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Abstract

Real-world medical datasets often suffer from class im-
balance, which can lead to degraded performance due to
limited samples of the minority class. In another line
of research, Transformer-based multiple instance learning
(Transformer-MIL) has shown promise in addressing the
pairwise correlation between instances in medical whole
slide images (WSIs) with gigapixel resolution and non-
uniform sizes. However, these characteristics pose chal-
lenges for state-of-the-art (SOTA) oversampling methods
aiming at diversifying the minority context in imbalanced
WSIs.

In this paper, we propose an Attention-Guided Prototype
Mixing scheme at the WSI level. We leverage Transformer-
MIL training to determine the distribution of semantic in-
stances and identify relevant instances for cutting and past-
ing across different WSI (bag of instances). To our knowl-
edge, applying Transformer is often limited by memory re-
quirements and time complexity, particularly when deal-
ing with gigabyte-sized WSIs. We introduce the concept of
prototype instances that have smaller representations while
preserving the uniform size and intrinsic features of the
WSI.

We demonstrate that our proposed method can boost per-
formance compared to competitive SOTA oversampling and
augmentation methods at an imbalanced WSI level.

1. Introduction

The demand for computer-assisted diagnosis is increas-
ing steadily. Whole-slide scanning, a widely used tool in
disease diagnosis, facilitates the visualization of tissue sec-
tions. This scanning process involves transforming tissues
on glass into digital whole slide images (WSIs) [20, 44].
However, assisting in the diagnosis of WSIs still poses
challenges: 1) the gigapixel resolution and 2) the lack of
pixel-level annotations. Weakly supervised multiple in-
stance learning (MIL) offers an effective solution for han-

Figure 1. The imbalanced distribution in real medical settings.

dling WSIs by dividing them into small instances and then
constructing an aggregator classifier to make disease pre-
dictions.

Current research efforts heavily focus on the design of
aggregators and the enhancement of feature extraction for
WSI instances [21, 28, 40]. In this approach, each WSI
is treated as a bag containing multiple instances. A WSI
(bag) is labeled as disease-positive if any of its instances
are disease-positive. The aggregator classifier examines the
instance-level predictions and predicts the slide-level labels.
To enhance WSI classification, a Transformer module has
been integrated with the aggregator [28, 30, 41, 42]. This
module incorporates a self-attention mechanism, allowing
it to attend to multiple instances within a bag. This provides
an advantage to the aggregator, as it can consider the corre-
lation information between instances when making disease
predictions.

In another line of research, real-world datasets often ex-
hibit imbalanced or long-tailed class distributions [10, 12,
14, 32]. Some classes have a large number of samples (ma-
jority), while others have a scarcity of samples (minority),
as illustrated in Figure 1. When aggregator classifiers are
trained on imbalanced classes, they can become biased to-
wards the majority class and tend to have poor abilities in
recognizing the minority class.
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To address this imbalance issue, oversampling augmen-
tation has been proposed to enhance the classifier’s perfor-
mance. Balanced-MixUp [15] and CMO [27] are employed
to mix images with uniform sizes from the majority and
minority classes. Given an original image from a minor-
ity class, they randomly select regions of various sizes and
paste them onto different images from the majority class.
The label pairs are mixed according to a specific combina-
tion ratio. This approach addresses the problem of naive
oversampling [29], which can intensify overfitting by du-
plicating samples without introducing sufficient diversity.
While such methods have shown substantial performance
gains on imbalanced natural image datasets, we argue that
they may not be as helpful for medical images, especially
for whole slide images (WSIs). This is because the rep-
resentation of WSI in the MIL classifier involves a bag of
instances that exhibit non-uniform sizes [9], and the WSI
that contain tumor instances are limited (< 20% of the bag)
and randomly distributed [2].

To address the above challenges, this work presents a
self-attention mechanism to identify the most relevant in-
stances with its corresponding slide label based on the
Transformer-MIL classifier. Specifically, our key contribu-
tions are summarized as follows:

• We introduce a novel attention-guided approach to di-
versify the minority context in imbalanced whole slide
image (WSI) classification learning. Unlike existing
methods such as CMO and Balanced-MixUp, which
randomly mix the minority context and maintain uni-
form size, our proposed approach achieves diversity by
selectively mixing the context and allowing for non-
uniform sizes (e.g., WSI).

