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Abstract

In recent years, transformer-based models have domi-
nated panoptic segmentation, thanks to their strong mod-
eling capabilities and their unified representation for both
semantic and instance classes as global binary masks. In
this paper, we revisit pure convolution model and propose a
novel panoptic architecture named MaskConver. MaskCon-
ver proposes to fully unify things and stuff representa-
tion by predicting their centers. To that extent, it cre-
ates a lightweight class embedding module that can break
the ties when multiple centers co-exist in the same loca-
tion. Furthermore, our study shows that the decoder de-
sign is critical in ensuring that the model has sufficient
context for accurate detection and segmentation. We intro-
duce a powerful ConvNeXt-UNet decoder that closes the
performance gap between convolution- and transformer-
based models. With ResNet50 backbone, our MaskConver
achieves 53.6% PQ on the COCO panoptic val set, out-
performing the modern convolution-based model, Panoptic
FCN, by 9.3% as well as transformer-based models such
as Mask2Former (+1.7% PQ) and kMaX-DeepLab (+0.6%
PQ). Additionally, MaskConver with a MobileNet backbone
reaches 37.2% PQ, improving over Panoptic-DeepLab by
+6.4% under the same FLOPs/latency constraints. A fur-
ther optimized version of MaskConver achieves 29.7% PQ,
while running in real-time on mobile devices. The code and
model weights will be publicly available. 1

1. Introduction
Panoptic segmentation [38] aims to unify instance [23]

and semantic segmentation [25] in the same framework. Ex-
isting works propose to merge instance and semantic seg-
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Figure 1. MaskConver versus existing panoptic models.
MaskConver successfully bridges the gap between the modern
convolution-based method, Panoptic FCN, and the transformer-
based methods, Mask2Former and kMaX-DeepLab. In the effi-
cient model setting, MaskConver outperforms Panoptic-DeepLab
under the same FLOPs/latency constraints.

mentation outputs using post-processing layers [37, 51, 78,
81]. These architectures however rely on many customized
components like non-maximum suppression (NMS), and
thing-stuff merging heuristics to produce panoptic outputs.
Recent works [11,12,47,72,82,83] unify both segmentation
tasks by producing binary masks and class scores for both
things and stuff classes. Such universal architectures result
in a simpler post-processing logic and make the loss closely
correlated with the panoptic quality (PQ) metric. As a re-
sult, they have achieved significantly higher PQ numbers
compared to traditional architectures.

Among these unified panoptic segmentation models,
transformers [71] have played a critical role due to their
ability to learn instance-level embeddings via a transformer
decoder. DETR [6] was introduced for object detection
by learning object embeddings, each of which predicts an
object class and a bounding box. The idea of instance-
level embeddings influenced many of the transformer-based
panoptic models. Following DETR, MaX-DeepLab [72]
uses a transformer decoder to learn mask embeddings [33,
67, 76] to predict a set of binary masks. The binary masks
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are then merged using a simple post-processing layer [77]
to filter out duplicates, similar to NMS. Other architec-
tures [11, 12, 47, 82, 83] follow a similar paradigm, but
further improved the performance by developing modern
transformer decoders [91]. The commonality between these
methods is the employment of transformer blocks to learn a
set of binary masks and their corresponding classes (hence
the panoptic masks). On the other hand, the convolution-
based methods [10, 46] lag behind in performance. It is yet
unclear if using transformers justifies the quality gap com-
pared to convolution-based models.

In this work, we revisit the pure convolution panoptic
models [10,46] and propose a novel architecture for panop-
tic segmentation (Fig. 2), named MaskConver, which pro-
duces segmentation masks for thing and stuff classes in a
unified way. The meta architecture of MaskConver contains
four main components: backbone, pixel decoder, prediction
heads, and mask embedding generator. The backbone is a
typical ImageNet [61] pretrained convolutional neural net-
work (ConvNet) [40], such as ResNet [24]. We design a
novel pixel-decoder, ConvNeXt-UNet, which deploys Con-
vNeXt blocks [54] in a manner similar to UNet decoder [60]
but in an asymmetric way. Particularly, in the decoder, we
discover that it is critical to stack more ConvNeXt blocks at
the highest level (i.e., level 5 with stride 32), which bene-
fits the model to effectively learn context information. The
prediction heads include three predictions: Center Heatmap
Prediction, Center Embedding Prediction, and Mask Fea-
ture Prediction. The Center Heatmap prediction predicts
the center point heatmaps [90] for both things and stuff.
We utilize the mask centers instead of box centers to rep-
resent both things and stuff. The Center Embedding Head
generates the embeddings for the center points, while the
Mask Feature Head produces the mask features. Finally, the
Mask Embedding Generator aims to generate high-quality
mask embeddings by taking into account the “instance colli-
sion”, where the center points of neighboring instances may
collide, yielding the same (indistinguishable) center embed-
dings. To alleviate the issue, it first produces the class em-
beddings (via Class Embedding Lookup Table) by taking
the predicted semantic classes of the center points. The out-
put mask embeddings are then obtained by modulating the
center embeddings with the class embeddings (via addition
and MLP) to a different space conditioned on the seman-
tic class of the instance. Finally, the mask embeddings are
multiplied with the mask features to produce segmentation
masks for things and stuff in a unified way.

