive feature learning [3, 12, 20] to learn distinctions be-

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

7788



tween video clips of the two categories (ASD and Con-
trol) in a relative manner. Specifically, we present a novel
multi-dataset supervised contrastive learning (MSupCL)
technique that learns discriminative features by simultane-
ously using multiple (activity-based) video datasets from
diverse distributions. Thorough empirical experiments on
the two relevant and publicly available datasets (Hand
Gesture [32] and Autism [19]) show that our proposed
approach significantly outperforms competing contrastive
learning techniques [3, 12, 20] on the challenging Hand
Gesture dataset [32], and is comparable to the best ap-
proach on the (easier) Autism dataset [19]. For repro-
ducibility, our code and pre-trained models are available at
https://github.com/asharani97/MDSupCL.

2. Related Work
Several machine learning based techniques have been

proposed in the recent years that aim at performing autism
diagnosis in an automated manner. In general, most of these
efforts have primarily investigated data acquired in the form
of different modalities and posed it as a single-step classi-
fier learning task [9, 11, 13, 15, 17, 21–26, 31, 32]. One of
the early studies on autism diagnosis revealed that autis-
tic individuals have atypical sight [6]. Later, the authors
of [11, 30] further worked on this finding, with [11] focus-
ing on visual bias towards different objects, their contrast
and colour, while [30] focusing on using these aspects to
predict ASD and control subjects using deep features [16].
Another approach to distinguish between the two categories
was introduced in [22], where the first-person viewpoint of
a scene by an individual is compared for analysis. A few
studies that have investigated other modalities of data in-
clude eye-gaze data to distinguish on the basis of visual at-
tention [26], EEG signal [1, 2, 25], and MRI data [9, 13].
Since these different modalities of data are difficult and ex-
pensive to acquire, a recent work [32] introduced the Hand
Gesture dataset which contains short video clips that cap-
ture predefined activities performed by autistic/control sub-
jects in a weakly controlled environment.

It is worth noting that while most of the existing machine
learning based autism diagnosis approaches have analyzed
the pros and cons of using features from different modali-
ties as discussed above, eventually they pose this as a binary
classification task and use a sample-level binary classifier
such as SVM or a deep neural network. Unlike existing ap-
proaches, we aim at learning discriminative features in a rel-
ative manner by simultaneously using two diverse datasets
in a contrastive learning based set-up. The broad idea of
learning from multiple datasets simultaneously has recently
gained popularity [5, 28], where a model is trained by inte-
grating multiple datasets created for a specific task such as
object detection [5], image segmentation [28], etc. In gen-
eral, multi-dataset training aims at learning improved fea-

ture representations given the costly nature of annotation for
diverse downstream applications. This also helps in mini-
mizing the issue of domain shift across different datasets
(also see our discussion in Section 4.4.1). As per our knowl-
edge, ours is the first NT-Xent (normalized temperature-
scaled cross entropy) loss based contrastive learning ap-
proach for a multi-dataset set-up, as well as the the first such
attempt for the activity video-based autism diagnosis task.

3. Proposed Approach

Our approach consists of two steps: learning a deep fea-
ture encoder network using the proposed multi-dataset su-
pervised contrastive learning approach, followed by train-
ing of a dataset-specific classifier for prediction.