• To our knowledge, the Transformer module is known
to have limitations due to its complexity and is only
suitable for handling shorter sequences (e.g., less than
100) [28, 33, 41]. We introduce the concept of pro-
totype instances derived from parameterized instances
with neural network on each individual bag. These
prototype instances have smaller representations while
preserving the uniform aspect size and intrinsic fea-
tures of a WSI.

• We empirically demonstrate the effectiveness of our
proposed method through experiments and ablation
studies in imbalanced WSI classification.

2. Related works

We introduce the prior studies relevant to our work in
this section, and remark the main difference between our
method and previous works.

2.1. MIL and Transformer for WSI classification

In the early stages, MIL aggregators were designed us-
ing handcrafted approaches such as mean-pooling and max-
pooling [24]. With the advent of deep neural network, as-
signing aggregators with neural network weights has proven
to be more advantageous. An attention-based aggregator
model associated with a neural network was proposed in
ABMIL [18]. CLAM [23] introduced an attention mech-
anism in front of the slide-level classifier to enable the
aggregator model to identify relevant regions within the
slide image. DSMIL [21] proposed a non-local attention
mechanism to calculate the relationships between critical
instances and the remaining instances. DTFD-MIL [40]
presented pseudo instance labels and a double-tier MIL ap-
proach. In case of imbalanced bags, MuRCL [43] investi-
gated the latent relationships among instances through re-
inforcement learning to discriminate negative and positive
instances. Liu et al. [22] proposed using pseudo instance
labels obtained from the aggregator to fine-tune a feature
extractor, enabling it to distinguish between negative and
positive instances. These methods assume independence
among instances within each bag. However, in real-world
clinical settings, pathologists consider both the surrounding
areas around a single instance and the correlations among
multiple instances when making a diagnosis [1, 19].

Recently, the Transformer module is designed to mea-
sure multidimensional relationship between pairs of se-
quence instances [6, 13], as shown in Figure 2. Trans-
MIL [28] introduced the integration of Transformers with
the aggregator MIL classifier. Kernel attention Transformer
(KAT) [42] presented a cross-attention paradigm to main-
tain near-linear computational efficiency when processing
giga-sized WSIs. Zheng et al. [41] proposed a graph Trans-
former (GTP) that combines a graph-based representation
of a WSI with a Transformer for disease prediction. H2T
[31] proposed prototypical patterns for constructing holis-
tic WSI-level representations. The Transformer module is
utilized to retrieve information and dependencies of each
prototypical pattern. However, applying the Transformer
encounters the issues on memory requirements and time
complexity, especially when dealing with gigabyte-sized
WSIs [34, 35].

2.2. Oversampling-Augmentation Methods

The issue of class imbalance in computer vision tasks
has been addressed by employing oversampling to mod-
ify the training distributions. The simplest form of over-
sampling is random oversampling (ROS) [29], which in-
volves replicating the minority samples until its number of
samples is equal to that in the majority class. While this
method is straightforward and applicable to various appli-
cations, it could lead to overfitting due to the duplications
of identical samples. An advanced oversampling method,
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Figure 2. Self-attention mechanism via Transformer module of multiple instance learning [28].

known as the synthetic minority oversampling technique
(SMOTE) [5], was proposed to generate the new minor-
ity samples by mixing the existing minority samples with
their nearest minority neighbors. DeepSMOTE [11] in-
troduced an oversampling technique at the instance-level.
This approach involves encoding the data into instances us-
ing a generator module and then utilizing SMOTE to gen-
erate new synthetic instances. Generative adversarial mi-
nority sampling (GAMO) [26] utilized a generator mod-
ule to generate new samples from the minority classes.
The generator-generated samples are a convex combination
of existing samples with the aim of misleading both the
discriminator and classifier into misclassifying the gener-
ated samples. Balanced-MixUp [15] combined imbalanced
(instance-based) and balanced (class-based) sampling. It in-
corporates MixUp [39] as a regularization technique and
employs a modified oversampling strategy for imbalanced
datasets. Context-Rich minority oversampling (CMO) [27]
offered a simple approach that not only duplicated minority
samples but also diversified their contexts. This goal can
be achieved by selecting random regions from the minority
images and pasting them onto the majority images, thereby
creating new minority samples with varied contexts.

