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Abstract

We propose a simple but effective modular approach
MOPA (Modular ObjectNav with PointGoal agents) to sys-
tematically investigate the inherent modularity of the object
navigation task in Embodied AI. MOPA consists of four
modules: (a) an object detection module trained to identify
objects from RGB images, (b) a map building module to
build a semantic map of the observed objects, (c) an explo-
ration module enabling the agent to explore the environment,
and (d) a navigation module to move to identified target
objects. We show that we can effectively reuse a pretrained
PointGoal agent as the navigation model instead of learning
to navigate from scratch, thus saving time and compute. We
also compare various exploration strategies for MOPA and
find that a simple uniform strategy significantly outperforms
more advanced exploration methods.

1. Introduction
Intelligent agents that can help us in our homes need

to tackle tasks such as navigating to objects given differ-
ent forms of goal specification. Recently, the embodied AI
community has studied various navigation approaches, in-
cluding classical approaches without learning, end-to-end
training with deep reinforcement learning (RL), and modular
approaches with learned components. End-to-end deep RL
agents achieved near-perfect performance on basic naviga-
tion tasks such as PointGoal where the agent navigates to a
relative goal position [60]. However, navigation tasks where
the agent needs to find objects or areas in the environment
are far from solved [2, 5, 6, 15, 35, 40]. These tasks re-
quire capabilities such as visual understanding, mapping and
exploration in addition to basic navigation (see Fig. 1).

In this work, we leverage agents trained on the sim-
pler PointGoal task in the context of more complex longer-
horizon navigation tasks. We propose a modular approach
called Modular ObjectNav with PointGoal agents (MOPA),
where each module is responsible for a specific task: (a)
object detection – to detect objects using the sensory inputs
to the agent; (b) map building – a semantic map storing
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Figure 1. Approach Overview. We tackle long-horizon navigation
tasks by leveraging their inherent modularity. The agent uses an
exploration module to seek the goal in the environment. Once the
goal is observed, a navigation module moves the agent towards the
goal. While exploring, the agent memorizes objects it sees along
the way so it can more efficiently navigate to them later.

observed objects for easy querying; (c) exploration – to ef-
ficiently search the environment when an object of interest
is yet to be located; and (d) navigation – to reach a target
object that has been located. The first two contribute to
acquiring and storing semantic knowledge about the environ-
ment, while the latter two enable efficient navigation.

Combining these abilities in a monolithic approach is
challenging. Thus, recent work has shifted to modular ap-
proaches for semantically-driven navigation [12, 13, 23].
The modular approach allows combinations of learned and
traditional modules, reuse of pretrained components, and
outperforms end-to-end trained methods when transferring
agents developed in simulation to the real world [23].

Despite this interest in modularity, there are few studies
of the design choices for different modules. Some work has
focused on choices for mapping (or more broadly memory)
modules [9, 16, 57], or the impact of better vision mod-
ules [32]. Other work has compared exploration modules,
finding that a learned exploration policy works better than
a frontier-based policy [23], and that heuristic policies can
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be effective [20, 36]. These works use an analytical path
planner to find the best path from the current agent position
to the target object. Thus, the design choices in the path
planning module have not been studied in a focused manner.

We identify common modules for designing a modular
navigation agent and analyze the performance impact of
different design choices. Notably, we focus on the path plan-
ning (navigation) module and examine different strategies for
navigation and their interaction with the exploration modules.
Our analysis shows that we can leverage a learned PointNav
agent for navigation along with a surprisingly simple random
(uniform) exploration policy.

We perform our analysis on the ObjectGoal navigation
task and the longer-horizon Multi-Object Navigation (Mul-
tiON) [57] task where navigation is to an episode-specific
ordered list of objects. The latter enables studying the impact
of exploration and navigation strategies for objects that the
agent already saw vs. objects not yet seen. In the simple Ob-
jectNav task, our MOPA approach achieves higher Success
than the current state-of-the-art modular approaches [23].

In summary, we: (1) propose leveraging pre-trained Point-
Nav agents for more complex ObjectGoal navigation tasks,
(2) develop a modular approach MOPA to implement this
proposal, (3) show that we achieve significant performance
gain by using a simple uniform strategy as the exploration
module and PointNav as the navigation module over other
complex methods, (4) show that MOPA achieves better Suc-
cess than previous modular approaches on the ObjectNav
task without any training on the ObjectNav dataset.