We evaluate the quality of MaskConver in several set-
tings on COCO panoptic segmentation dataset [50]. On
the COCO validation set, our proposed ConvNeXt-UNet
pixel decoder improves the PQ of the solid pixel decoder
baseline BiFPN [66] by +3.1%, while being 18% more
efficient on FLOPs. When using the ResNet50 back-

bone [24], MaskConver achieves 53.6% and runs at 19.6
FPS on a V100 GPU. Our model demonstrates significant
gains (+9.3%) compared to the modern convolution-based
method, Panoptic FCN [46], while also outperforming the
transformer-based models like Mask2Former [11] (+1.7%)
and kMaX-DeepLab [83] (+0.6%). When using the Mo-
bileNet backbone [29], MaskConver achieves 37.2% PQ,
which is 6.4% better than Panoptic-DeepLab [10]. In addi-
tion, after further optimization via quantization, MaskCon-
ver runs at 30 FPS on Pixel 6 GPU, while achieving 29.7%
PQ.

2. Related Work
Since the proposal of panoptic segmentation in [38], nu-

merous efforts have emerged in this domain. Initiatives
began with adaptations to existing networks, adding ei-
ther a semantic [37] or an instance branch [10] to state-
of-the-art models These methods established a baseline
using hand-crafted post-processing layers [37, 51, 78, 81]
for final panoptic predictions. Following these works, re-
searchers start to think about architectures that can solve
the task in a more unified way. MaX-DeepLab [72] learns
mask embeddings [33, 67, 76] in the transformer frame-
work for both thing and stuff classes. These mask embed-
dings predict a set of binary masks, and a post-processing
layer [77] is used to predict the final panoptic outputs.
MaskFormer [12] proposes a similar paradigm, and shows
how to use the same model for both semantic and panoptic
segmentation by only modifying the post-processing logic.
Panoptic-Segformer [47] extends Deformable DETR [91]
for the panoptic segmentation task. CMT-DeepLab [82]
reformulates the transformer cross-attention from the clus-
tering perspective. Mask2Former [11] proposes masked-
attention to significantly outperform MaskFormer architec-
ture on smaller objects by masking unrelated parts of the
image. kMaX-DeepLab [83] improves MaX-DeepLab by
reformulating the cross attention layers to mimic k-means
algorithm. Similarly, our MaskConver learns mask embed-
dings for both thing and stuff classes, but only uses fully
convolutional layers [55] without any transformer blocks.

Transformers have surpassed ConvNets on several vi-
sion problems beyond panoptic segmentation [32, 42] in-
cluding classification [16, 18, 20, 52, 53, 75, 80], detec-
tion [6, 21, 41, 44, 84], and segmentation [17, 63, 73, 79, 88].
Recently, ConvNeXt [54], a pure convolution-based back-
bone, provides competitive performance compared to trans-
former architectures, while preserving the simplicity and ef-
ficiency of ConvNets. ConvNeXt block adopts depthwise
convolutions with a large kernel size 7× 7, layer norm [2],
and layer scale [69]. In this work, we adopt the ConvNeXt
block as a building block for our pixel decoder. The design
is further improved by using Squeeze-and-Excitation [31]
layer that improves the performance with little impact on
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Figure 2. Illustration of MaskConver architecture. The meta architecture of MaskConver contains four components: backbone (gray),
pixel decoder (pink), prediction heads (light blue), and mask embedding generator (green). The backbone is any commonly deployed
neural network, e.g., ResNet50. We propose a novel ConvNeXt-UNet for the pixel decoder, which effectively captures long-range context
and high-level semantics by stacking many ConvNeXt blocks at the highest level of backbone. We propose three prediction heads: Center
Heatmap Head (for predicting center point heatmaps), Center Embedding Head (for predicting the embeddings for center points), and
Mask Feature Head (for generating mask features). The Mask Embedding Generator first produces the class embeddings via a lookup
table (Class Embedding Lookup Table module) by taking the predicted semantic classes from the top-K center points. The output mask
embeddings are obtained by modulating the class embeddings with the center embeddings (via addition and MLP) to mitigate the center
point collision between instances of different classes. In the end, the mask features are multiplied with the mask embeddings to generate
the final binary masks. Unlike transformer-based methods, MaskConver only exploits convolutions without any self- or cross-attentions.