2.3. Augmention and MixUp Methods

Spatial augmentation methods have significantly en-
hanced computer vision performance. MixUp [39] intro-
duced a weighted combination of random samples from the
dataset. CutMix [38] filled a random region with a region
from another sample. TransMix [7] mixed the labels based
on the attention score of the Transformer module.

For WSI-level augmention, ReMix [37] introduced la-
tent augmentation for WSIs. This method involved mixing
the instance prototypes of WSIs (bags) from the same class
using K-Means clustering while preserving the original la-
bels. RankMix [9] proposed an augmentation technique that
incorporates mixing ranked features within a bag. RankMix
utilizes the concepts of pseudo-labeling and ranking to ex-
tract key regions from WSIs. Both ReMix and RankMix

utilized interpolation for bag mixing, but this kind of ap-
proach possibly leads to unnatural combinations [38].

2.4. Remarks

Our proposed method shares a similar conceptual frame-
work with the Balanced-MixUp [15] and CMO [27]; how-
ever, it exhibits two fundamental differences to be suitable
for imbalanced WSI classification: 1) Instead of randomly
cutting instances from the minority sample, our method fo-
cuses on identifying which relevant instances can be cut and
pasted with other WSI (bag). It tackles the issue by limit-
ing the tumor instance to limited (< 20% of the bag) and
randomly distributed. 2) For those methods, [15, 27] that
can be only applicable to mixed imbalanced samples with
uniform size, our method can deal with mixed imbalanced
samples with non-uniform size, such as WSIs.

On the other hand, in contrast to TransMix [7], our
method diversifies the sample contexts by mixing based
on the attention score. Moreover, our approach differs
from TransMIL [28] that focuses on the Pyramid Position
Encoding Generator (PPEG), KAT with a cross-attention
paradigm [42], GTP that incorporates a minicut pooling
layer [41], and H2T that utilizes clustering to select centroid
instances as prototypical patterns [31]. On the contrary, we
draw inspiration from the successful capture of intrinsic fea-
tures achieved by parameterized instances with neural net-
work in DSMIL [21] and DTFD-MIL [40]. Our approach
introduces the concept of prototype instances derived from
parameterized instances with neural network on each indi-
vidual bag. These prototype instances have smaller repre-
sentations while preserving the uniform size and intrinsic
features of a WSI.

3. Preliminary

We briefly introduce Transformer-based MIL and CMO
to make this paper self-contained.
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3.1. Transformer-based MIL

In MIL, the slide image W is divided into small
patches X = {x1, x2, x3, . . . , xn}. These patches
are then transformed into instance embeddings H =
{h1, h2, h3, . . . , hn} ∈ Rn×d, called as bag of instances,
using the following process:

hn = fθ(xn) (1)

where n denotes the number of instance embeddings within
a single bag and d represents the length of the transformed
instance. To extract features, we can utilize ResNet [17] as
a feature extractor fθ, and employ contrastive learning as a
loss function to transform X into H [8].

The instance embeddings are used as input tokens and
then concatenated together with a learnable classification
token xclass. This xclass will be served as the output predic-
tion of Transformer module thereafter [13]. The embedded
sequence x can be expressed as:

x = [xclass;H] (2)

The embedded sequence x is then passed through the
Transformer-based MIL. In our study, we utilize TransMIL
[28] and GTP [41] as the aggregator of Transformer-based
MIL models.

TransMIL consists of two Transformer modules and a
position encoding layer, specifically designed for aggregat-
ing morphological information and encoding spatial infor-
mation, respectively. On the other hand, GTP represents
an input as a hierarchical representation. The WSI (bag) is
constructed as the graph, followed by the Transformer as
the aggregator classifier.