2. Related Work
Embodied AI tasks. The availability of large-scale datasets
such as Matterport3D [10], Gibson [61], and Habitat-
Matterport3D (HM3D) [48] along with photo-realistic simu-
lators such as Habitat [44, 52, 55], GibsonEnv [61], AI2-
THOR [33, 59] etc. enable a diverse set of Embodied
AI tasks [8, 54, 56]. These include PointGoal naviga-
tion [52, 60, 68] where the target is a single point, Object-
Goal navigation [5, 12, 32, 67] where the target is a semantic
label of an object, and instruction following [2, 15, 35, 40]
where the agent follows instructions in natural language.
In this work we explore ObjectGoal navigation (Object-
Nav) along with multi-object navigation (MultiON) [57],
which is a generalization of ObjectNav where the agent must
reach multiple objects in a sequence. Thus far, methods
addressing the MultiON task have used end-to-end trained
agents [38, 39, 57]. In contrast, we propose a modular archi-
tecture that requires no training yet performs competitively
across a range of settings.
Modular navigation in robotic vision. Classical robotic
pipelines divide navigation into mapping [19] and path
planning [30, 53]. Hybrid approaches using neural high-
level policies with model predictive control emerged as

more robust and sample-efficient alternatives for naviga-
tion [4, 29]. In embodied AI, an initial line of work
used largely monolithic reactive or recurrent deep net poli-
cies [14, 24, 28, 31, 52]. Modular policies for navigation
consisting of separately trained modules using structured
neural modular networks have been shown to be more sam-
ple efficient [3, 34]. Modular approaches have been shown
to be effective and easier to deploy on ObjectNav task as
well [7, 12, 23, 70] and unsurprisingly in the MultiON
2022 competition [18] most entries are modular combin-
ing learned and rule-based modules. Our modular approach
is most similar to Chaplot et al. [12], which extends Ac-
tive Neural SLAM [11] to have three modules: semantic
mapping, goal-oriented exploration and an analytical path
planner. It outperformed previous methods in ObjectNav but
is ineffective in the MultiON setting where objects are placed
randomly, making semantic environment priors not helpful.
In contrast, our approach decouples semantic map building
from other modules, thus providing better generalization and
adaptability to both ObjectNav and MultiON tasks.

Exploration in navigation. Exploration has been studied
extensively in both visual navigation and robotics, and it
is particularly critical for long-horizon semantic navigation
tasks. A common approach is to estimate an exploratory way-
point and navigate towards it [4, 50]. Traditional methods
explore the environment based on heuristics, such as select-
ing points on the frontier between explored and unexplored
regions [66]. More recent work uses learning-based methods
to generalize to unseen environments better. Notable works
include learning end-to-end RL exploration policies from
coverage rewards [17, 46, 47] and intrinsic rewards using
inverse dynamics [42, 43]. Other approaches leverage first-
person depth images [11], predicting semantic maps [12],
and topologically-structured maps [13, 25, 58]. Recently,
Gervet et al. [23] have shown that a semantically learned
exploration policy outperforms a frontier-based policy in
ObjectNav. Cartillier et al. [9] employ a pre-exploration set-
ting to build a semantic map, which is later used to explore
the free space and navigate to the goal using an analytical
path planner. Luo et al. [36] proposes ‘Stubborn’: a rule-
based exploration strategy which outperforms more complex
strategies such as frontier-based and semantic exploration.
This ‘Stubborn’ strategy selects and moves towards one of
four cardinal directions centered on the agent until it encoun-
ters an obstacle. In this work, we focus on non-semantically
based exploration methods and compare variants of Stubborn
with other rule-based methods.

Reusing PointNav for semantic-based navigation. While
using pretrained image encoders as a module is common,
there is little work studying the use of pretrained PointNav
agents as components in ObjectNav agents. Georgakis et al.
[21] use a pre-trained PointGoal model as a local policy
while predicting semantic maps outside the agent’s field of
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Train Validation Test

#Scenes #Ep #Scenes #Ep #Scenes #Ep

MultiON [57] 61 3.05M 11 1050 18 1050
MultiON 2.0 (Ours) 800 8.00M 30 1050 70 1050

Table 1. Comparing dataset statistics. MultiON 2.0 contains sig-
nificantly larger number of episodes (#Ep) spanning over a diverse
set of scenes (#Scenes) compared to MultiON 1.0.

view. We similarly use a PointNav policy as our naviga-
tion policy, but we carry out a detailed analysis on both
ObjectNav and MultiON tasks to show that this outperforms
analytical path planners by piggybacking on the near-perfect
performance of PointGoal agents.