the model latency and FLOPs.
Panoptic FCN [46] employs the fully convolutional ar-

chitecture [55] that predicts things and stuff classes in a
unified way, through the convolutional kernel generator to
predict things and stuff kernels. These kernels are used
to predict binary masks. Although Panopic FCN unifies
things and stuff classes towards the post-processing, the ker-
nel generator still treats things and stuff differently (par-
ticularly, they represent things as centers, but stuff as re-
gions). Panoptic FCN’s quality is lagging behind the re-
cent transformer-based panoptic models. To bridge the gap,
MaskConver proposes to fully unify the architecture by only
relying on things and stuff centers. It creates a lightweight
class embedding module that can break the ties when multi-
ple centers co-exist in the same location. MaskConver also
introduces a novel pixel decoder (ConvNeXt-UNet), which
provides the model with sufficient context to produce high
quality centers and mask predictions.
Efficient Panoptic Segmentation models are less explored,
since most architectures focus more on pushing the panop-
tic quality instead of having more efficient architectures.
Panoptic-DeepLab [8, 10] reports quality and latency num-
bers on a V100 GPU when using MobileNetV3 back-

bone [29] on an image size of 640×640. Hou et al. [28] pro-
pose a single-shot panoptic segmentation model that runs in
real-time on a V100 GPU. In this work, we tailor MaskCon-
ver architecture for mobile devices (Pixel 6) through a set of
architectural design choices.

Various lightweight model backbones, including Mo-
bileNet [29, 30, 62], EfficientNet [64, 65], and Shuf-
fleNet [57, 86], have been proposed. They are designed
for low computational power devices, like mobile CPU and
GPU. A multi-hardware MobileNet (MobileNet-MH) [14],
discovered by neural architecture search [4, 92] and opti-
mized for multiple hardware [5], achieves state-of-the-art
latency and accuracy trade-off on a variety of mobile de-
vices, and has been adopted as the backbone for the seman-
tic segmentation task [74]. To evaluate MaskConver for
mobile use cases, we use MobileNet-MH since it delivers
similar accuracy as MobileNetV3 [29], while being more
compatible with different mobile devices.
Center Point Representation is used in tasks like 2D de-
tection, tracking, action recognition, instance segmentation
and panoptic segmentation [34,45,81,89,90]. In this work,
we propose to utilize the center point to model both things
and stuff. Additionally, we propose to utilize the mask cen-
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Figure 3. Pixel decoder with ConvNeXt blocks. We deploy the
modified ConvNeXt blocks in a manner similar to UNet, but em-
ploy more blocks in the high level (i.e., level L5 with stride 32).

ters instead of box centers.

3. Method
Fig. 2 shows the meta architecture of MaskConver, con-

taining four main components: backbone, pixel decoder,
prediction heads, and mask embedding generator.
Overview. The backbone is a typical convolutional neu-
ral network, such as ResNet [24] and MobileNet [30]. A
novel pixel decoder ConvNeXt-UNet is proposed to gener-
ate the image features, on top of which prediction heads are
appended. We propose three prediction heads: (1) Center
Heatmap Head that predicts center point heatmaps [90] for
both things and stuff, (2) Center Embedding Head that pre-
dicts embeddings for the center points, and (3) Mask Fea-
ture Head that yields mask features. The Mask Embedding
Generator generates the mask embeddings by taking as in-
put both the top-K confident predicted centers (their seman-
tic classes and coordinates) and the center embeddings. In
the end, a set of binary masks are obtained by multiplying
the mask features with the mask embeddings [72]. We will
first explain our design motivations before detailing the pro-
posed modules in the following subsections.
Motivations. Convolution-based models [10, 46] lag in
performance, compared to transformer-based models [11,
83]. We carefully look into the mask transformer frame-
works [11, 72, 83], and discover that the advantages of em-
ploying transformer blocks [71] are twofold: the attention
mechanism [3] effectively enriches the pixel decoder with
long-range information (thus generates high quality masks)
and the object queries produce thing and stuff segmentation
masks in a unified way. The observation motivates us to re-
visit the existing convolution-based methods [10,46] by de-
signing a better pixel decoder ( Sec. 3.1), prediction heads
( Sec. 3.2), and mask embedding generator ( Sec. 3.3).