3.1. Background and Motivation

Contrastive learning requires positive/similar and nega-
tive/dissimilar pairs of samples, and aims at pulling similar
samples closer than dissimilar samples in the learned fea-
ture space. Our approach is motivated by the success of the
recent contrastive learning techniques such as [3,4,8,12,20].
SSCL [3] is one of the earlier uni-modal approaches that
is based on self-supervised contrastive learning. In this, a
positive pair is generated using a given sample (anchor) and
its transformed version (obtained using some non-learned
transformation; e.g., horizontal flip), and a negative pair is
generated using the same given sample and any other sam-
ple (either from the dataset or the transformed version of
another sample). Extending SSCL, SupCL [12] uses ex-
ternal supervision in the form of category labels for creat-
ing positive pairs, and for each positive pair. In the recent
multi-modal self-supervised approach MSSCL [20], the in-
put data contains paired samples from two different modal-
ities (video and audio) that are extracted from an audio-
video recording, thus naturally giving cross-modal positive
pairs. However, it may not always be feasible to acquire
paired data. Unlike MSSCL, our approach does not require
an explicit pairing of samples. Rather, we take motivation
from [20] and make use of the categorical information to
create multiple cross-dataset positive pairs corresponding
to each anchor. Specifically, we assume that two datasets
may be collected independently and follow different dis-
tributions, however both should contain samples from the
same set of categories. This allows us to create cross-dataset
positive pairs of samples based on categorical supervision
without requiring an explicit pairing as in [20]. Below, we
describe our first step, i.e., generation of pairs for our con-
trastive learning based approach.

3.2. Pair Generation

In our task, we have two datasets D1 = {(vi, yi)} and
D2 = {(vj , yj)}, each containing activity videos of ASD
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Figure 2. Block diagram of our network architecture and training process. We consider two different datasets D1 and D2 for the same
task (i.e. ASD diagnosis in our case) from different distributions. In a batch, there are samples from both the datasets. For cross-dataset
pair generation (Section 3.2), one sample is picked from each dataset (a transformation is applied on only one of these samples). Both
the samples are fed to the encoder network e() to generate the initial feature representations, which are then passed through a multi-layer
perceptron head h() giving us the embeddings zi and zj respectively (Section 3.3). These embeddings are then used to compute the
proposed MSupCL loss (Section 3.4) and train the whole network in an end-to-end manner using a gradient descent method.

and control subjects collected separately; i.e., by indepen-
dent groups of researchers/clinicians under different con-
ditions. During training, a batch consists of samples from
both the datasets. In a batch, for a given sample (anchor)
from one dataset, we create a positive cross-dataset pair by
pairing it with a sample from the second dataset that belongs
to the same category. To create a negative cross-dataset pair
for the same anchor point, we pair it with a sample from
the second dataset that belongs to another category. Specif-
ically, consider an anchor point and its corresponding cat-
egory (va, ya) from one dataset. To create a positive pair,
we pick a sample (vp, yp) from the second dataset such that
ya = yp. To create a negative pair, we pick another sample
(vn, yn) from the second dataset such that ya ̸= yn. We
perform this to obtain all possible pairs in the given batch,
thus resulting in multiple cross-dataset positive and nega-
tive pairs corresponding to each anchor point. These pairs
are then passed to a deep feature extraction (encoder) net-
work, as described next.

3.3. Feature Extraction Network

Given a (positive/negative) pair of videos vi and vj cre-
ated from the datasets D1 and D2 respectively, we pass them
through feature encoder networks ei() and ej() to obtain
their initial feature representations xi and xj respectively.
These feature representations are then passed through fully-
connected layers hi() and hj() and mapped to embeddings

zi and zj respectively (Figure 2). To learn the parameters of
this network, we propose a novel multi-dataset supervised
contrastive loss function, which we describe next.

3.4. Multi-dataset Supervised Contrastive Loss

For a given anchor point va, we create a positive pair
(va, vp) and a negative pair (va, vn) as discussed in the pair
generation step. Let Pa and Na denote the sets of all such
positive and negative samples with respect to va, which
are used to create positive and negative pairs respectively.
These pairs are passed through the feature extraction net-
work as described above to obtain their feature embeddings.
For the anchor va, its positive sample vp and its negative
sample vn, the feature embeddings are denoted by za, zp
and zn respectively. Also, let Ka = Pa ∪ Na be the set
of all such positive and negative samples corresponding to
va. Using these, we calculate the multi-dataset supervised
contrastive loss for va as below:

La
MSupCL = − 1

|Pa|
∑

vp∈Pa

log
exp(za · zp/τ)∑
vk∈Ka exp(za·zk/τ)

(1)