3. MultiON 2.0 Dataset

To study our approach in the context of a longer-horizon
task planning, we create MultiON 2.0 – a large-scale dataset
for the Multi-Object Navigation task. Compared to the origi-
nal MultiON dataset [57], MultiON 2.0 contains 10x more
scenes, uses an additional set of Natural objects1, includes
distractor objects, and has longer episodes.
Diversity of objects. The original MultiON dataset [57]
contains only cylinder objects of equal size but different
(single) color. In MultiON 2.0, we reproduce this Cylinder
objects (CYL) setup and also include realistic objects that oc-
cur naturally in houses. We choose large and visually diverse
objects so they are relatively easy to detect and identify. We
call this set of objects Natural objects (NAT). The same set
of episodes is used to create both NAT and CYL variants by
simply swapping cylinder goal objects with natural objects.
Episode generation. We select 800 training, 30 validation,
and 70 test scenes from HM3D [48] for use in both tracks
(CYL and NAT). Tab. 1 compares the statistics of MultiON
and our MultiON 2.0. Episodes are generated by sampling
random navigable points as start and goal locations, such
that they are on the same floor and a navigable path exists
between them. Next, n goal objects are inserted at random
navigable positions. We have a single object instance for
each category. Note that we do not place the objects based
on the semantics of the environment, meaning any object
can be placed in any room. This choice is deliberate as
we want to decouple the need for common-sense priors of
where things are located from our study of navigation and
exploration policies. We also insert m distractor objects in
each episode such that m = (8− n). The distractors come
from the same set as the goal objects, and they require the
agent to discriminate between goal and non-goal objects,
making success by random stumbling onto objects more rare.
The minimum geodesic distance between inserted objects is
0.6m in the training split and 1.3m in the validation and test

13D models from https://sketchfab.com/3d-models dis-
tributed under permissive licenses.

sets to make the latter more challenging overall (details in
supplement).

4. Approach
In the MultiON task, the agent is given the current goal

gi from a set of n goals {g1, g2, ..., gn}. Once the agent has
reached gi and successfully generated the Found action, it
is given the next goal gi+1. This continues until the agent
has found all the goals in the episode. In our MOPA (Fig. 2)
approach we employ the following modules: (1) Object de-
tection (O), (2) Map building (M), (3) Exploration (E) and
(4) Navigation (N ). These modules are intuitively woven
together. The agent identifies objects (O) by observing the
environment and builds a semantic map (M) by projecting
the category labels of the observed objects. If the agent has
not yet discovered the current goal, gi, it continues to explore
(E) until the current goal has been discovered. The agent
then plans a path from its current location to the goal and
navigates (N ) towards it by generating actions. We exper-
iment with different exploration and navigation strategies
to systematically investigate their contribution to the agent
performance. Next, we deep dive into each of these modules.
Object detection (O). We consider several object detection
approaches based on the type of object we are detecting.
For MultiON, we use an object detector (FasterRCNN [51])
trained offline on frames collected from an oracle agent (see
supplement). For CYL-objects, we fine-tune the FasterRCNN
model to detect whether a cylinder is present in a frame and
use a k-NN to classify the color. For NAT-objects, we fine-
tune the FasterRCNN to detect the eight possible objects
directly. For our experiments on ObjectNav [62], we use the
zero-shot object detector Detic [69].
Map building (M). A cumulative memory representation
is key for long-horizon tasks like multi-object navigation.
We use the depth channel to project semantic detections
onto a 2D top-down grid map of the environment, assuming
perfect depth observations and odometry similar to prior
work [11, 12, 57]. Each cell in this map spans a 0.2m-by-
0.2m square and contains the latest predicted semantic label
of the object at that position. Objects once seen remain seen
on the map for the length of the episode. This map is used
by both the Exploration module to sample exploration goals
and the Navigation module to navigate to the goal.
Exploration (E). For any policy to train well, a tradeoff of
exploration-exploitation is imperative. This is particularly
crucial for long-horizon tasks, where the agent has to tackle
ambiguity for large intervals and the current goal is yet to be
discovered. Since the exploration policy may select targets
that are not reachable, we sample a different exploration goal
if the agent does not reach it in αexp steps. We investigate
several simple-yet-effective exploration strategies based on
success in prior works.

• Uniform Top-down Sampling. The agent samples an
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Figure 2. Architecture. We adopt a modular approach with PointNav agents (MOPA) to tackle object navigation tasks. The Object detection
module transforms raw RGB to semantic labels. These are projected onto a top-down semantic map using depth observations by the Map
building module. The map is passed as input for the Exploration module to uncover unseen areas of the environment. A Planning module
then selects a relative goal (from either the task goal if on map or an exploratory goal). Finally, a low-level Navigation policy predicts the
action for the agent to execute.

exploration goal uniformly on a top-down 2D map.
• Stubborn [36]. the agent uses the local grid around

itself and selects a corner as an exploration goal.
• Frontier [66]. the agent navigates to the frontier of the

previously explored regions
• ANS [11]. Active Neural SLAM (ANS) is a learned

method to predict an exploration goal to maximize cov-
erage based on the agent pose on the free-space map.
We use the official pretrained global policy.