We investigate the impact of our proposed method on
these two aggregator and demonstrate its effectiveness in
addressing imbalanced class distribution within the current
Transformer-based MIL framework.

3.2. Context-rich Minority Oversampling (CMO)

CMO [27] utilizes the information from majority sam-
ples to enhance the limited context of minority samples.
Consider a training sample and its label, represented by x
and y, respectively. The CMO creates a novel sample (x̃, ỹ)
by mixing two training samples (xM , yM ) and (xm, ym),
where xM is randomly selected from the majority class and
xm is randomly selected from the minority class. CMO
adopts the CutMix approach [38] to augment these pairs as
follows:

x̃ = M ⊙ xM + (1 − M)⊙ xm (3)

ỹ = λyM + (1− λ)ym (4)

where (1 − M) is a binary mask that identifies the region
to be selected from the minority sample and then merged
with the majority sample, 1 represents a binary mask filled
entirely with ones, and ⊙ denotes element-wise multiplica-
tion. The mixing ratio λ between two samples is randomly
sampled from a beta distribution Beta(α, α).

4. Proposed Method: Attention-Guided Proto-
type Mixing

We propose a new oversampling augmentation for im-
balanced whole slide images (WSIs). Our method, dubbed
Attention-Guided Prototype Mixing, learns the distribution
of the semantic WSI (prototype instances) using the learned
attention score A of the Transformer module without modi-
fying the aggregator design.

As shown in Figure 3, the prototype instances belong-
ing to the tumor class (minority) are mixed with proto-
type instances from the normal class (majority). In our
Transformer-based MIL module, we project the prototype
instances P of the tumor class to generate the queries q,
keys k, and values v. The self-attention mechanism (Fig-
ure 2) of the module attends to the correlation between in-
stances by computing the relevance between q and k, sum-
marizing which instances are most attentive on v for the
final aggregator classifier. These most attentive instances
can be selected and pasted with prototype instances from
the normal class to diverse minority contexts.

Our proposed method is primarily composed of three
components, including the re-weighting class distribution
(Q) in Section 4.1, prototype instances building (P) in Sec-
tion 4.2, and the most attentive instances mixing (M) in Sec-
tion 4.3.

We provide more details regarding the definition of
mathematical symbols, total loss function, and interpreta-
tion of proposed method in the supplement.

4.1. Re-weighting class distribution (Q)

Before we select the prototype instances from tumor
slide image (bag), we first re-weight the class distribution
Q of imbalanced WSI classes. We are inspired by the CMO
[27] to assign the weight inversely proportional to class fre-
quencies.

Specifically, given Wk as the number of slide image in
the k-th class, the sampling weight Q(W,k) is defined as:

Q(W,k) =
1

Wk∑C
k′=1

1
Wk′

, (5)

where C denote as number of classes and the k-th class has
a sampling weight inversely proportional to Wk. With this,
the numbers of slide images in both the tumor and normal
classes will be the same.
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Figure 3. Overview of the proposed method-Attention-Guided Prototype Mixing. A bag of instances from both the tumor and normal
classes is fist processed in the prototype instance building stage to obtain prototype instances (Pm and PM ). The Pm are then fed to the
Transformer module for getting A, where A produces scores for prototype instances. Finally, PM and the most attentive instances of Pm

are mixed.

4.2. Deriving prototype instances (P)

After obtaining the equal distribution of imbalanced WSI
classes, we divide each slide image W into small patches
X and then transform using fθ (Eq. (1)) into the instance
embeddings H , called a bag of instances. To address the
challenge of Transformer module in computing the long-
sequence instances, we introduce the concept of prototype
instances.

Specifically, for each bag, we parameterize each instance
hn ∈ H with the weight vector wn ∈ Rd×1, followed by
sorting, expressed as:

P = sort [w1 · h1, . . . ,wn · hn] [1 : K]. (6)

Eq. (6) determines the instances with K-highest
scores (i.e., prototype instances), denoted as P =
{p1, p2, p3, . . . , pK} ∈ RK×d, where K represents the
number of prototype instances. Actually, P acts like a rep-
resentative feature of WSI (W ) but with a smaller and uni-
form size. In our empirical study, it is found that the optimal
value of K is 64.