Here, τ denotes the temperature parameter, and the · symbol
denotes the inner (dot) product. This loss is averaged over
all the samples in a batch by considering each sample as an
anchor point at a time to obtain the total loss. This is then
used to train the whole network (Figure 2) in an end-to-end
manner using a gradient descent approach (Section 4.3).
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(a) SSCL [3] (b) SupCL [12] (c) MSSCL [20] (d) MSupCL (Ours)

Figure 3. Schematic comparison of the proposed MSupCL approach with three contrastive learning based methods in terms of network
architectures and training procedures. In all the methods, an input sample vi is first passed through an encoder network e() and then through
a non-linear multi-layer perceptron head h() to get the embedding zi. t() denotes a transformation function that generates a sample v′i from
vi using a simple transformation, which is then used to create a positive pair during training. Here: (a) SSCL is a self-supervised uni-modal
technique that uses an NT-Xent loss. (b) SupCL is a label-supervision based uni-modal technique that uses a supervised contrastive loss.
(c) MSSCL is an extension of SSCL for multi-modal data Di ∪ Dj and requires explicit pairing between cross-modal samples during
training. (d) MSupCL (ours) uses a multiple unpaired datasets simultaneously, however the pairing of data points is done based on label
information instead of explicit pairing as in MSSCL, and is trained using the loss function as described in Section 3.4.

It is worth noting that the loss function in Eq. 1 gen-
eralizes the supervised constrastive loss proposed in [12]
to a multi-dataset set-up, and extends the multi-modal self-
supervised contrastive loss proposed in [20] to benefit from
categorical supervision. We would also like to emphasize
that while we demonstrate our approach on a multi-dataset
set-up, our approach may be easily adapted for data contain-
ing different modalities by plugging appropriate modality-
specific encoder networks.

3.5. Classification

The next step is to train a dataset-specific classification
model. Following earlier related papers [3, 12, 20], we take
only the encoder network from the previously trained net-
work (as shown in Figure 2) and add a new fully-connected
classification layer with softmax activation. To train this
layer of the updated network, we freeze the parameters of
the encoder network and learn those in the classification
layer using the standard cross-entropy loss. This network
is then used for doing prediction on the unseen/test data. It
should be noted that the classification network needs to be
trained for each dataset individually [20].

4. Experiments

In this section, we discuss our experimental setup and
present the empirical results.

4.1. Datasets

We use two activity video datasets in our experiments:
Hand Gesture dataset [32] and Autism dataset [19]. As

per our knowledge, these are the only relevant and pub-
licly accessible activity video datasets for this task. Both
the datasets contain short video clips of subjects where they
are asked to perform some predefined activities in a loosely
controlled environment.
Hand Gesture dataset [32]: This dataset contains video
recordings of four activities (placing, pouring, pass to place,
and pass to pour), each performed multiple times by 39 sub-
jects (19 ASD and 20 Control). As discussed in Section 1
and illustrated in Figure 1, this is a challenging dataset with
high intra-class and low inter-class variability.
Autism dataset [19]: This dataset contains video record-
ings corresponding to eight activities (move the table, touch
ear, lock hands, touch head, touch nose, rolly polly, tapping,
and arms up). Each activity is recorded from two camera
orientations: tutor facing and child-facing. To create this
dataset, the authors of [19] first recorded videos of ASD
subjects, and then obtained samples of the “control” class
by picking a similar number of videos corresponding to the
most identical actions from the HMDB51 dataset [14]. Be-
cause of this, the distributions of the two classes are well-
separated (Figure 4) in this dataset.

4.2. Compared Methods

To examine the effectiveness of the proposed MSupCL
approach, we compare it with competing contrastive learn-
ing techniques including the uni-modal self-supervised
approach SSCL [3], uni-modal supervised approach
SupCL [12], and multi-modal self-supervised approach
MSSCL [20], as illustrated in Figure 3. As a baseline,
we also compare with a standard deep classifier (BinClass)
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Dataset % Accuracy

Activity #Samples BinClass SSCL SupCL MSSCL MSupCL

Pass to Place 139 51.09 70.07 70.80 64.23 89.78
Pass to Pour 140 54.23 73.24 69.72 57.04 81.69

Placing 140 51.43 73.57 67.14 55.71 80.71
Pouring 142 52.11 68.31 69.01 52.11 85.92

Average 561 52.23 71.30 69.16 57.22 84.49

Table 1. Activity-wise and average classification accuracy on the
Hand Gesture dataset. In each row, the best result is highlighted in
bold, while the second best is underlined.

trained using the binary cross-entropy loss.