Planning (P). This module is responsible for selecting
either the task goal or the sampled exploration goal (E) to
navigate to. We notice label splattering on the semantic map
that the agent builds in M. The Planning module selects the
centroid of each label cluster as the goal position, which we
found to be more effective than selecting a random cell from
the cluster. While there are more sophisticated goal selection
strategies, such as those based on uncertainty [22], we found
this centroid strategy to be sufficient for our MultiON setting.
Navigation (N ). Given a relative location from the Plan-
ning module, the Navigation module determines the steps
to take to reach the location by generating a sequence of
actions. This can be achieved by using a trained neural
agent or a path planner to determine the path to the rela-
tive location. We advocate formulating this problem as a
PointNav task and using a pretrained neural policy model
from Wijmans et al. [60]. Concretely, our PointNav agent in-
cludes a visual encoder with a ResNet50 backbone [26] (for
depth observations), a multi-layer perceptron to transform
the GPS+Compass coordinates to latent representations and
an LSTM [27] to capture state features from previous time
steps. All these latent representations are concatenated and
transformed using two fully-connected layers i.e. the actor
and critic heads which give the predicted action logits and

state’s estimated value, respectively. The low-level actions
for interaction with the environment are sampled from the
predicted policy logits.
Path planner details. We investigate three analytical path
planners: Shortest Path Follower (SPF) with access to
ground-truth collision map, breadth first search (BFS) and
Fast Marching Method (FMM) on predicted maps. Note that
exploration module goals may not be navigable (as that re-
gion may not be explored yet). To compensate, we limit the
number of steps the navigation module can take to αexp. We
stop navigation and resample an exploration goal if the target
is not reached within αexp steps. In the case of SPF, we have
access to the ground-truth navigation mesh, so we plan a path
to the closest navigable point. Shortest Path Follower uses a
greedy shortest path algorithm on ground-truth navigation
meshes from Habitat [52]. It plans a path to the goal location
by greedily selecting the best action based on the shortest
geodesic distance. BFS and FMM plan a path to the goal
on a 2D occupancy map. The occupancy map uses a similar
mapping method as M. The agent builds a collision map
by marking the grid cells where it collides. BFS searches
grid cells adjacent to the agent using breadth-first search
until it finds a path to the goal. In contrast, FMM finds the
shortest path greedily using the 2D occupancy grid. In BFS
and FMM, it is possible for the agent to get stuck in corners
or crevices so we dilate obstacles to prevent the agent from
getting stuck at corners and crevices. This is analogous to
the pessimistic collision map from Luo et al. [36]. However,
this pessimistic collision map may result in failure to plan a
path, in which case we adopt a brute-force ‘Untrap’ strategy
(similar to Stubborn), which keeps generating subsequent
Left and Forward (LFLFLF) actions or Right and Forward
(RFRFRF) actions until the agent gets unstuck.
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5. Experiments

We conduct experiments on MultiON and compare dif-
ferent exploration and navigation strategies in our MOPA
framework. We also evaluate MOPA on the single-target
ObjectNav task and show that our modular approach with
pretrained object-detector can outperform other zero-shot
methods that require training a navigation policy.

5.1. Task

We conduct experiments on both MultiON and Object-
Nav in Habitat [52]. We focus the bulk of our analysis on
MultiON, as the simplified objects allow us to more easily
disentangle the effect of the object detector, and the multi-
object nature of the task allows us to analyze the performance
of the different agents after the first object is found and the
map partially constructed.
MultiON. In MultiON [57] the agent needs to find and
navigate to a fixed sequence of n objects in an unexplored
environment. Specifically, the agent has access to (256 ×
256) egocentric RGB image and depth map of the current
view, current agent coordinates relative to its starting point
in the episode through a noiseless GPS+Compass sensor,
and the current goal category at a given time step of the
episode. The agent can take one of four actions: move
forward by 25 cm, turn left by 30°, turn right by 30°, and
found. Following Wani et al. [57], the agent has a maximum
time horizon of 2500 steps to complete the task. Note that
this is longer than standard navigation tasks due to the long-
horizon nature of multi-object navigation. The agent must
execute the found action within 1 meter of each goal for
each of the n goals, in the right order, to be successful on
an episode. A single incorrect found action terminates the
episode – making the task challenging. We use the widely
adopted Habitat platform for our experiments. The agent
embodiment is a cylindrical body of 0.1 meter radius and
1.5 meter height.
ObjectNav. In the ObjectNav task, the agent is required to
navigate to a single object of a given category. The setup is
similar to MultiON, except that the found action is replaced
by a stop action (that concludes the episode), the goal cate-
gory can have multiple instances in the environment, and the
maximum number of actions is set to 500. The agent has a
cylindrical body of 0.18 meter radius and 0.88 meter height.