4.3. Mixing the most attentive instances (M)

Multi-Head Attention (MHA). According to Eq. (2)
that represents H as input tokens, which is then aggregated
with the class token xclass, in our proposed approach, we
treat the prototype instances P as input tokens. Thus, the
Transformer operates on the embedded sequences as fol-
lows:

x =
[
xclass;P

]
∈ R(K+1)×d (7)

where K + 1 is the length of P plus xclass and d is the
dimension of each instance.

Given a Transformer-MIL (e.g., TransMIL [28] or GTP
[41]) with m heads and input embedded sequences x, we
first multiply x with wq , wk, and wv for getting queries q,
keys k, and values v, respectively. Then, an attention score
A can be obtained as:

q = x ∗wq

k = x ∗wk

v = x ∗wv

A(q,k) = Softmax

(
qkT√
d/m

)
.

(8)

The attention score A ∈ [0, 1]K is obtained by establish-
ing a mapping between q and k, and representing the output
of the multi-head attention by multiplication with v, i.e.,
MHA(q,k,v) = A(q,k) ∗ v. Since we have m heads,
we compute the average across all attention heads to derive
A ∈ [0, 1]K . In our empirical study, we obtain A in Eq. (8)
from the last layer of Transformer-MIL module [28] [41].

Due to our method utilizes both TransMIL [28] and GTP
[41] as the aggregator models, we modify their architectures
for our use, including:

• TransMIL [28]. TransMIL designed Pyramid Posi-
tion Encoding Generator (PPEG) to acquire spatial in-
formation. Therefore, we project our prototype in-
stances P onto PPEG and subsequently feed them into
the Transformer module.

• GTP [41]. GTP designed Graph Convolution Network
(GCN) to learn inter-relationship between instances.
Therefore, we project our prototype instances P onto
GCN and subsequently feed them into the Transformer
module.
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Mixing P based on the attention score. We expand
upon the approach of mixture sampling from the minor-
ity and majority classes in CMO [27]. Once we obtain
A, we can address the challenge posed by WSI, which in-
volves limited and randomly distributed tumor instances.
To begin with, we sort the prototype instances P of tu-
mor samples based on their corresponding scores in A =
{a1, a2, a3, . . . , aK}, expressed as:

P =


pσ(1)
pσ(2)
pσ(3)

...
pσ(K)

 ∈ RK×d (9)

where σ represents a permutation that rearranges the indices
of the elements in P such that the corresponding scores in
A are in a non-decreasing order and pσ(i) denotes the i-th
element of P after sorting.

According to Eq. (3) and (4), we formulate the mixing
operation of minority and majority samples at WSI-level.
Let P and Y represent prototype instances and its slide-
label, respectively. We propose generating a new proto-
type (P̃ , Ỹ ) by combining two prototypes, (PM , Y M ) and
(Pm, Y m), where PM is sampled from the normal class
and Pm comes from the tumor class. Unlike the previous
method in Eq. (3) and (4), M is replaced with A as the
guidance for mixing, expressed as:

P̃ = λA⊙ PM + (K − λA)⊙ Pm (10)

Ỹ = λY M + (K − λ)Y m (11)

where (K − λA) represents a mask that indicates which
instances can be selected from Pm and pasted onto PM .
The combination ratio λ between these two prototypes is
sampled from 0 ≤ λ ≤ K.

Mixing Consideration. Due to the dependency of our
mixing scenario on classifier construction, we need to care-
fully determine the appropriate starting point during train-
ing. Directly applying our Attention-Guided Mixing at the
beginning may result in unstable training. This instability
arises from the fact that both the TransMIL [28] and GTP
[41] models have not yet attained stable performance. How-
ever, after several epoches, we have observed that the mod-
els achieve stable performance. In our empirical study of
employing TransMIL [28] and GTP [41], we have observed
the stable performance after around ten epoches. Therefore,
we then initiate our approach after ten epochs of the training
process.