3.1. Pixel Decoder: ConvNeXt-UNet

To bridge the gap with transformer-based methods, we
first design a novel pixel decoder ConvNeXt-UNet, as

7x7, d

LN

1x1, 4d

SqueezeExcitation

1x1, d

GeLU

Figure 4. Modified ConvNeXt block (ConvNeXt-SE). On top of
the original ConvNeXt block, we additionally include the squeeze-
and-excitation operation in-between the 1× 1 convolutions.

shown in Fig. 3, consisting of the modern ConvNeXt
blocks [54] deployed in a manner similar to UNet [60]
to generate image features. Notably, ConvNeXt-UNet de-
ploys more ConvNeXt blocks at the highest level L5 of
backbone (stride 32). Thanks to the large kernel design,
stacking more ConvNeXt blocks at level L5 effectively cap-
tures long-range context information and high-level seman-
tics. Specifically, the decoder architecture is defined by two
hyper-parameters: number of repeats, N = [N5, N4, N3],
and channel sizes, D = [D5, D4, D3], determining the UNet
structure from high level L5 (stride 32) to low level L3
(stride 8). For example, setting N5 = 18 and D5 = 384
means the deployment of 18 ConvNeXt blocks with 384
channels at the level L5. Additionally, we empirically find it
effective to add another Squeeze-and-Excitation [31] layer
in the ConvNeXt block (called ConvNeXt-SE), as shown in
Fig. 4, which improves the model capacity at the cost of
extra marginal parameters and negligible FLOPs.

3.2. Prediction Heads

On top of the image features generated by the proposed
pixel decoder, we build three prediction heads for center
heatmaps, class embeddings, and mask features. Below, we
first explain the structure of our prediction heads.
Light Structure of Head. Unlike existing methods [7, 49,
90] that commonly employ 3×3 convolutions in the predic-
tion heads and introduce heavy computations on low level
features (i.e., stride 8 or even stride 4 features), MaskCon-
ver, following the design principle of ConvNeXt [54],
adopts depthwise convolutions with a large kernel size 7×7
(along with layer normalization [2] and GeLU activation
function [26]). This design reduces the FLOPs significantly
with no degradation in the panoptic quality.
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Center Heatmap Head. Extending object detection meth-
ods [68, 90], we propose to use center point representation
for both things and stuff. We empirically discover that mask
center is a better representation than bounding box center.
The Center Heatmap Head produces a feature map with
shape Hi×Wi×Cclass, where Hi and Wi are the height and
width of i-th level feature map in the feature pyramid [48],
and Cclass is the number of semantic classes. We will feed
the top-K most confident predicted center points (their pre-
dicted semantic classes and coordinates) to the Mask Em-
bedding Generator.
Center Embedding Head. The Center Embedding Head
generates the embeddings for center points with shape Hi×
Wi × Cembd, where Cembd is the channel size of embed-
dings. Its output is fed into the Mask Embedding Generator
to gather K center embeddings for the top-K most confident
predicted center points (based on their coordinates).
Mask Feature Head. The Mask Feature Head combines
the decoder features from L5 to L3 to create the mask fea-
tures. This is done by resizing all the decoder features to
the same size (stride 4) and summing them together, before
feeding to the light prediction head. The resulting mask
features have shape H/4 ×W/4 × Cembd, where H and W
are the height and width of input image, respectively. The
mask features, multiplied with the mask embeddings (from
the Mask Embedding Generator, detailed in Sec. 3.3), gen-
erate the final output: a set of K binary masks.

3.3. Mask Embedding Generator

The Mask Embedding Generator is one of the crucial de-
signs in MaskConver, aiming to generate high quality mask
embeddings. It takes as input both the top-K most confi-
dent predicted centers from the Center Heatmap Head (their
semantic classes and coordinates) and center embeddings
from the Center Embedding Head.