5.2. Metrics

In addition to the standard visual navigation metrics
such as success (whether the agent can reach all the targets
successfully in the given sequence) and SPL [1] (Success
weighted by inverse Path Length) we use progress (pro-
portion of objects correctly found in the episode) and PPL
(Progress weighted by Path Length) introduced for MultiON
by Wani et al. [57]. The SPL and PPL metrics quantify the

navigation efficiency in the context of success/progress and
increase if the agent trajectory better matches the optimal
trajectory. For ObjectNav we use success and SPL.

5.3. Agents

We use a neural PointNav policy trained using the dis-
tributed PPO [60] framework for efficient parallelization on
HM3D scenes from Ramakrishnan et al. [48]. We consider
three variants of map building agents, ranging from having
access to an oracle map to using oracle semantic sensors
with ground-truth object detections for map building, to us-
ing predicted semantic sensors for map building. The use of
oracle sensors and maps allows us to investigate the perfor-
mance of the exploration and navigation modules without
confounding errors from the object detectors.
OracleMap. The OracleMap agent has access to the top-
down oracle map of the environment directly obtained from
the Habitat simulator marked with objects (targets and dis-
tractors) observed by the agent during exploration. The
ground-truth object locations are directly transformed into
grid coordinates to build this map.
OracleSem. Using egocentric depth observations, the Ora-
cleSem agent builds a semantic map of the environment. We
get the semantic labels of the objects (targets and distractors)
directly from the Habitat simulator. This agent does not have
access to the ground-truth locations of the objects.
PredSem. The PredSem agent also builds a top-down seman-
tic map following the same mapping method in OracleSem,
but the egocentric semantic labels are predicted using a pre-
trained object detection model.

5.4. Implementation Details

We set the confidence threshold of the object detection
models as 0.95. We find that a step threshold αexp of 50
works well for all exploration methods. We found that a grid
size (lr) corresponding to 10m works best for the uniform
sampling-based exploration methods, whereas a grid size
(ls) corresponding to 3m works best for the stubborn-based
methods. We assume noiseless sensor and actuation similar
to prior works [11, 57] in order to decouple the challenges of
dealing with noise from the focus of this paper. That said, it
should be straightforward to plug in a PointNav agent trained
under noisy settings [41] into our method.

5.5. MultiON results

We present results on the test set here (see supplement for
validation results). For all experiments, we report mean and
standard deviation over 5 runs with random seeds.
Overall performance. Tab. 2 shows the overall comparison
of MOPA performance for various agents. We first compare
the performance of the PredSem agent and observe that
it performs better on the cylinder objects than the natural
objects. This is expected since the cylinder objects are easier
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Object
Types

Modules Test

O M Success Progress SPL PPL

PredSem CYL FRCNN [12] 52 (± 2) 66 (± 2) 21 (± 1) 27 (± 2)
NAT FRCNN [12] 29 (± 2) 45 (± 2) 11 (± 1) 17 (± 1)

OracleSem CYL GT [12] 81 (± 2) 87 (± 2) 37 (± 1) 39 (± 1)
NAT GT [12] 81 (± 2) 87 (± 2) 37 (± 1) 39 (± 1)

OracleMap CYL GT GT 81 (± 2) 85 (± 2) 36 (± 1) 39 (± 1)
NAT GT GT 81 (± 2) 85 (± 2) 36 (± 1) 39 (± 1)

Table 2. Performance on MultiON 2.0. We find that our PredSem
agent performs better on cylinder (‘CYL’) objects than natural
(‘NAT’) objects on the test split of MultiON 2.0.

Method Navigation (N ) Success Progress SPL PPL

OracleSem FMM [11] 18 (± 2) 36 (± 2) 11 (± 1) 21 (± 1)
BFS [18] 21 (± 2) 44 (± 2) 12 (± 1) 22 (± 1)
SPF ∗ 76 (± 2) 83 (± 2) 39 (± 1) 42 (± 1)
PointNav [48] 81 (± 2) 87 (± 2) 37 (± 1) 39 (± 1)

Table 3. Navigation module comparisons. We find that a learned
PointNav navigation module outperforms other path planners in
Success and Progress on the MultiON 2.0 test split. Note that the
Shortest Path Follower (SPF) module has access to ground truth
navigation meshes and unsurprisingly has highest SPL and PPL.