5. Experimental Settings
5.1. Datasets

We introduce the WSI datasets for our experiments.
Each WSI was divided into 224× 224 patches at 20x mag-

nification.
Camelyon16 [2] is a public dataset proposed for metas-

tasis detection in breast cancer. The dataset contains 270
training slides (111 tumor and 159 normal images) and 129
testing slides (49 tumor and 80 normal images). Tumor
slides in this dataset contain small portions of tumor regions
(< 20% per slide). The original Camelyon16 is not so im-
balanced, so we modify it to create two imbalanced datasets,
i.e., Medium-Imbalanced and High-Imbalanced datasets,
for our study. Specifically, the Medium-imbalanced dataset
contains 187 training slides (28 tumor and 159 normal im-
ages) while the High-Imbalanced dataset contains 172 train-
ing slides (13 tumor and 159 normal images).

HistoQC is an in-house dataset designed for the
computer-aided histopathology research. The pathologist
experts annotated 448 WSIs (335 in the training set and 113
in the testing set) from The Cancer Genome Atlas Program
(TCGA) lung cancer dataset. However, HistoQC has only
23 tumor slides (17 for the training set and 6 for the testing
set), posing an imbalanced dataset problem. Due to the lim-
ited number of tumor slides compared to normal slides, it is
categorized as High-Imbalanced.

5.2. Settings

We utilized the ResNet18 configuration as a feature ex-
tractor, denoted as fθ (Eq. 1), which was obtained through
training SimCLR [8, 21]. This configuration allows us to
obtain a bag of instances for each WSI. We defined the num-
ber of epoches as 200, the learning rate as 2e − 4, and the
weight decay as 1e − 5. We selected K = 64 instances as
the prototype P emprically. In the Transformer module, the
number m of attention heads was set to 8, the dimension d
of each instance was 512, and dropout rate was 0.1.

During the inference step, we employed the sigmoid
function to normalize the predicted diagnosis scores. Our
experiments were conducted using an NVIDIA 3060Ti
GPU with 12GiB RAM.

Evaluation Metrics. The performances are mainly re-
ported as balanced accuracy (Acc) [4], Area Under Curve
(AUC) score [16], and Precision-Recall Area Under Curve
(PR AUC) score [3].

Comparisons. We conducted a comprehensive com-
parison between our approach and state-of-the-art (SOTA)
methods: 1) No Oversampling, 2) Random Oversampling
(ROS) [29], 3) Balanced-MixUp [15], 4) CMO [27], and 5)
ReMix [37]. However, the SOTA methods were designed
to mix the samples of uniform sizes. Thus, we adopted zero
padding on the smaller-sized image to ensure that all WSIs
have the same size.

In addition, we investigated the loss function strategies,
including 1) Binary Cross Entropy (BCE) and 2) Balanced-
Binary Cross Entropy (Bal-BCE) [36], to address the im-
balanced class problem.
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Table 1. Comparisons with State-of-the-art Methods on Imbalanced Camelyon16 in (%).

Vanilla-Balanced Medium-Imbalanced High-Imbalanced

Acc AUC PR AUC Acc AUC PR AUC Acc AUC PR AUC

TransMIL [28] 84.49 84.80 84.30 77.51 80.21 79.00 73.64 74.50 73.00

+ Bal-BCE [36] 84.49 84.80 84.30 82.17 84.00 83.70 79.40 80.01 79.50

+ ROS [29] 84.49 85.00 84.52 82.17 84.00 83.70 81.39 83.50 82.16

+ Balanced-MixUp [15] 87.59 89.35 88.21 86.04 87.80 87.00 84.96 86.26 85.24

+ CMO [27] 88.37 90.00 89.35 86.81 88.21 87.20 85.27 86.90 85.52

+ Ours+BCE 89.92 93.00 92.50 89.14 92.00 92.60 89.14 92.00 92.60
+ Ours+Bal-BCE 90.69 92.75 93.00 90.69 92.75 93.00 89.92 93.00 92.50