An naı̈ve design would be the simple gathering of the K
center embeddings based on the top-K center coordinates
(i.e., directly use the K center embeddings as mask embed-
dings). However, it results in an inferior performance, as
we observe the confusion caused by neighboring instances,
especially when their centers collide, leading to exactly the
same embedding vector being gathered from the output of
Center Embedding Head.

Therefore, we propose to additionally exploit the class
embeddings, which learn to embed each semantic class to
a vector of size Cembd. The class embeddings are used
to modulate (via addition and a MLP) the center embed-
dings, mitigating the center collisions caused by instances
of different semantic classes. Specifically, we design a
“Class Embedding Lookup Table” module, which stores the
learned embeddings for semantic classes. For the top-K
centers, we infer their most likely semantic classes, and ob-
tain their corresponding class embeddings from the module.

Figure 5. tSNE [70] plot of learned class embeddings split by
things and stuff. Orange crosses are thing classes and green dots
are stuff classes. Our learned class embedding separates things
and stuff classes automatically.

We then add the obtained class embeddings and the center
embeddings, and pass them to a MLP module (two fully-
connected layers) to generate the final mask embeddings.
We note that exploiting the class embeddings is critical to
the quality of the predicted mask embeddings. It ensures
that each instance will have a unique embedding vector,
avoiding the problem of instance center collision.

Fig. 5 visualizes the learned class embeddings for things
and stuff, using tSNE [70]. As shown in the figure, there are
two well-separated clusters: one for things and the other for
stuff. As a result, the center collision between things and
stuff is alleviated by adding the class embeddings and center
embeddings, forming better mask embeddings to generate
high quality masks. We will show in experiments that class
embeddings provide a decent performance improvements.

4. Experimental Results
We evaluate the effectiveness of the proposed MaskCon-

ver on the challenging COCO dataset [50]. COCO has
118,287 training images and 5,000 validation images. It
has 80 thing categories and 53 stuff categories. The code
and model weights will be publicly available.

4.1. Implementation Details

Training Strategy. The Center Heatmap Head is super-
vised by the Focal loss [49], while the final mask predic-
tion is supervised by binary cross entropy loss and Dice
loss [58]. The total loss is thus defined as: Losstotal =
λcentersLosscenters + λbceLossbce + λdiceLossdice. Across all
experiments and unless stated otherwise, we fix the weight-
ing factors as λcenters = 1, λbce = 10, and λdice = 10. We
use Adam weight decay optimizer (AdamW) [36, 56] with
learning rate of 0.001, and weight decay of 0.05. Expo-
nential Moving Average (EMA) [59] optimizer is used with
average decay of 0.99996. We train the models for 270k it-

855



Architecture Backbone Params FLOPs PQ PQthing PQstuff FPS

Transformer Based
DETR [6] ResNet50 [24] - - 43.4 - - -
MaskFormer [12] ResNet50 [24] 45M 181B 46.5 51.0 39.8 17.6
K-Net [85] ResNet50 [24] - - 47.1 51.7 40.3 -
CMT-DeepLab [82] ResNet50 [24] - - 48.5 - - -
Panoptic SegFormer [47] ResNet50 [24] 51M 214B 49.6 54.4 42.4 7.8
Mask2Former [11] ResNet50 [24] 44M 226B 51.9 57.7 43.0 8.6
kMaX-DeepLab [83] ResNet50 [24] 57M 168B 53.0 58.3 44.9 22.8

Convolutional Based
Real-time Panoptic [10]† ResNet50 [28] - - 37.1 41.0 31.3 16
Panoptic FPN [37] ResNet50 [24] - - 39.0 45.9 28.7 17.5
Panoptic-DeepLab [10] Xception-71 [13] - 279B 39.7 43.9 33.2 7.5
SOLO-V2 [76] ResNet50 [24] - - 42.1 49.6 30.7 -
Unifying [43] ResNet50 [24] - - 43.3 48.6 35.5 -
Panoptic FCN [46] ResNet50 [24] - - 44.3 50.0 35.6 9.2
MaskConver (ours) ResNet50 [24] 57M 171B 53.6 58.9 45.6 19.6

Efficient Models
Panoptic-DeepLab [10] MobileNetV3L [29] - 12.2B 30.0 - - -
Panoptic-DeepLab [10]† MobileNet-MH [14] 3.9M 13.9B 30.8 - - 74
MaskConver (ours) MobileNet-MH [14] 3.4M 9.5B 37.2 39.8 33.1 105
MaskConver-256‡ (ours) MobileNet-MH [14] 3.4M 1.5B 29.7 30.0 29.2 375