4.3. Implementation Details

We first pre-process each activity video by extracting key
frames while keeping the sequential information intact. We
uniformly pick 16 and 10 frames from each video sample
of the Hand Gesture and Autism dataset respectively, since
these datasets contain 21-30 frames and 12-20 frames per
video clip respectively. We use the ResNet-based R(2+1)D-
18 [27] network as the encoder network e() in all the com-
pared methods, which is the most widely used feature en-
coder for activity/action datasets. It maps an input video (a
sequence of sampled frames) into a 512-dimensional fea-
ture vector. We pass this feature vector through a fully-
connected layer h() with ReLU activation, giving a 256-
dimensional feature vector. This is then normalized using
the L2-norm and is used to compute the loss function. In our
case, since both the modalities are videos (though obtained
from different sources and thus following different distribu-
tions), we use a duplicated encoder network. For classifi-
cation, we keep only the encoder network and add a fully-
connected classification layer with softmax activation. For
fair comparisons, we use the same approach for classifier
training in the three contrastive learning techniques (SSCL,
SupCL and MSSCL) as used in the proposed MSupCL. In
all the experiments, we keep the train-test ratio as 70:30.

Compute Environment: The experiments were conducted
on a server with shared access, having 8 GTX 1080 Ti
12GB GPUs, Intel Xeon E5-2650 2.20GHz processors, and
256GB RAM. For training MSSCL and MSupCL, 4 GPUs
were used, while for other methods, 2 GPUs were used.

4.4. Results and Discussion

We first compare the classification accuracy of all the
methods on the Hand Gesture dataset in Table 1. We ob-
serve that on this challenging dataset, the baseline binary
classifier is insufficient to learn discriminative features, thus
leading to a poor (near-chance) accuracy. Compared to this,
both SupCL and SSCL achieve significantly higher accu-
racy. Interestingly, we notice that SSCL performs slightly
better than SupCL even without using categorical informa-

Dataset % Accuracy

Activity #Samples BinClass SSCL SupCL MSSCL MSupCL

Touch Nose - Eat 101 100 100 100 98.02 100
Touch head - Shoot Ball 106 98.11 100 97.17 91.51 98.11

Touch ear - Situp 74 97.30 100 95.95 100 98.65
Tapping - Chew 144 97.91 99.31 96.53 98.61 99.31

Rolly Polly - Flic flac 59 100 100 100 100 100
Move the table - Push 101 99.01 100 99.00 96.04 100

Lock Hands - Shake Hands 85 98.82 100 100 97.65 100
Arms Up - Fall Floor 85 98.82 100 97.65 95.29 96.47

Average 755 98.67 99.87 98.14 96.95 99.07

Table 2. Activity-wise and average classification accuracy on the
Autism dataset. In each row, the best results is highlighted in bold,
while the second best is underlined.

tion. We believe this is because of the inherent visual com-
plexity of these task (perceptually indistinguishable vari-
ations among samples from the two categories), coupled
with the technical distinctions between the two approaches
with respect to their loss functions and the way they cre-
ate positive/negative pairs (for further details, we request
the reader the refer to the respective papers). This also in-
dicates that categorical information may not significantly
affect the accuracy of uni-modal approaches in tasks like
ours where the number of samples is small and datasets
depict low inter-class variability. However, the perfor-
mance drops drastically in case of MSSCL, which indicates
that self-supervised learning may not benefit from uncou-
pled/unpaired multi-source data as in our case (note that the
original paper [20] used paired multi-modal data). For the
same reason, we acknowledge that MSSCL is not directly
comparable to our approach. Finally, we can notice that the
proposed MSupCL approach achieves the maximum accu-
racy, which is around 13% (absolute) more than the second-
best method (SSCL). This indicates that multiple unpaired
but labelled datasets can be effectively used for multi-
dataset contrastive learning by creating (positive/negative)
pairs based on categorical information, and thus validates
the utility of our approach over the compared techniques.