GTP [41] 84.49 85.00 84.40 75.96 76.50 76.00 72.09 76.00 73.43

+ Bal-BCE [36] 85.27 86.80 85.00 81.39 84.35 83.25 78.29 79.90 79.35

+ ROS [29] 85.27 86.90 85.52 83.72 84.50 83.70 81.39 83.50 82.16

+ Balanced-MixUp [15] 88.37 90.00 89.35 87.59 89.35 88.21 85.27 86.90 85.52

+ CMO [27] 88.37 90.00 89.35 88.37 90.00 89.35 86.81 88.21 87.20

+ Ours+BCE 90.69 92.75 93.00 89.92 93.00 92.50 89.92 93.00 92.50
+ Ours+Bal-BCE 91.47 93.77 92.95 90.69 92.75 93.00 90.69 92.75 93.00

Table 2. Comparison with State-of-the-art WSI-Augmentation
on Vanilla Balanced Dataset.

Acc (%)

Vanilla ReMix [37] Ours

TransMIL [28]

+BCE 89.92 90.69↑0.77 91.47↑1.55

+Bal-BCE [36] 90.69 90.69↑0.00 91.47↑0.78

GTP [41]

+BCE 90.69 90.69↑0.00 91.47↑0.78

+Bal-BCE [36] 91.47 91.47↑0.00 92.24↑0.77

6. Experimental Results

We provide experimental results and comparisons with
SOTA merhods based on the public Camelyon16 dataset in
Sec. 6.1 and in-House HistoQC dataset in Sec. 6.2.

We integrated the proposed Attention-Guided Proto-
type Mixing with two Transformer-MIL models, including
TransMIL [28] and GTP [41], and compared the perfor-
mance with the state-of-the-art (SOTA) methods.

6.1. Camelyon16

Comparison with SOTA Oversampling.
We trained our proposed model on Camelyon16 using

different imbalance ratios: Vanilla Balanced (111 tumors
and 159 normal slide images), Medium-Imbalanced (28 tu-
mors and 159 normal slide images), and High-Imbalanced
(13 tumors and 159 normal slide images). Then, we evalu-
ated on testing slides (49 tumor and 80 normal images), as
shown in Table 1.

We can observe from Table 1 that both our proposed

method and the SOTA methods achieve significant perfor-
mance on the datasets with a Vanila-balanced ratio. How-
ever, under Camelyon16 with a higher imbalance ratio, the
SOTA methods fail to maintain the performance. For in-
stance, Balanced-MixUp [15] and CMO [27] experience
reductions in accuracy of up to 4% and 3% at High-
Imbalanced, respectively. By contrast, our method demon-
strate the ability to maintain performance in the presence
of high imbalances with only a 1% reduction in accuracy.
Overall, our method outperforms SOTA methods with a sig-
nificant performance gap.

The main reason is that ROS [29] solely duplicates tumor
bags while CMO [27] and Balanced-MixUp [15] indiscrim-
inately mix bags without considering the specific instances
involved. By contrast, our method introduces a novel strat-
egy that significantly enhances the mixing performance by
intelligently determining which instances can be cut and
pasted within other bags. This strategy overcomes the limi-
tations of previous methods and enables more accurate dis-
crimination between normal and tumor slides.

Comparison with SOTA WSI-Augmentation. We
conducted a comparative analysis between our proposed
method and ReMix [37] for augmenting Vanilla Came-
lyon16 (159 normal and 111 tumor slide images), as shown
in Table 2. The results demonstrate that our method im-
proves ReMix with an enhanced accuracy of up to 0.7% ∼
1.55%.

We hypothesize that in contrast to ReMix that employs
simple interpolation-based mixing without considering spe-
cific instances, our method incorporates mixing while re-
taining the original features. This observation highlights
the importance of carefully selecting specific instances to
preserve and improve performance.
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6.2. HistoQC

Comparison with SOTA Oversampling. We con-
ducted experiments on the in-house HistoQC dataset. Un-
like Camelyon16, the HistoQC dataset exhibits highly im-
balance not only in the training slides but also in the testing
slides, which consists of 6 tumor images and 107 normal
images.