Method Exploration (E) Success Progress SPL PPL

OracleSem Stubborn 72 (± 2) 80 (± 2) 33 (± 1) 36 (± 1)
Frontier [66] 72 (± 2) 80 (± 2) 33 (± 1) 35 (± 1)
ANS [11] 76 (± 2) 83 (± 2) 35 (± 1) 38 (± 1)
Uniform 81 (± 2) 87 (± 2) 37 (± 1) 39 (± 1)

Table 4. Exploration module comparisons. We find that the
Uniform strategy is surprisingly effective, outperforming other
complex exploration methods on the MultiON 2.0 test split.

to detect than natural objects with varying shapes, colors and
sizes. We then compare the performance with two oracle
agents, the OracleSem, which uses ground-truth information
in the Object detection module, and OracleMap, which uses
ground-truth information in both the Object detection and
the Map building modules. All the experiments use Uniform
Top-down Sampling (‘Uniform’) as the Exploration module
and PointNav [48] (‘PN’) as the Navigation module. We find
that OracleMap and OracleSem have similar performance.
Moreover, these oracle methods have the same performance
across CYL and Nat datasets since the object placements are
the same in both with only the object labels varying.
Navigation: pretrained PointNav outperforms analytical
path planners. We compare different navigation choices
for our OracleSem agent (see Tab. 3), by fixing the other
three modules to use ground truth semantic labels in the
Object detection module, Map building from Chaplot et al.
[12] and Uniform as the Exploration module. We observe
that the pretrained PointNav policy performs significantly
better than the analytical path planners in both validation
and test sets. We find that the Shortest Path Follower (SPF)
planner achieves the closest performance to PointNav which
is expected since it has access to the ground-truth navigation

meshes. The other two analytical path planners, BFS [18]
and FMM [11], perform worse than SPF since they do not
have access to the ground-truth obstacle map of the environ-
ment and can only plan a path by using a progressively built
occupancy map.
Navigation: Analytical path planners are expensive and
hard to configure. Analytical path planners are computa-
tionally expensive and need handcrafted rules, in contrast to
PointNav policy. While PointNav internally learns a repre-
sentation of obstacles from depth observations, the analytical
path planners (BFS and FMM) need to build and update an
obstacle map (in addition to the semantic map) at every step.
All these handcrafted rules result in longer running times for
analytical path planners. We found that a full evaluation run
took 12 hours for PointNav but 48 hours for the BFS Path
Planner and FMM. This makes them a less desirable choice
in navigation tasks compared to neural policies.
Exploration: Uniform outperforms complex Exploration
strategies. Tab. 4 compares different Exploration strategies
by using ground truth semantic labels in the Object detection
module. We find that a simple uniform sampling-based
strategy with a fail-safe outperforms the other heuristic-
based modules (Frontier and Stubborn) and learned methods
(ANS). We observe that since the exploration policy may
propose a goal that is not reachable, it is important to have a
fail-safe limit (αexp) on the number of steps (see supplement
for details). This is especially important for simpler methods
such as Uniform and Stubborn as they are more likely to
select unreachable goals.

Frontier selects an unexplored location at the frontier in a
direction closest to the agent. It tends to maximize coverage
in one direction before it starts exploring other directions.
We find that when the task goal lies in the opposite direction,
this strategy often exhausts the time budget before it can
discover the goal. On the other hand, the Uniform strategy
enables the agent to frequently pick a new random direction
and thus performs better in such cases. In addition, we find
that the performance of the frontier exploration method is
sensitive to the distance out from the frontier at which the
goal is sampled. On the validation set using 2m gave success
of 75% vs 41% for 1m and 73% for 3m (see supplement).

Stubborn systematically covers local areas of the envi-
ronment. We find that it often gets stuck in local pockets in
scenes with multiple navigable areas connected by narrow
corridors. However, we notice that Stubborn performs better
in episodes where the goals are located in a nook or cranny
which is often missed by the Uniform sampling method. But
the number of such episodes is relatively low in our dataset
which explains its overall performance.

We note that it is sufficient for our agent to ‘see’ the
objects from a distance without having to navigate to them in
order to be successful. Hence, uniformly sampling locations
and moving towards them for a certain number of steps
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Method Trained
module

Training
scenes

Evaluated on (3ON test set)

MultiON (MP3D) MultiON 2.0 (HM3D) MultiON 2.0 (HM3D w/o distractors)

Success Progress SPL PPL Success Progress SPL PPL Success Progress SPL PPL

PredSem PointNav (N ) MP3D 38 (± 2) 53 (± 2) 15 (± 1) 21 (± 1) 38 (± 2) 54 (± 2) 17 (± 1) 25 (± 1) 39 (± 2) 54 (± 2) 18 (± 1) 25 (± 1)