Next, we compare the accuracy of all the methods on the
Autism dataset in Table 2. As emphasized in Section 4.1,
the distributions of the two categories in this dataset are
well separated. This becomes evident in the empirical re-
sults where all the compared methods achieve a near-perfect
accuracy with statistically insignificant differences in their
predictions (based on the t-test, with t-value 0.00).

4.4.1 Relation with Knowledge Distillation

Knowledge distillation [7, 10] is a well-studied idea where
the broad objective is to transfer the knowledge of one or
more teacher models to a student model (i.e., model-level
knowledge distillation) for a particular dataset, where the
teacher model is generally assumed to be of more/equal
learning capacity compared to the student model. In our
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Hand Gesture Dataset

(a) BinClass [27] (b) SSCL [3] (c) SupCL [12] (d) MSSCL [20] (e) MSupCL (Ours)

Autism Dataset

(a) BinClass [27] (b) SSCL [3] (c) SupCL [12] (d) MSSCL [20] (e) MSupCL (Ours)

Figure 4. t-SNE visualization of features learned using different methods on the Hand Gesture dataset (top row) and the Autism dataset
(bottom row). The points in blue denote Control samples while those in red denote ASD samples. (Best viewed in colour.)

task, we have two datasets that belong to the same (video)
modality, are developed for the same task (i.e., ASD diagno-
sis), and also have the same output space (ASD versus Con-
trol). However, these datasets are collected separately by
different groups of researchers under different conditions.
Due to this, they lie in completely different spaces and their
sample distributions are non-comparable, thus making this a
multi-dataset task. Further, one (Autism) dataset is easy for
which we can train a model that achieves high accuracy (c.f.,
Table 2), and the other (Hand Gesture) dataset is difficult for
which the accuracy is relatively low (c.f., Table 1), while
considering the same network architecture (learning capac-
ity) for both. The quantitative results discussed above indi-
cate that while the classification accuracy is nearly saturated
on the Autism dataset, it can contribute in boosting the accu-
racy on the more challenging Hand Gesture dataset through
our contrastive learning based multi-dataset approach. In
other words, our approach seamlessly distills (extracts and
propagates) task-specific knowledge from the easy dataset
to the model trained for the difficult dataset and improves
its accuracy, thus resulting in data-level knowledge distilla-
tion. As per our knowledge, this is the first such attempt on
this task, and we believe that our approach may also benefit
other healthcare/biomedical applications.

4.5. Analyses

The above results are supported by the t-SNE [29] vi-
sualization of the features learned by different methods on
the two datasets as shown in Figure 4. Here, we can ob-

serve that for the Hand Gesture dataset, the samples from
the two classes (ASD and Control) are best separated using
our MSupCL approach. However, for the Autism dataset,
the samples are well-separated in all the cases, thus leading
to a high classification accuracy.

Figure 5 shows the confusion matrix for all the meth-
ods on the Hand Gesture dataset. (we do not include the
confusion matrix for the Autism dataset as all the methods
achieve a near perfect accuracy on this dataset with statisti-
cally insignificant difference). We can observe that the bi-
nary classifier classifies most of the samples as ASD, which
means it cannot differentiate between the ASD and Control
samples. On the other hand, while SupCL and MSSCL cor-
rectly predict majority of Control samples, the number of
incorrect ASD predictions is relatively higher. SSCL per-
forms good for ASD samples but also misclassifies a large
number of Control samples to ASD. MSupCL improves
upon SSCL as it correctly classifies more number of Con-
trol samples than any other method, while the number of
correct predictions for ASD is comparable to SSCL.