Table 1. Comparison with existing models on COCO panoptic validation set. The FLOPs and latency are measured on a V100 GPU,
using input size 800 × 1200 and 640 × 640 for ResNet50 and MobileNet backbones, respectively, following kMaX-DeepLab [83] and
Panoptic-DeepLab [10]. †: Reimplemented, using the same MobileNet-MH backbone. ‡: Method evaluated with input size 256× 256.

erations and batch size of 128. The input images are resized
and padded to 1280×1280 or 640×640 for ResNet50 [24]
or MobileNet [14, 29], respectively, following [10, 83]. We
use stronger scale jittering [19, 22] with random scale of
0.05 to 2.9 (we observed overfitting if using (0.1 to 1.9)).
Additionally, following [83], panoptic Copy-Paste augmen-
tation [22, 35] is used. We note that our model is built on
top of TF Vision Garden [27] in TensorFlow [1], which does
not support advanced dynamic mechanisms used in modern
panoptic segmentation models [11], such as deformable at-
tention [91] and uncertainty-based point supervision [39].
Inference Strategy. To predict K centers, we employ a
simple NMS (non-maximum suppression) layer by apply-
ing a 3× 3 max-pooling to the Center Heatmap Head’s out-
put. The locations and corresponding semantic classes from
these top-K centers are subsequently used to obtain the cen-
ter embeddings and class embeddings, which are combined
to generate the mask embeddings and produce the final K
binary masks. We follow the post-processing logic of [12]
to generate panoptic segmentation outputs. We use a score
threshold of 0.2, and overlapping threshold of 0.75.
MaskConver w/ ResNet50 Backbone. We provide
more details for MaskConver architecture, when using the
ResNet50 backbone [24]. For the proposed ConvNeXt-
UNet pixel decoder, we set N = [18, 1, 1] and D =

[384, 384, 384], i.e., stacking 18 ConvNeXt-SE blocks with
384 channels at the L5 level, and only one ConvNeXt-SE
block at L4 and L3 levels. The Center Heatmap Head and
Center Embedding Head are attached from levels L3 to L7,
where extra strided 7×7 depthwise convolutions are applied
to the backbone to get L6 and L7.
MaskConver w/ Efficient Backbone. We make some
changes, when deloying MaskConver with efficient back-
bones [14, 29]. The Center Heatmap Head and Center
Embedding Head are only appended to a single scale,
i.e., L3 feature map in the feature pyramid. We exper-
iment with MobileNetV3-Large [29] and multi-hardware
MobileNet (MobileNet-MH) [14] as the backbone. The
ConvNeXt-UNet pixel decoder is replaced with the sim-
pler DeepLabv3+ decoder [9]. For efficiency, we use hard-
sigmoid [15], since sigmoid is costly on mobile devices.
The model is converted to TFLite models and benchmarked
on mobile devices to obtain the latency. We also apply
weight-only post-training quantization to further speed up
the model by 2×.

4.2. Main Results

In Tab. 1, we compare the proposed MaskConver with
other methods in three categories: convolution-based,
transformer-based, and efficient models.
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Convolution-Based Models. In the category of
convolution-based Models (i.e., middle group in Tab. 1),
MaskConver consistently outperforms all the other
convolution-based methods in terms of both performance
(PQ) and speed (FPS). Particularly, when comparing with
the state-of-the-art Panoptic FCN [46], MaskConver is
+9.3% PQ better and running 2.13 times faster.
Transformer-Based Models. When compared with
transformer-based models (i.e., top group in Tab. 1),
MaskConver achieves better PQ when using similar
FLOPs/parameters. In particular, MaskConver is +1.7%
better than Mask2Former [11], while also being faster
on a V100 GPU. MaskConver is also +0.6% better than
kMaX-DeepLab [83] with a slightly higher number of flops.
These results suggest that with a better designed pixel
decoder, prediction heads, and mask embedding genera-
tor, MaskConver can successfully bridge the gap between
transformer- and convolution-based models.
Efficient Models. For efficient models [14, 29] (i.e., bot-
tom group in Tab. 1), we compared MaskConver with
Panoptic-DeepLab [10]. We employ Panoptic-DeepLab
with the same MobileNet-MH backbone [14] and input size
640×640 to have a fair comparison. Our model with 640 in-
put image achieves +6.4% better PQ compared to Panoptic-
DeepLab, while also being 1.42× times faster on a V100
GPU. Furthermore, if we change the input size to 256×256,
our MaskConver-256 achieves a similar PQ to Panoptic-
DeepLab (29.7% vs. 30.8% PQ), while running 5.07× times
faster. Our MaskConver-256 runs real-time on Pixel 6 GPU
with 33 FPS.