No-Map [57] end-to-end MP3D 10 (± 2) 24 (± 2) 4 (± 1) 14 (± 1) 0.4 (± 2) 6 (± 2) 0.2 (± 1) 3 (± 1) 1 (± 2) 13 (± 2) 0.5 (± 1) 6 (± 1)
ObjRecogMap [57] end-to-end MP3D 22 (± 2) 40 (± 2) 17 (± 1) 30 (± 1) 0.3 (± 2) 10 (± 2) 0.1 (± 1) 0.3 (± 1) 3 (± 2) 18 (± 2) 0.8 (± 1) 6 (± 1)
ProjNeuralMap [57] end-to-end MP3D 27 (± 2) 46 (± 2) 18 (± 1) 31 (± 1) 0.5 (± 2) 9 (± 2) 0.2 (± 1) 4 (± 1) 4 (± 2) 19 (± 2) 1 (± 1) 8 (± 1)

Table 5. Transferability. We show that our MOPA framework transfers better to unseen environments than the end-to-end models from
prior work [57]. Our PredSem achieves similar performance on both MP3D and HM3D scenes (with and without distractors) across all
metrics, even when we use the PointNav trained on MP3D scenes, outperforming the end-to-end models.

allows for more efficient object discovery than systematically
visiting every location. This is especially true for HM3D
scenes which are relatively small (< 100m2 for most scenes).
This enables our Uniform method to perform better than the
others.

The learned Global Policy from Active Neural SLAM
performs the closest to our Uniform, and outperforms Stub-
born and Frontier. This is aligned with the observation from
Chaplot et al. [11] that the trained Global policy learns to
predict distant exploration goals leading to higher coverage
than Frontier within a time budget.
Better transferability with MOPA. To investigate how our
MOPA transfers to unseen environments (scenes different
than the ones in training), we evaluate it on MultiON 2.0
(based on HM3D scenes) by using the PointNav agent pre-
trained on MP3D scenes. We compared this to three end-to-
end models from Wani et al. [57] which were also trained on
MP3D scenes. We observe in Tab. 5 that our PredSem out-
performs the other methods in both MultiON (MP3D) and
MultiON 2.0 (HM3D) episodes, with and without distrac-
tors. Moreover, our agent performs consistently across all
environments, indicating invariance to environment priors.
Generalization of MOPA on n-ON. We additionally study
the ability of MOPA to generalize to n-ON (1ON, 3ON,
5ON) episodes without retraining. Although the perfor-
mance decreases as we introduce more target objects, with
1ON being the best and 5ON being the worst, the agent still
performs considerably well across all n-ONs. The agent
achieves a progress of 95% on 1ON, 87% on 3ON, and 76%
on 5ON on the test set (see supplement for details).
Effect of spatial map on exploration and navigation. We
perform an analysis on MultiON (3ON) to understand the
effect of spatial maps for exploration and navigation when
the agent needs to backtrack. We find that when the future
goals have been already observed and stored in the map
the agent can efficiently navigate back to them without hav-
ing to explore. For these ‘seen’ goals, we further find the
path length to be much shorter in Shortest Path Follower
compared to PointNav and FMM, since it has access to the
ground-truth navigation meshes and plans the shortest path
based on the geodesic distance to the goal. We also find that
the Uniform exploration covers the most area before the first
goal is reached, thus leading to the discovery of more future

Goal not seen 
(29%)

Goal seen but agent did 
not stop at the goal 

(11%)

1
2

3
Agent ran out 
of step limit 

(40%)

Agent stopped far 
away from the goal 

(10%)

Failure Cases 
(50%)

Figure 3. MultiON performance analysis. Error modes include
the agent running out of steps or stopping far away from the goal.
For the former, it either has not yet discovered the goal or has
discovered the goal but failed to stop near it.

goals (see supplement).
Failure analysis. In Fig. 3, we analyze the performance of
our PredSem agent which achieves 50% success on the 3ON
CYL dataset. We find that the agent runs out of the maximum
steps quota (2500 steps) in most of the failure cases (40%
of episodes). For the remaining 10% of failed episodes, the
agent fails to stop (i.e. generate the found action) within 1m
of the goal. This is a limitation of the learned PointNav
module. For most episodes where the agent reaches the step
quota, it did not yet discover the goal (29% of episodes),
which is a limitation of the exploration module. For the
other episodes (11% of episodes), the agent discovered the
goal but failed to generate the found action, which again is a
limitation of the PointNav module.