4.6. Ablation Study

In Figure 6, we analyze the impact of different hyper-
parameters on MSupCL’s performance using the Hand Ges-
ture dataset (we use the same set of hyper-parameters for
both the datasets). In Figure 6(a), we first study the im-
portance of the final feature embedding size (z) by varying
it in the range {32, 64, 128, 256, 512, 1024}. We observe
that initially the accuracy increases as we increase the em-

7793



Hand Gesture Dataset

(a) BinClass [27] (b) SSCL [3] (c) SupCL [12] (d) MSSCL [20] (e) MSupCL (Ours)

Figure 5. Confusion matrix for different methods on the Hand Gesture dataset. Here, ‘0’ corresponds to the Control category and ‘1’
corresponds to the ASD category.

Hand Gesture Dataset

(a) Embedding dimension (b) Temperature parameter (τ ) (c) Batch-size

Figure 6. Ablation study on the Hand Gesture dataset by varying different hyper-parameters. In each plot, the vertical axis denotes
percentage classification accuracy.

bedding size, and then it starts to drop. Next, we study the
impact of the temperature parameter τ in Figure 6(b), where
we observe that a lower value of τ gives better results. In
Figure 6(c), we compare the model’s performance using dif-
ferent batch-sizes and find that the accuracy first improves
and then declines on increasing the batch-size. It is interest-
ing to note that our observations on projection dimension
and temperature are in-line with those reported in [3, 12].
However, we observe a decline in performance on increas-
ing the batch-size from 12 to 16. We believe this is because
of the characteristics of this dataset where we have only two
categories to distinguish (ASD and Control), and a medium
batch-size of 12 is possibly optimum to segregate a group
of similar and dissimilar pairs in a relative manner.

4.7. Qualitative Results

In Figure 7, we compare the predictions made by the two
top-performing methods SSCL and MSupCL on examples
from the Hand Gesture dataset, for both ASD and Control
categories. Along with each example, we also show the
confidence score of these methods, and whether the predic-
tion was correct/incorrect. Here, the first row shows exam-
ples that are correctly classified by both the methods, the
middle row shows examples that are correctly classified by
MSupCL but misclassified by SSCL, and the last row shows
examples that are misclassified by both the methods. In gen-

eral, we observe that MSupCL has a relatively high con-
fidence score in cases where it makes correct predictions,
and a low (near chance) confidence when it makes an incor-
rect prediction. On the other hand, SSCL has a relatively
low confidence score in cases where it makes correct pre-
dictions, and a high confidence when it makes an incorrect
prediction. Overall, these results validate the promise of the
presented MSupCL approach on this challenging task.

5. Summary and Conclusion
Automated ASD diagnosis is a challenging and long-

standing research problem. Over the last few years, dif-
ferent groups of researchers have independently collected
various datasets to demonstrate the effectiveness of existing
machine learning techniques on this task. These datasets
generally contain a small number (a few hundreds) of sam-
ples having low inter-class and high intra-class variability.
In this paper, we have made an attempt towards addressing
these challenges by integrating knowledge from two inde-
pendently collected and significantly diverse video datasets
in a contrastive learning set-up. To do so, we have pre-
sented a multi-dataset supervised contrastive learning tech-
nique, and empirically demonstrated its superiority over the
competing techniques such as [3,12,20]. On a general note,
our experiments demonstrate that contrastive learning tech-
niques, that learn discriminative features in a relative man-

7794



Ground-truth: “ASD” Ground-truth: “Control”

Figure 7. Qualitative comparisons from the Hand Gesture dataset. The left and right columns show examples from the ASD and Control
categories respectively. Along with each example, we show the confidence score of SSCL [3] and MSupCL (ours).

ner, can be quite beneficial in automating healthcare-related
tasks that suffer from the above challenges.

Limitations and Potential Negative Social Impact
While our approach outperforms competing techniques

and achieves compelling results given the challenges in-
volved in this task, one important limitation of all the exam-
ined techniques is their substantially high false-positive and
false-negative rates (Figure 5). Because of this, we believe
more research efforts will be required to make such systems
deployable. Also, since ours is a computational learning
based study, our experiments consumed energy produced
by burning of fossil fuels and warmed our planet.

Compliance with ethical standards
This research study was conducted retrospectively using

human subject data provided by the authors of [32] (Hand
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