4.3. Ablation Studies

We conduct the systematic ablation studies on the
MaskConver architecture, using the ResNet50 backbone.
Pixel Decoder. In Tab. 2, we ablate on the design choices
of pixel decoder. We start with the popular pixel decoder
choice: FPN (feature pyramid network) [48] as our base-
line, which attains the performance of 43.1% PQ. We then
use the more advanced feature pyramid architecture, BiFPN
(bi-directional feature pyramid network) [66], which im-
proves the performance to 47.7% PQ with a reasonable in-
crease in both FLOPs and model parameters, serving as
another solid baseline. After setting the solid baselines,
we explore the structure of the proposed ConvNeXt-UNet
with two hyper-parameters: number of repeats of Con-
vNeXt blocks, N = [N5, N4, N3], and channel sizes, D =
[D5, D4, D3], which determine the UNet structure from high
level L5 (stride 32) to low level L3 (stride 8). We first set
N = [3, 9, 3] and D = [768, 384, 192], which corresponds
to the inverting ConvNeXt-Tiny [54] structure. This sim-
ple design surprisingly improves over the strong baseline
BiFPN by +1.4% PQ, while also being slightly more ef-
ficient in FLOPs. Motivated by the prior works [7, 87]

that employ the multi-scale context module at the highest
level (i.e., stride 32) of backbone, we explore stacking more
ConvNeXt blocks to level 5 to capture more long-range
information and high-level semantics. Hence, we move
most of the blocks to level 5 by setting N = [11, 1, 1] and
D = [512, 383, 384], in order to keep the similar number
of parameters. This structure further improves the perfor-
mance by +1% PQ. To further push the envelope, we ex-
plore stacking more blocks at level 5 by using N = [18, 1, 1]
and D = [384, 384, 384], which yields additional +0.3%
improvement. Finally, employing the proposed ConvNeXt-
SE block (i.e., adding another Squeeze-and-Excitation [31]
layer in ConvNeXt block) improves the PQ by +0.4% with
minor effect on the model FLOPs. Overall, we observe a
+3.1% improvement in PQ compared to the solid baseline
BiFPN [66] with 19% lower FLOPs, and +7.7% improve-
ment in PQ compared to FPN.
Light Structure of Head. In this study, we evaluate the ef-
fectiveness of the adopted light structure of prediction heads
(in Sec. 3.2). As shown in Tab. 3, the light prediction head
using the 7×7 depthwise convolution slightly improves over
the regular 3 × 3 convolution by +0.3% PQ with a signifi-
cant reduction of 75% in FLOPs. This reduction is mainly
because the convolution layers that process low-level fea-
tures (e.g., stride 8 features) are very expensive. Replacing
these regular convolution layers with depthwise convolution
is more efficient for both accuracy and FLOPs.
Class Embeddings. The proposed class embeddings (gen-
erated by Class Embedding Lookup Table in Sec. 3.3) mod-
ulates the center embeddings (via addition and a MLP) to
mitigate the instance collision. In this study, we evalu-
ate its significance, using both ResNet50 and MobileNet-
MH backbone, in Tab. 4. As shown in the table, using the
class embedding (see column ‘Cls-Embd’) shows +1.5%
and +2.3% improvement for ResNet50 and MobileNet-MH,
respectively. These results suggest that using class embed-
dings helps break the tie, when two centers of different
classes are present at the same location. Additionally, the
improvement for MobileNet-MH is more significant, since
MaskConver with MobileNet-MH uses only a single out-
put scale (L3) to predict the centers (for the purpose of effi-
ciency), in which case we expect more center collisions and
hence the class embeddings become more important.
Mask Centers vs. Box Centers. Unlike CenterNet [90],
MaskConver uses mask centers, instead of bounding box
centers. We ablate this design choice in Tab. 5, which shows
+0.6% PQ improvement, when using the mask centers. As
a result, the mask generates a better center representation
than the bounding box.
Effect of Training Strategy. In this study, we evaluate
the effect of several training techniques that are used in our
framework. As shown in Tab. 6, training the model longer
for 270k iterations gives 0.3% improvement over 150k it-
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Pixel Decoder Design FLOPs Params PQ