5.6. ObjectNav results

We evaluate MOPA on the single-object navigation task,
ObjectNav, where the agent needs to navigate to an instance
of a given object category. Experiments are on the validation
split of the 2022 ObjectNav challenge [62] (the test split
is not publicly available). The dataset is based on HM3D
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Method Object
Detection

Exp (E) Nav (N ) Validation

Success SPL

1) OracleSem (Ours) GT U PointNav 64 32
2) ModLearn[23] GT SemExp[12] FMM 62 32

3) PredSem (Ours) Detic[69] U PointNav 30 14
4) ModLearn[23] Mask-RCNN[12] SemExp[12] FMM 29 17
5) ModLearn[23] Detic[69] SemExp[12] FMM 27 16
6) ZSON[37] CLIP[45] end-to-end w/ DD-PPO 25 13

7) OVRL[64]* Self-supervised pretraining + ObjectNav finetuning 33 12
8) PIRLNav[49] end-to-end w/ Imitation Learning+RL finetuning 62 28
9) OVRL2[63] end-to-end w/ Imitation Learning using ViT 65 28

Table 6. ObjectNav performance. Our PredSem outperforms the
modular method ModLearn in Success without additional training
on the ObjectNav dataset. It also outperforms end-to-end trained
OVRL in SPL demonstrating the effectiveness of our approach.
(*OVRL numbers from Majumdar et al. [37])
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Figure 4. ObjectNav performance analysis. Examples of suc-
cessful (64%) and failed episodes (36%) with OracleSem. Some
episodes fail even when the agent is within 1m of the goal bounding
box with the goal in sight (top middle), indicating that the view-
points sampled for determining success in ObjectNav are sparse.

Semantics [65] scenes with 6 object categories and 2000
validation episodes total. As one key advantage of our mod-
ular approach is ability to transfer to new domains with
no training, we adapt our method to ObjectNav by using a
frozen pretrained Detic [69] Object detection module in our
PredSem agent. Tab. 6 shows that our OracleSem and Pred-
Sem agents outperform ModLearn [23], an approach using
learned semantic exploration (SemExp) with FMM as the
low-level navigation module, on Success (rows 1 vs 2 and
3 vs 4,5). We also compare our PredSem with ZSON [37],
which is trained using DD-PPO [60] on the ImageNav task
and evaluated on the ObjectNav task. We find that PredSem
outperforms ZSON on both Success and SPL (row 3 vs 6).
Next, we compare with fully-supervised SOTA methods in
ObjectNav (rows 7-9). Note that, unlike these methods, we
do not train any of our components on the ObjectNav dataset.
Interestingly we find that PredSem achieves better SPL and
similar Success to OVRL [64], signifying the effectiveness
of our approach without additional training. However, both
PIRLNav and OVRL2 outperform PredSem by a significant
margin since they use advanced training strategies and pow-
erful vision transformers respectively. PIRLNav [49] uses
the pretrained RESNET encoder from OVRL and trains a

policy using Imitation Learning (IL) followed by a second
stage of RL finetuning and hence achieves high performance.
Similarly, the high performance of the current SOTA method
OVRL2 [63] can be attributed to the use of vision transform-
ers (ViT). We observe similar results on ObjectNav [5] with
MP3D [10] scenes as well (see supplement).
Failure analysis. We analyze failure cases on ObjectNav
similarly to our analysis for MultiON. The failure cases are
largely similar (see Fig. 4), with episodes not succeeding
primarily due to: i) exceeding the maximum step limit (in-
cluding cases where the agent did not observe the goal, and
cases where it did but failed to navigate close to it); and ii)
stopping at a position away from the goal. We found some
cases where the definition of success threshold distance to
the goal is overly strict. In the ObjectNav evaluation proto-
col [5], success is defined as the agent stopping close (within
0.1m) to a set of sampled viewpoints each 1m away from
the goal object bounding box, an approximation of stopping
within 1m of the object. We found episodes where the agent
stopped within 1m of the object and with the object in view,
but the episode was deemed to have failed due to sparse sam-
pling of the viewpoints, suggesting the ObjectNav evaluation
protocol should be improved.

6. Conclusion

We carried out a systematic analysis of our modular ap-
proach MOPA to demonstrate that we can effectively lever-
age pretrained models from other tasks without having to
retrain end-to-end models for complex longer-horizon object
navigation task. We created a new large-scale dataset for
MultiON task and compared various strategies for naviga-
tion and exploration. Our experiments show that deploying a
PointGoal navigation agent in the MultiON task significantly
outperforms analytical path planning. Moreover, a simple
exploration strategy in MOPA based on uniform sampling
outperforms more complex methods. We believe our work
offers insight for more efficient, modular approaches towards
solving long-horizon navigation tasks and encourages the
community to explore a hybrid combination of transfer learn-
ing and simple heuristic-based methods.
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