As shown in Table 3, our method demonstrates a sig-
nificant performance boost in this High-Imbalanced test-
ing, achieving a stable average evaluation accuracy of up
to 93%. By contrast, SOTA methods such as Balanced-
MixUp [15] and CMO [27] achieve accuracy lower than
86%.

In the subjective evaluation, it is found that our method
can effectively handle the challenge of diverse minority
contexts even within the highly imbalanced categories,
thanks to attention-guided prototype mixing. Furthermore,
the advantage of the Transformer-MIL approach is its abil-
ity in capturing the pairwise correlation between prototype
instances within each WSI (bag).

Table 3. Comparisons with State-of-the-art Methods on Imbal-
anced HistoQC in (%).

High Imbalanced

Acc AUC PR AUC

TransMIL [28] 76.10 77.05 76.80

+ Bal-BCE [36] 78.76 79.90 79.65

+ ROS [29] 79.64 80.05 79.80

+ Balanced-MixUp [15] 83.18 83.90 83.65

+ CMO [27] 84.95 85.75 85.20

+ Ours+BCE 91.15 93.00 92.30
+ Ours+Bal-BCE 92.03 93.20 92.85

GTP [41] 78.76 79.90 79.65

+ Bal-BCE [36] 79.64 80.05 80.00

+ ROS [29] 83.18 84.00 83.50

+ Balanced-MixUp [15] 84.07 85.00 84.50

+ CMO [27] 85.84 86.20 86.00

+ Ours+BCE 92.03 93.20 92.85
+ Ours+Bal-BCE 92.92 94.00 93.20

7. Ablation Study
We evaluated different numbers of prototype instances

P as input sequences. In this experiment, we used Vanilla
Camelyon16, as shown in Table 4. These results indicate
the significant impact of deriving prototype instances to
preserve the intrinsic features of long-sequence whole-slide
images (WSIs) while being applicable for the Transformer-
MIL framework. For instance, TransMIL [28] and GTP
[41] achieve accuracies of only 87.59% and 89.14%, re-
spectively, with high computational complexity measured

in FLOPs. In our study, we observed similar performance
between P = 64 and P = 256, but with different FLOPs.
Consequently, we selected P = 64 with lower FLOPs while
still maintaining excellent performance.

Table 4. Comparison with different P on Vanilla Camelyon16.
The ∗ denote the results are reproduced by our experiment. M
means megaFLOPS.

Method Acc ↑ AUC ↑ PR AUC ↑ FLOPs ↓

TransMIL [28] ∗ 87.59 89.00 91.20 120.050M

+P=1024 89.14 92.00 92.60 99.031M

+P=256 89.92 93.00 92.50 32.577M

+P=64 89.92 93.00 92.50 14.391M

+P=16 73.64 74.50 73.00 9.204M

GTP [41] ∗ 89.14 92.00 92.60 70.248M

+P=1024 89.92 93.00 92.50 50.610M

+P=256 90.69 92.75 93.00 22.129M

+P=64 90.69 92.75 93.00 10.091M

+P=16 77.51 80.21 79.00 7.034M

8. Limitation

In our study, the process for selecting instances is based
on attention guidance, which means that this mixing frame-
work is dependent on classifier construction. If the classifier
model fails to achieve convergence in classifying a specific
medical dataset, the mixing framework may not perform
well. Future work should focus on designing improvements
to the mixing framework in an independent way, without
depending on classifier construction.

9. Conclusion

This paper introduces Attention-Guided Prototype Mix-
ing, a novel approach for learning imbalanced whole slide
images (WSIs) classification. Our approach focuses on di-
versifying minority context within WSIs, even in the pres-
ence of an imbalanced class distribution. Through exten-
sive experiments, we demonstrate the effectiveness of our
proposed method compared to state-of-the-art (SOTA) over-
sampling methods. We hope that our study can serve as a
strong baseline for designing oversampling and augmenta-
tion techniques to address imbalanced medical datasets.
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