FPN [48] L3-L7 155B 31M 43.1
BiFPN [66] 6 BiFPN layers, L3-L7 210B 55M 47.7

ConvNeXt-UNet N = [3, 9, 3], D = [768, 384, 192] 195B 54M 49.1
ConvNeXt-UNet N = [11, 1, 1], D = [512, 384, 384] 173B 53M 50.1
ConvNeXt-UNet N = [18, 1, 1], D = [384, 384, 384] 171B 51M 50.4
ConvNeXt-UNet N = [18, 1, 1], D = [384, 384, 384] + SE [31] 171B 57M 50.8

Table 2. Effect of pixel decoder designs on COCO val set. Our final design of ConvNeXt-UNet pixel decoder (last row) stacks many
ConvNeXt blocks at the level 5 (stride 32), effectively capturing long-range information and high-level semantics.

Prediction Head Structure FLOPs Params PQ

3× 3 Convs 696B 68M 53.3
7× 7 Depthwise Convs 171B 57M 53.6

Table 3. Effect of using efficient heads on COCO val set. In
the prediction heads, using 7 × 7 depthwise convolution is more
efficient than 3× 3 convolution in both accuracy and FLOPs.

Backbone Cls-Embd PQ PQthing PQstuff

ResNet-50 7 52.1 57.2 44.1
ResNet-50 3 53.6 58.9 45.6
MobileNet-MH 7 34.9 37.5 31.0
MobileNet-MH 3 37.2 39.8 33.1

Table 4. Significance of class embeddings on COCO val
set. Using class embeddings (Cls-Embd) improves both things
classes (PQthing) and stuff classes (PQstuff) for both ResNet50 and
MobileNet-MH.

Centers FLOPs Params PQ

Box Centers 171B 57M 53.0
Mask Centers 171B 57M 53.6

Table 5. Effect of mask centers on COCO panoptic val set.
Using mask centers improves the PQ compared to box centers.

erations (used in [83]). We did not observe any improve-
ment if we train the model even longer. Using stronger scale
jittering with scale [0.05, 2.9] further improves the perfor-
mance by +0.8%. Finally, the panoptic Copy-Paste [35, 83]
shows a significant improvement with +1.7% PQ. We note
again that our model is built in TensorFlow [1], which does
not support advanced dynamic mechanisms commonly used
in modern panoptic segmentation models [11, 47], such as
deformable attention [91] and uncertainty-based point su-
pervision [39].
Stuff Center vs Stuff Region. We contrast Region-based
and Center-based methods for representing stuff classes
in MaskConver with a ResNet-50 backbone in Tab. 7 on
COCO val set. The center-based approach demonstrates a

Longer Training Strong Aug. Copy-Paste PQ

50.8
3 51.1
3 3 51.9
3 3 3 53.6

Table 6. Effect of training techniques on COCO val set. Our
final setting employs longer training iterations (270k), strong scale
augmentation ([0.05, 2.9]), and panoptic copy-paste.

Stuff Backbone PQstuff FPS

Center Resnet-50 45.6 19.6
Region [46] Resnet-50 45.8 15.4

Table 7. Region-based vs. Center-based stuff representations
using ResNet-50. The table highlights the efficiency gains of the
center-based approach in terms of latency (FPS), while showcas-
ing a minimal compromise in PQstuff.

significant 21% drop in latency (FPS) — a crucial advan-
tage for real-time computer vision applications — with only
a marginal dip in PQstuff.

5. Conclusion

In this work, we have presented MaskConver, revisiting
pure convolution for panoptic segmentation. MaskConver
simplifies the convolution-based panoptic models by uni-
fying things and stuff modeling. Specifically, MaskCon-
ver uses centers to represent both thing and stuff regions,
and employs the light class embedding module to predict
unique embedding vectors for multiple instances that are
present at the same locations. MaskConver also adopted
the ConvNeXt-UNet pixel decoder that provides the pre-
diction heads with long-range context and high-level se-
mantics. With simplified architecture and the ConvNeXt-
UNet, MaskConver closes the gap with the transformer-
based models on COCO dataset. Finally, MaskConver ex-
celled in the mobile domain, thanks to the simplicity and
efficiency of convolutions.
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